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Abstract: Quantified research on the Arctic Ocean carbon system is poorly understood, limited
by the scarce available data. Measuring the associated phytoplankton responses to air–sea CO2

fluxes is challenging using traditional satellite passive ocean color measurements due to low solar
elevation angles. We constructed a feedforward neural network light detection and ranging (LiDAR;
FNN-LID) method to assess the Arctic diurnal partial pressure of carbon dioxide (pCO2) and formed
a dataset of long-time-series variations in diurnal air–sea CO2 fluxes from 2001 to 2020; this study
represents the first time spaceborne LiDAR data were employed in research on the Arctic air–sea
carbon cycle, thus providing enlarged data coverage and diurnal pCO2 variations. Although some
models replace Arctic winter Chl-a with the climatological average or interpolated Chl-a values,
applying these statistical Chl-a values results in potential errors in the gap-filled wintertime pCO2

maps. The CALIPSO measurements obtained through active LiDAR sensing are not limited by solar
radiation and can thus provide ‘fill-in’ data in the late autumn to early spring seasons, when ocean
color sensors cannot record data; thus, we constructed the first complete record of polar pCO2. We
obtained Arctic FFN-LID-fitted in situ measurements with an overall mean R2 of 0.75 and an average
RMSE of 24.59 µatm and filled the wintertime observational gaps, thereby indicating that surface
water pCO2 is higher in winter than in summer. The Arctic Ocean net CO2 sink has seasonal sources
from some continental shelves. The growth rate of Arctic seawater pCO2 is becoming larger and more
remarkable in sectors with significant sea ice retreat. The combination of sea surface partial pressure
and wind speed impacts the diurnal carbon air–sea flux variability, which results in important
differences between the Pacific and Atlantic Arctic Ocean. Our results show that the diurnal carbon
sink is larger than the nocturnal carbon sink in the Atlantic Arctic Ocean, while the diurnal carbon
sink is smaller than the nocturnal carbon sink in the Pacific Arctic Ocean.

Keywords: diurnal variation; air–sea carbon flux; CALIPSO; LiDAR; remote sensing

1. Introduction

The ocean is a vital sink for anthropogenic CO2 and absorbed approximately 30% of
our emissions between the beginning of the industrial revolution and the 1950s [1]. Cur-
rently, due to the lack of available data, there is a demand to assess the entire annual cycle
of the partial pressure of carbon dioxide (pCO2) variabilities as a solution for understanding
the onset and evolution of oceanic acidification [2]. For the modern ocean, the annual varia-
tions in pCO2 and related variables are generally well understood with nonthermal effects
dominating in the subpolar regions, whereas the temperature-driven variations dominate
the subtropics [3,4]. Sea surface pCO2 is increasing at a rate roughly equivalent to the
increase in atmospheric CO2 in almost all parts of the global ocean [5–7]. However, recent
global ocean carbon estimates still hide substantial interannual and regional fluctuations.
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Quantified research is needed, especially in regions with scarce available data, such as the
Arctic Ocean (north of 65◦N) and marginal seas, as these areas were excluded from many
previous global surveys due to their limited data coverage [8–10].

The Arctic Ocean is changing in many aspects, with decreasing sea ice cover and
increasing pCO2 being among the fastest-changing factors [11] (Intergovernmental Panel
on Climate Change (IPCC), 2014). Over the past 3 decades, climate warming has in-
duced remarkable changes in the Arctic ocean–ice–atmosphere system: increased sea
ice losses [12,13], altered surface circulation [14–16], freshened surface water [17,18] and
enhanced primary production [19]. In addition, ocean acidification is most pronounced
in the Arctic, as CO2 solubility increases at cold temperatures and a lower total alkalinity
causes systems to become more sensitive to anthropogenic CO2 [20,21]. Early observations
indicated that the Arctic Ocean is a strong CO2 sink with persistently low pCO2 values
in the highly productive slope and shelf regions [22], while more recent studies have
suggested that rapid air–sea gas exchanges and warming have led to high pCO2 values
approaching atmospheric CO2 concentrations [23,24]; however, these studies were based on
limited observations and thus may have been affected by uneven spatiotemporal coverage.
Thus, the pCO2 trends in the Arctic Ocean are poorly understood due to observational
limitations and the added complexity of sea ice melt [25].

Arctic air–sea carbon flux measurements have been performed from ships for more
than 30 decades by measuring the difference in the partial pressure of CO2 within the
surface ocean and the atmosphere [26–28]. In addition, eddy covariance methods have
often been used in recent years, thus providing an independent estimate of sea-to-air
fluxes [29,30]. However, measured observations are rare and expensive in the Arctic due to
the presence of complex environments, such as frequent high-intensity storms and low win-
ter temperatures. The key source of uncertainty is the lack of data from this remote region,
as few long-term monitoring programs and experiments have been performed; only Alaska
and parts of Canada and Scandinavia (Greenland) are better represented [31]. Arrigo et al.,
2006 found the annual mean pCO2 was 313 ± 4.1 µatm before 2003 in Greenland [32]. Bene-
fiting from the increasing density of in situ measurements of sea surface CO2 fugacity and
massive amounts of remote sensing data, a multitude of sea surface pCO2 reconstruction
methods based on data interpolation approaches or machine learning have emerged [8].
Different artificial neural networks have succeeded in filling temporal and spatial data
gaps [33–41]. However, passive remote sensing data quality is poor in Polar Regions and
the coverage area is very limited, resulting in errors occurring in Antarctica or the Arctic
among previous studies. Moreover, solar radiation-driven passive radiometers are greatly
affected by polar night, resulting in large amounts of missing ocean color observations in
the high-latitude region throughout wintertime, such as Chl-a measurements and their
derivative pCO2 products. For example, chlorophyll-a concentrations, which are usually
used to describe productivity, can be confounded by the presence of sea ice, clouds and
solar radiation loss [26,39].

Recent advanced observations, such as spaceborne light detection and ranging (Li-
DAR) data, are filling these critical data needs. Lu et al., 2014 provided global Chl-a and
particulate organic carbon concentrations and Behrenfeld et al., 2017 measured the annual
cycles of phytoplankton biomass in polar regions [42,43]. A high-resolution LiDAR dataset
containing both diurnal and nocturnal measurements (taken at approximately 13:40 and
01:40 local time, respectively), has also recently been employed to develop a retrieval
approach for diurnal Chl-a and wind speed data. Hu estimated the wind speed and wave
slope variance at the global scale and found that high-spatial-resolution (70-m) wind data
from the CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) platform can help reduce uncertainties in air–sea exchanges [44,45]. Compared
to traditional satellite ocean color remote sensing, LiDAR measurements provide new
measurements of ocean phytoplankton properties at both daytime and nighttime, including
in polar regions, thus improving our understanding of Arctic phytoplankton primary
productivity and carbon fluxes [46–49].
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In Section 2, we described and introduced the datasets we used in this study, including
the methods of diurnal chlorophyll-a concentration (Chl-a) and wind speed retrieval from
the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and the preprocessing of
observation data and other remote sensing environmental data. Then, in Sections 3 and 4,
we compared the retrieved feedforward neural network-LiDAR (FNN-LID) pCO2 with
the observations, estimated the long-time-series variations in the surface pCO2 and C-
flux in the Arctic Ocean and analyzed the climatological diurnal variations. Finally, in
Section 5, we summarized the developed approach and the main results achieved and
provided recommendations for future biogeochemical studies using active LiDAR remote
sensing measurements.

2. Materials and Methods
2.1. Arctic Sectors

The Arctic was divided into 10 sectors: Baffin Bay, Greenland Sea, Barents Sea, Kara
Sea, Laptev Sea, East Siberian Sea, Chukchi Sea, Beaufort Sea, Canadian Arctic Archipelago
and central Arctic Ocean. These subregions were then delineated using a region mask
provided by the National Snow and Ice Data Center (NSIDC, available online: https://
masie_web.apps.nsidc.org/pub/DATASETS/NOAA/G02135/seaice_analysis/ (accessed
on 11 September 2022)); this mask has been used in many Arctic studies and consists of
3912 pixels per scene in the polar stereographic projection centered on the North Pole. We
selected the high latitudes north of 60◦N and regridded the mask to a spatial resolution of
1 × 1◦ (Figure 1).
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Figure 1. A regional mask of the Arctic region provided by the National Snow and Ice Data Center
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Siberian Sea, Chukchi Sea, Beaufort Sea, Canadian Arctic Archipelago and central Arctic Ocean
sectors. Land areas are shown in gray.
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2.2. Data
2.2.1. Observations

The Surface Ocean CO2 Atlas (SOCAT) (available online: http://www.socat.info/
(accessed on 20 August 2022)) community provides a key dataset of gridded monthly
CO2 fugacity (f CO2) with data available since 2011 [50,51]. The latest SOCAT version,
SOCATv2022, contains 33.7 million quality-controlled f CO2 observations from moorings,
ships and drifters recorded over the period from 1957 to 2022 with an accuracy better than
5 µatm [52], including 2,534,512 observations in the Arctic (Figure 2). The gridded f CO2
estimates were converted to pCO2 values using the following formulation (see, e.g., [53]):

pCO2 = f CO2 · exp
(

p
(B + 2δ)

RT

)−1
, (1)

where pCO2 and f CO2 are in microatmospheres (µatm), p is the total atmospheric surface
pressure (in Pa), B and δ are viral coefficients [54], R is the gas constant and T is the
absolute temperature.

The Global Ocean Data Analysis Project (GLODAP) v2.2020 is a synthesis effort
agglomerating chemical water analysis data from more than 1.2 million water samples
collected on 946 global cruises [55,56]. The GLODAP dataset encompasses 135,389 quality-
controlled and normalized chemical water measurements in the Arctic, providing 29,305
discrete f CO2 values over 42 years of scientific exploration, and we used the coastal East
Siberian data from GLOADP as a complementary (Figure 2).
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Figure 2. The distributions of in situ f CO2 from SOCATv2022 and GLODAPv2.2020 in the Arctic
Ocean. The observations of pCO2 including all the SOCAT data (north of 65◦N) and the coastal East
Siberian data from GLOADP as a complementary.

2.2.2. CALIPSO Datasets

We used the active remote sensing data developed by the National Aeronautics and
Space Administration (NASA) (available online: http://orca.science.oregonstate.edu/
lidar_nature_2019.php (accessed on 19 August 2022)), including CALIPSO Level-1B V4.10
data products, Aerosol, LiDAR Level-2 Cloud and Merged Layer V4.20 products [57,58].
The CALIOP LiDAR is an active sensor producing simultaneous laser pulses with dual
polarization at 532 nm, and the measured signal is corrected for after-pulse and polarization-

http://www.socat.info/
http://orca.science.oregonstate.edu/lidar_nature_2019.php
http://orca.science.oregonstate.edu/lidar_nature_2019.php
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crosstalk effects before being processed [59]. After correcting the influences of transient
crosstalk and response, bbp was calculated from the vertical-parallel ratio [60–62], and Chl-a
was estimated using the following formula [43]:

bbp (532) ≈ 2Kd βw+

0.32 ∗ 0.982
1

2Kd
≈ βw+

0.32 ∗ 0.982 , (2)

Chl-a = log0.17
bbp

2.0 × 10−4 , (3)

where βw+ is the subsurface column-integrated backscatter of the perpendicular component,
Kd is the diffuse attenuation coefficient at 532 nm (where Kd is 1.76, see Behrenfeld et al.,
2017; 2019) and δp is the particulate depolarization ratio. Hence, Chl-a can be estimated
based on the relational formula of bbp.

To validate the Chl-a results, we compared the global Chl-a values in the regions where
ocean observations are available throughout the year from both CALIOP and the Moderate
Resolution Imagining Spectrometer (MODIS) passive ocean color sensor. The MODIS data
used in this study are Level-3 products with a spatial resolution of 9 km (available online:
http://oceancolor.gsfc.nasa.gov (accessed on 16 July 2022)). At the global scale, we found
excellent agreement (north r2 = 0.75, n = 12,775, p < 0.001) between the Chl-a values from
the two sensors, thus lending confidence to the CALIOP retrievals (Figure 3A). In the polar
zones, however, CALIOP continued to characterize Chl-a distributions right up to the ice
edge throughout the extended periods when MODIS data were entirely absent (as shown,
for example, in Figure 3B,C). This advantage of active LiDAR sensing allowed CALIOP to
‘fill in’ data in the late autumn to early spring seasons that have never been unlocked by
other satellites due to solar radiation constraints and thus allowed CALIOP to construct a
complete record of polar phytoplankton annual cycles [42].
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Figure 3. (A) Comparisons between Lidar estimates and Modis Chl-a. The color representing the
number of observations (color) of collocated CALIOP and MODIS Chl-a data; (B) MODIS Chl-
a retrievals for December 2010 poleward of the 40◦N latitude line; (C) CALIOP Chl-a retrievals
poleward of the 40◦N latitude line (white: no data) for northern latitudes (December 2010). The
light-gray shading indicates ice cover in panels (B,C); all values are in units of µg L−1.

The LiDAR backscatter signal is proportional to the probability that the surface of
the capillary-gravity waves is perpendicular to the line of sight of the laser beam [63]. As
for the CALIOP measurements, we first averaged every 30 profiles to smooth the noise
then estimated the wind speed and finally the final wind speed was monthly 1◦ by 1◦

averaged and gridded for estimating pCO2. Murphy indicated that the neural network
ocean surface wind speed retrieval method is a skillful method that can help retrieve
ocean surface wind data from CALIPSO LiDAR measurements [44,63]. In this study, we
retrieved wind speed data from the Version-4 CALIPSO LiDAR level-1 data (Vaughan et al.,
2019) together with collocated ocean surface wind speed data from Advanced Microwave
Scanning Radiometer for Earth Observing Satellite (AMSR-E) measurements. The MATLAB

http://oceancolor.gsfc.nasa.gov
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functional fitting neural network was adopted with the 7 inputs listed in Table 1. To match
the AMSR-E footprint size, the input CALIOP variables were averaged 40 km in the along-
track direction, with a matching window of 40 km along the AMSR-E track. The CALIOP
LiDAR measurements and ocean surface wind speed measurements from AMSR-E in 2008
were used to train the neural network CALIOP ocean surface wind speed model.

Table 1. The CALIOP data used to retrieve sea surface wind speed data.

Components Wavelength Polarization

1 Ocean surface and subsurface LiDAR backscatter 532 nm Total
3 Ocean surface and subsurface LiDAR backscatter 532 nm Perpendicular
5 Ocean surface and subsurface LiDAR backscatter 1064 nm -
2 Column integrated atmospheric LiDAR backscatter 532 nm Total
4 Column integrated atmospheric LiDAR backscatter 532 nm Perpendicular
6 Column integrated atmospheric LiDAR backscatter 1064 nm -
7 Latitude - -

2.2.3. Gridded Datasets

We used gridded sea surface temperature (SST), sea surface salinity (SSS), sea surface
height (SSH), atmospheric CO2 mole fraction xCO2 (xCO2), Chl-a and mixed layer depth
(MLD) datasets to train the FNN-LID model and reconstruct the pCO2 series (Table 2).
The 0.25◦ monthly SST, SSS, SSH and MLD data were provided by the Copernicus Marine
Environment Monitoring Service (CMEMS). The xCO2 data were acquired from the Coper-
nicus Atmosphere Monitoring Service (CAMS) global atmospheric composition forecasts.
In addition to the predictors listed in this table, the climatological pCO2 [5], latitude and
longitude information were also used as predictors in the reconstruction. Furthermore,
the sea ice concentration (percentage of the ocean area covered by sea ice concentration
(SIC), sea level pressure, 10 m wind speed and total pressure were exploited to obtain the
air–sea carbon flux. The SIC data were obtained from the NSIDC Climate Data Record
at a spatial resolution of 25 km and a monthly temporal resolution [64]. The sea level
pressure and 10 m wind speed data were derived from CALIOP (Section 2.2.2). We used
the monthly total sea surface pressure data from the European Centre for Medium-Range
Weather Forecasts (ECMWF) with a 1◦ spatial resolution.

Table 2. Details of the satellite and reanalysis input fields.

Satellite and Reanalysis Environmental Datasets for Reconstructing Ocean Surface pCO2 and Air–Sea Carbon Flux

Component Dataset Temporal Scale Website

Sea surface temperature

CMEMS Monthly

https://resources.marine.copernicus.eu/
product-detail/SST_GLO_SST_L4_REP_

OBSERVATIONS_010_011/DATA-
ACCESS (accessed on 10 September 2022)

Sea surface salinity
Sea surface height
Mixed layer depth

Chl-a
GlobColour Monthly

https://www.globcolor.info/products_
description.html (accessed on

10 September 2022)

CALIPSO Monthly/diurnal CALIPSO retrievals

Atmospheric CO2
mole fraction ECMWF Monthly/diurnal https://ads.atmosphere.copernicus.eu

(accessed on 10 September 2022)

Climatological pCO2 Takahashi et al., 2009 Monthly -

https://resources.marine.copernicus.eu/product-detail/SST_GLO_SST_L4_REP_OBSERVATIONS_010_011/DATA-ACCESS
https://resources.marine.copernicus.eu/product-detail/SST_GLO_SST_L4_REP_OBSERVATIONS_010_011/DATA-ACCESS
https://resources.marine.copernicus.eu/product-detail/SST_GLO_SST_L4_REP_OBSERVATIONS_010_011/DATA-ACCESS
https://resources.marine.copernicus.eu/product-detail/SST_GLO_SST_L4_REP_OBSERVATIONS_010_011/DATA-ACCESS
https://www.globcolor.info/products_description.html
https://www.globcolor.info/products_description.html
https://ads.atmosphere.copernicus.eu
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Table 2. Cont.

Satellite and reanalysis environmental datasets for reconstructing the air–sea Carbon flux

Component Dataset Temporal Scale Website

10 m wind speed
CALIPSO Monthly/diurnal CALIPSO retrievals

CCMP Monthly https://www.remss.com/measurements/
ccmp/ (accessed on 10 September 2022)

Pressure ECMWF Monthly/diurnal https://ads.atmosphere.copernicus.eu
(accessed on 10 September 2022)

Sea ice concentration CMEMS Monthly

https://resources.marine.copernicus.eu/
product-detail/SST_GLO_SST_L4_REP_

OBSERVATIONS_010_011/DATA-
ACCESS (accessed on 10 September 2022)

In addition, the original data were interpolated into 1 × 1◦ cells. To create the diurnal
pCO2 field and calculate the air–sea carbon flux in polar nighttime, we used all data
available at diurnal resolution, including the wind speed, Chl-a, sea surface pressure,
temperature and xCO2 data. These diurnal data have the same spatial resolution as the
monthly average results. As for the satellite launched in 2006, there were no available
CALIOP data for the 2001–2006 period. Thus, wind speeds extracted from the Cross-
Calibrated Multi-Platform (CCMP) dataset and the Chl-a data from GlobColour were used
to replace LiDAR data during 2001–2006.

2.3. FNN-LID Method

We combined novel FNN methods based on active and passive remote sensing data
(FNN-LID) collected during the period from January 2001 to December 2020 at a monthly
1 × 1◦ resolution and reconstructed the diurnal pCO2 series since 2007 (Figure 4). We used
Keras (available online: https://keras.io (accessed on 6 September 2022)), a high-level
neural network Python library, for the training and evaluation of the FNN. The complexity
of the problem and the number of data used for training jointly determines the number
of neurons and FNN layers. We followed the empirical rule of a factor of 10 between the
number of data and the connections to avoid overfitting [65].
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We used a two-part method to establish nonlinear relationships between a suite of
independent environmental predictors and pCO2. To improve the accuracy of the recon-
struction, the two parts were both built separately for each month. First, we derived the
relationships between the pCO2 climatology (pCO2-clim) series and environmental predic-
tors (SST, SSS, SSH, Chl-a, MLD, longitude and latitude) based on the FFN method using the
monthly climatology [5] data as the standard output. We developed an FFNN model with
5 layers. In the second part, the target was to reconstruct the pCO2 anomalies (pCO2-anom)
series using another FFN method and the target sea surface pCO2-anom was computed
as the differences between SOCATv2022 observations and monthly climatological pCO2
from the first step (=pCO2-SOCAT − pCO2-clim). During the second step, normalized
pCO2-anom were reconstructed as a nonlinear function of normalized SST, SSS, SSH, Chl-a,
MLD, xCO2, longitude and latitude. The SST, SSS, Chl-a are from the same datasets (see
in Table 2); however, the roles of these datasets played in the two steps are different. In
the first step, it is desired to reconstruct more desirable high spatial resolution pCO2-clim
data (1◦ × 1◦) by environmental parameters, as the Takahashi’s climate state data have the
problem of low spatial resolution (4◦ × 5◦). In the second step, the same datasets were used
to capture the pCO2-anom by using the limited amount of measured data and the matching
environmental data. Finally, we obtained pCO2 by adding anomalies to climate state.

In these two steps, the training datasets were expanded by combining data represent-
ing the previous month and the next month to cluster the seasonal cycle and increase the
amount of data considered in this step. In addition, we divided the dataset into 3 parts
for the FNN training (50%), evaluation (25%) and model validation (25%) processes. We
trained the model separately for each month to improve the accuracy of the reconstruction
results. K-fold cross-validation (K = 4) was used for the evaluation and validation of the
FFNN. Five FNN tests were performed per month for each sampling fold, and each of
these five runs was characterized by a different initial value chosen at random. From these
five results, the best result was selected. Hence, we constructed 12 FNN models with
5 layers sharing a common architecture but trained on different data; the validation process
is detailed in Section 3.1.

On this basis, we updated the input data to the diurnal CALIPSO sea surface Chl-
a data collected from 2007 to 2020 and the diurnal xCO2 data from ECMWF. Thus, we
reconstructed the diurnal and nocturnal pCO2 series from 2007 to 2021 at a monthly
1 × 1◦ resolution.

2.4. Global Air–Sea CO2 Flux Estimates

The global air–sea CO2 flux is often estimated by the bulk method:

f lux = kw × sol ×
(

pCO2water − pCO2air

)
× (1 − SIC), (4)

where f lux (mol m−2 yr−1) is the air–sea CO2 flux, kw is the gas transfer velocity, sol is the
solubility of CO2 in seawater (mol m−2 µatm−1), pCO2water (µatm) and pCO2air (µatm) are
the partial pressure of ocean surface CO2 and atmospheric CO2 in the marine boundary
layer and SIC is the ice fraction of ocean area covered by sea ice.

The gas exchange rate is often estimated using the following equation:

kw = 0.251 × U10 ×
(

Sc
660

)−0.5
, (5)

where U10 is the wind speed 10 m above sea level and Sc denotes the Schmidt number
calculated from the SST and SSS based on the equation proposed by Wanninkhof (2014).

The CO2 solubility at the air–sea interface is calculated from the seawater temperature
and salinity [27]. Although several equations have been proposed to parameterize kw as a
function of U10, we used Equation (5), which has been widely used to estimate CO2 fluxes
in Arctic studies (e.g., [66]). Throughout this study, the flux is defined as positive when CO2
is released from the ocean to the atmosphere and negative when CO2 is absorbed by the
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ocean from the atmosphere. The SIC is used because ice acts as an imperfect barrier to gas
exchange [67–69]. However, whether the effect of sea ice on gas exchange is linear [68,70]
or nonlinear [67,71] is still under debate; for simplicity, only a linear ice correction is used
in this work. In addition, when SIC is larger than 99%, we use 99% to allow air–sea CO2
exchanges through fractures, leads and brine channels [72]. The sources of all data used
here are provided in Section 2.

In this study, the air–sea carbon flux is commonly described through a bulk for-
mula [27,73]. Therefore, we discuss the impacts of considering different carbon flux mecha-
nisms in terms of day-night ratios as follows:

kkw =
kwday

kwnight
, (6)

kdp =
pwater_day − pair_day

pwater_night − pair_night
=

dpday

dpnight
, (7)

f luxday

f luxnight
=

kwday

kwnight
×

dpday

dpnight
= ksol × kkw × kdp, (8)

where kkw and kdp represent the ratios of the air–sea exchange rate and the different
components of the day and night durations, respectively. When this ratio is less than 1, it
means that the parameter is higher during the night than during the day; when the ratio is
greater than 1, it means that lower values appear at night.

2.5. Interpretation of Statistics

The root mean square error (RMSE), bias and Pearson correlation coefficient (R) were
used in this work as standard statistical metrics to measure the model performance. The
RMSE was calculated for the dataset as follows:

RMSE =

√
1
n ∑n

i=1(Obs − Est)2
i , (9)

Bias =
1
n

n

∑
i=1

(Est − Obs)i, (10)

where n is the sample index, Obs is the observation measurement and Est is the model estimate.

3. Results
3.1. Validation of FNN-LID pCO2

The pCO2 values simulated by the fitted FFN-LID model were compared to the
measurements extracted from SOCATv2022, with an overall mean R2 of 0.79 and an RMSE
of 17.76 µatm (Figure 5A). The average difference between the observed and simulated
pCO2 was almost null (overall bias = 0.1 µatm) globally and was −0.08 in the Arctic region
(Figure 5B). The comparison of our Arctic FFN-LID results with the observations shows an
average RMSE of 24.59 µatm and an overall mean R2 of 0.75; these values are comparable
with the recent SOCAT-based global pCO2 fields in the Arctic Ocean (Table 3).

Compared to other datasets, we obtained a generally similar spatial distribution with
spatially random residuals of −0.14 ± 15.98 µatm (Figure 5C), which is overestimated in the
costal Beaufort Sea and the north of the Novaya Zemlya Island and slightly underestimated
in the melted ice zone east of Greenland Island (Figure 5D). However, we found higher
pCO2 (>400 µatm) values in the costal East Siberian and the Laptev Sea throughout the
summer season; these values were higher than those provided by most global coverage
models and were more consistent with other observation-based studies than the outputs of
previous models.
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Table 3. The comparison of seven different SOCAT-based pCO2 fields and the SOCAT observations
in the Arctic Ocean.

RMSE
(µatm) R2 Bias

(µatm) Number Original
Coverage Area

CMEMS 31.22 0.64 0.27 12,402 Global
IBP 29.36 0.68 −1.21 15,445 Global

JMA 26.71 0.63 1.01 6412 Global
IOCAS 29.65 0.61 −4.52 11,255 Global

FNN-LID 25.59 0.75 −0.14 10,266 Global
Yasunaka et al., 2016 32 0.8 - - Arctic Ocean
Yasunaka et al., 2018 30 0.82 - - Arctic Ocean

As the East Siberian Sea is a blank area in the SOCAT datasets, we used the indepen-
dent Global Ocean Data Analysis Project (GLOBDAP) dataset, an agglomerating chemical
water analysis dataset with vertical information, to validate the high pCO2 we found in
the FNN-LID outputs. Two consecutive GLOBDAP cruises passed through the region
measured in August and September 2008, showing that the pCO2 of the continental shelf
was high, even higher than that of the atmosphere (approximately 400 µatm) (Figure 6A,E).
Compared to the IBP (Figure 6C,G) and CMEMS (Figure 6D,H) model outputs, we can
clearly find that the pCO2 values retrieved by the FNN-LID model (Figure 6B,F) are closer
to the summertime in situ spatial distribution, reconstructing the high-pCO2 waters in the
continental shelf area.
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Figure 6. Maps of observed pCO2 from GLODAP in (A) August and (E) September 2008. Maps of sea
surface pCO2 from (B) FNN-LID, (C) IBP and (D) CMEMS in August 2008 and from (F) FNN-LID,
(G) IBP and (H) CMEMS in September 2008.

3.2. Sea Surface pCO2 during Polar Night and Seasonal Variations

Polar night is a period of continuous twilight or nighttime; polar night lasts approxi-
mately 11 weeks at the poles, and the North Pole experiences this period from November
to January. During this time, the Arctic Ocean receives less radiation, and for more than
one month the sun never rises at this pole during the whole 24 h of the day.

Although some models replace Arctic winter Chl-a values with the climatological
average or interpolated Chl-a values, these statistical Chl-a values fill the wintertime pCO2
maps with potential errors. Due to the wintertime Chl-a values usually being lower than the
climatological average values, such interpolation methods fail when edge data are missing.
However, as CALIPSO measurements collected via active LiDAR sensing are not limited
by solar radiation, the FNN-LID model can provide ‘fill-in’ values from the late autumn
to early spring seasons to supplement the data hidden from ocean color sensors and thus
construct the first complete record of polar pCO2. The December pCO2 data reconstructed
using GlobColour Chl-a and LiDAR Chl-a data are shown in Figure 7A,B. Both these data
sources can successfully reproduce the pCO2 distribution, but the LIDAR-based product
has a clearly superior spatial coverage. Moreover, if the Arctic carbon sink were estimated
directly using these relatively small-coverage data, the resulting Arctic carbon sink values
would be underestimated.
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In this framework, we assessed the complete seasonal cycle variations in the Arctic
Oceans. Similar seasonal patterns and driving mechanisms are extracted by the Climate
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Model Intercomparison Project Version-5 (CMIP5) models under modern forcing condi-
tions [74,75]. However, the modeled seasonal variations do not include the Arctic Ocean
due to the sparsity of seasonal observations in this region. Thus, we exploited the FNN-LID-
derived observation-based product to fill this observational gap. The results indicate that
surface water pCO2 is higher in winter than in summer, suggesting that nonthermal effects
dominate here, as in the subarctic region (Figure 7D). Taking the Greenland Sea and Barents
Sea as examples, the seasonal variation (from June to December) in pCO2 in the Arctic
Ocean seawater is found to be approximately 81.1 (±39.16) µatm; this seasonal variation is
prevalent throughout the Arctic Ocean. In addition, seasonal amplitude maxima can be
observed in the Bering Strait and along the shelf edge of the White Sea.

3.3. Distributions of Arctic Ocean pCO2 and Flux

Due to the coverage of sea ice in winter, year-round pCO2 data are not available for
some sea ice-covered months, as sea ice can interfere with radiative transfer, causing the
quality of remote sensing data to degrade. Thus, we used SIC to select the sea surface pCO2
rather than the subglacial pCO2; the resulting long-term monthly pCO2 series are shown in
Figure 8. Based on the FNN-LID-derived pCO2, we found that the spatial pattern shows
higher seasonal variations in the regions dominated by Pacific waters (e.g., the Chukchi
Sea and the Greenland Sea), as illustrated in Figure 8B,G. In the Chukchi sector (Figure 8G),
the sea surface pCO2 was higher than that in the western Beaufort Sea (Figure 8H); this
finding is consistent with observations by Bates [22].

In addition, we found that there is little spatial variability in atmospheric pCO2 over
the Arctic Oceans, with seasonal variations of ~4 µatm, reaching the highest value in
summer (Figure 8). The seasonal variation in seawater pCO2 is nearly 20 times greater than
that in atmospheric pCO2. The magnitude and direction of the release or uptake of CO2
across the sea surface are determined by the air–sea difference in pCO2. Over the last 20
years, atmospheric pCO2 has been experiencing a steady rise (2.0611 ± 0.03 µatm yr−1),
with the annual average increase from 361.31 µatm to 402.12 µatm. Meanwhile, most Arctic
Ocean surface pCO2 has been lower than the atmospheric pCO2 and has thus acted as a
stable carbon sink, except in the Kara Sea, where seasonally high pCO2 occurs in winter
(Figure 8D).

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 7. December pCO2 maps constructed with (A) GlobColour Chl-a and (B) LiDAR Chl-a data. 
(C) June pCO2 map constructed with LiDAR Chl-a data and (D) seasonal variation between June 
and December based on LiDAR Chl-a. 

In this framework, we assessed the complete seasonal cycle variations in the Arctic 
Oceans. Similar seasonal patterns and driving mechanisms are extracted by the Climate 
Model Intercomparison Project Version-5 (CMIP5) models under modern forcing condi-
tions [74,75]. However, the modeled seasonal variations do not include the Arctic Ocean 
due to the sparsity of seasonal observations in this region. Thus, we exploited the FNN-
LID-derived observation-based product to fill this observational gap. The results indicate 
that surface water pCO2 is higher in winter than in summer, suggesting that nonthermal 
effects dominate here, as in the subarctic region (Figure 7D). Taking the Greenland Sea 
and Barents Sea as examples, the seasonal variation (from June to December) in pCO2 in 
the Arctic Ocean seawater is found to be approximately 81.1 (±39.16) µatm; this seasonal 
variation is prevalent throughout the Arctic Ocean. In addition, seasonal amplitude max-
ima can be observed in the Bering Strait and along the shelf edge of the White Sea. 

3.3. Distributions of Arctic Ocean pCO2 and Flux 
Due to the coverage of sea ice in winter, year-round pCO2 data are not available for 

some sea ice-covered months, as sea ice can interfere with radiative transfer, causing the 
quality of remote sensing data to degrade. Thus, we used SIC to select the sea surface 
pCO2 rather than the subglacial pCO2; the resulting long-term monthly pCO2 series are 
shown in Figure 8. Based on the FNN-LID-derived pCO2, we found that the spatial pattern 
shows higher seasonal variations in the regions dominated by Pacific waters (e.g., the 
Chukchi Sea and the Greenland Sea), as illustrated in Figure 8B,G. In the Chukchi sector 
(Figure 8G), the sea surface pCO2 was higher than that in the western Beaufort Sea (Figure 
8H); this finding is consistent with observations by Bates [22]. 

 
Figure 8. The long-time-series monthly pCO2 values in 10 sectors in the Arctic Ocean: (A) Baffin Bay, 
(B) Greenland Sea, (C) Barents Sea, (D) Kara Sea, (E) Laptev Sea, (F) East Siberian Sea, (G) Chukchi 
Figure 8. The long-time-series monthly pCO2 values in 10 sectors in the Arctic Ocean: (A) Baffin Bay,
(B) Greenland Sea, (C) Barents Sea, (D) Kara Sea, (E) Laptev Sea, (F) East Siberian Sea, (G) Chukchi
Sea, (H) Beaufort Sea, (I) Canadian Arctic Archipelago and (J) central Arctic Ocean. The light color
represents atmospheric pCO2 and the dark color represents seawater pCO2.
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The 20-year annual CO2 sink per m2 was strong in the Greenland/Norwegian Seas
(>4.45 mol m−2 yr−1), the Barents Sea (2.04 mol m−2 yr−1), Baffin Bay (2.75 mol m−2 yr−1) and
the Chukchi Sea (2.38 mol m−2 yr−1) (Figure 9A). In contrast, it was weak (<1 mol m−2 yr−1)
in the Kara Sea, the Beaufort Sea, the East Siberian and Canada Arctic Archipelago (Figure 9A).
The annual mean CO2 flux distribution shows that most areas of the Arctic Ocean and its
adjacent seas served as net CO2 sinks over the study period, showing a significant increase
from 2001 to 2005 and remaining at 0.15 ± 0.01 TgC yr−1 over the next 15 years (Figure 9B).
The SIC is the most fundamental element controlling the carbon flux magnitude, forcing
a small carbon flux in the central Arctic Ocean. Both the Barents Sea and the Greenland
Sea have very low sea ice cover and large sea gas pressure gaps, but the Greenland Sea has
higher surface wind speeds that cause greater air–sea exchange rates; thus, the Greenland
Sea has become the largest carbon flux partition zone in the Arctic (Figure 9C). Regarding
the fluxes of individual sectors, the primary controlling factor for the monthly CO2 sink is
the ice-covered area (equivalent to the ice%), and the secondary factor is the wind speed. In
addition, the carbon flux is nearly null or even seasonally within uncertainty in the Laptev Sea
(~approximately0.20 mol m−2 yr−1) and East Siberian Sea (approximately 0.36 mol m−2 yr−1).
Previous measurement-based research has also indicated that the Laptev Sea and the East
Siberian Arctic Shelf are sources of atmospheric CO2 [76–78]. These high pCO2 values could
be explained by the increasing load of humid acids delivered to shelf waters, while more
nutrients, as products of eroded organic carbon transformation and river transport, are
delivered to the Arctic Ocean [79]. Meanwhile, due to the impacts of complex factors (such as
river runoff, coastal erosion, and primary production/respiration), the year-to-year dynamics
of pCO2 as well as the air–sea carbon flux vary substantially [80]. As the sampling frequency
of the measured data receive restrictions to access pCO2 with high spatiotemporal coverage,
the FNN-LID complements the seasonal lack of measurement and, once again, confirms this
sector to be the seasonal source of atmospheric pCO2.
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4. Discussion
4.1. Long-Time-Series Variations in Arctic pCO2

We used long-time-series pCO2 values for individual months to calculate interan-
nual trends, which allows us to reduce the impact of specific events that occur in par-
ticular months, such as abrupt changes due to surges in primary productivity in ice
melt regions. The computed trends of the 20-year monthly values were approximately
1.41 ± 0.015 µatm yr−1 from 2001 to 2010 and 2.16 ± 0.019 µatm yr−1 for the next decade,
indicating that the growth rate of Arctic seawater pCO2 is increasing (Figure 10). Accompa-
nied by an almost unchanged growth rate of atmospheric pCO2 (2.17 ± 0.21 µatm yr−1),
the trend in Arctic seawater has gradually become flatter than that in the atmosphere over
the past 20 years, thus allowing the Arctic to be maintained as a stable carbon sink based
on the perspective of sea–air interactions.
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In addition, we also statistically estimated the trends of the spatial distributions of
pCO2 and SIC declines (Figure 11A,B). We found that the growth rates of sea surface pCO2
were remarkable in regions with significant sea ice retreat, such as the East Siberian Sea
and the Kara Sea. Based on years of observation measurements, Qi et al., 2022 summarized
that when sea ice is lost, the well-buffered seawater with relatively high alkalinity and low
pCO2 near the sea ice is diluted by the meltwater with relatively low alkalinity, high pCO2
and a low buffer capacity [81]. Thus, atmospheric CO2 invasion would result in greater
overall declines in the pH and buffer capacity metrics in seawater diluted by meltwater
compared to the original water. This ice-melt-driven mechanism can explain the amplified
rapid increase in pCO2 observed in the Arctic Ocean over the past two decades.
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4.2. Diurnal Carbon Fluxes and Mechanism Analysis in the Arctic

It is well known that near-equal day and night durations occur only in spring and
autumn in extremely high latitudes. The March and September equinoxes mark the two
days of each year when day and night are of equal length, with 12 h of daylight and 12 h
of darkness at all points on the Earth’s surface. Therefore, for simplicity, we discuss only
March and June data when studying the intraday diurnal variations in carbon fluxes in the
Arctic Ocean.

Based on the data retrieved from CALIPSO, the distribution of chlorophyll in the Arctic
Ocean quite clearly reveals diurnal variations, and the spatial distribution of surface Chl-a
is marked by high values on the continental shelf ranging from 0.7 to >3.0 µg L−1, reflecting
higher nutrient concentrations and rates of primary production, while the Chl-a values
generally range from 0.05 to 0.3 µg L−1 in the deep central Arctic Ocean (Figure 12A–D) [82].
The day/night ratio is higher than 1 in these regions, implying that the water column at
50 m above the sea surface has higher Chl-a during the day (Figure 12E,F). This area is
influenced by several large rivers, and the low latitude zone located in the Arctic Ocean
experiences relatively high insolation. Both in spring (March) and autumn (September),
Chl-a is higher during the day than at night. It is of note that the Carbon C:Chl-a model
of Behrenfeld et al., 2016, which represents an upper end model of the photo acclimation
response, and the regression analyses of phytoplankton division from the Standard Model
and values from any of the Alternative Models give coefficients of determination of r2 = 0.99
for both the North and South Polar Zones, indicating that the model variations slightly
impact the amplitude of phytoplankton division values but have negligible impact on
the annual cycles [83]. By contrast, the model of Westberry et al. (2008) assigns a very
conservative fraction of C:Chl-a variability to photo acclimation and thus represents a
lower end response model [84]. In the future, we will seek to study and establish a direct
relationship between the LiDAR signal and chlorophyll using a machine learning method
to avoid the spatio-temporal variability of C: Chl-a.
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Phytoplankton and the diel vertical migration (DVM) of animals together determine
diurnal bbp changes; in the absence of any DVM, the biomass-normalized bbp is expected
to be greater in diurnal than nocturnal due to the increase in phytoplankton cell size and
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organic carbon content during the day and cell division and metabolism at night [85–88].
These diurnal differences create a baseline diurnal cycle in the biomass-normalized bbp
with a maximum in the afternoon and a minimum at night [85]. However, the presence of
DVM animals increases bbp at night and therefore causes diurnal bbp difference to become
less negative than the phytoplankton-only signal. Thus, our diurnal difference from the
CALIPSO signal may be underestimated, which means the actual Chl-a diurnal difference
is larger than the current results.

In spring and autumn, in general, the daytime dpCO2 is slightly smaller than the
nighttime dpCO2 (92.8% on average for the whole Arctic Ocean), while relatively large
diurnal variations occur in a small range of coastal water masses, such as the Kara Sea
estuary (the green region in Figure 13D). Compared to spring, autumn ice retreat is more
widespread, and we can observe a significant amount of daytime Chl-a along the shores
of the Laptev and East Siberian Seas. This phenomenon also causes higher autumn pCO2
regionally, with values even higher than those in the atmosphere, thus resulting in a
seasonal small-regional carbon source (the purple region in Figure 13F). In conclusion,
except for some small nearshore estuarine regions, the Arctic Ocean is a stable carbon sink
regardless of day and night.

In contrast, wind speeds show an interesting parahemispheric distribution bounded
by Novaya Zemlya and Greenland, with higher daytime than nighttime winds in Baffin
Bay, the Greenland Sea, the Barents Sea and the Kara Sea (with a mean diurnal ratio of
approximately 101.1%) and higher nighttime winds in the Siberian Sea, the Chukchi Sea of
the Lavetev Sea and the Canadian Arctic Archipelago (with a mean diurnal ratio of approx-
imately 93.9%); this distribution pattern is not altered by seasonal changes (Figure 13B,E).
Consequently, the spatial combination of the sea surface partial pressure and wind speed
affects the diurnal carbon sink in the Arctic. On the Atlantic side, the partial pressure differ-
ence and the wind speed exert opposite effects, whereby the magnitude of the wind speed
eventually becomes the main controlling mechanism, thus resulting in a larger absorption
rate during the day than at night (Figure 13C,F). On the Pacific side, the partial pressure
difference and wind speed are shown to be higher at night, and together, these conditions
cause the diurnal absorption rate to be smaller in the daytime than at night (Figure 13F).
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5. Conclusions

In this study, we foremost constructed an FFN-LID model to derive Arctic pCO2 and
formed a long-time-series dataset containing variations in air–sea CO2 fluxes from 2001 to
2020 as well as diurnal products from 2007 to 2020.

Not only are the normal passive remote sensing products used in this work, but
CALIPSO-recorded Chl-a and wind speed data are also added as inputs to build the FNN-
LID model. This is the first time LiDAR has been employed in research on the Arctic air–sea
carbon cycle. The CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation (CALIPSO) platform can provide data not only at a large coverage, including
the polar regions, but can also provide a clearer understanding of global diurnal pCO2
variations. Although some models replace Arctic winter Chl-a data with the climatological
average or interpolated Chl-a values, these statistical Chl-a values result in the gap-filled
wintertime pCO2 map having potential errors. The CALIPSO measurements obtained
through active LiDAR sensing are not limited by solar radiation and can thus provide
‘fill-in’ data for the late autumn to early spring seasons to compensate for data missing
from ocean color sensors; in this way, we were able to construct the first complete record of
polar pCO2.

By analyzing the FNN-LID results, we found that the Arctic pCO2 exhibited different
spatial characteristics during the day and night. The FFN-LID model fitted the measure-
ments with an overall mean R2 of 0.75 and an average RMSE of 24.59 µatm in the Arctic
and could better reconstruct values in two high-pCO2 sectors (the Laptev Sea and the East
Siberian Sea) compared to other models. The FNN-LID observation-based product fills the
observational gaps in wintertime, indicating that the surface water pCO2 is higher in winter
than in summer (e.g., approximately 81.1 ± 39.16 µatm in the Greenland Sea and Barents
Sea). The Arctic Ocean net CO2 sinks showed a significant increase from 2001 to 2005 and
remained at 0.15 ± 0.01 TgC yr−1 over the next 15 years with seasonal sources on some
continental shelves. The primary factor controlling the CO2 sink was the percentage of
ice-covered areas. In addition, we found that the computed growth rate of Arctic seawater
pCO2 was increasing over the study period and that the corresponding growth rates were
remarkable in sectors with significant sea ice retreat.

The water column at 50 m above the sea surface has higher Chl-a values during the day
than at night in spring and autumn. In addition, the spatial combination of the sea surface
partial pressure and wind speed affects the diurnal carbon sink in the Arctic: the partial
pressure difference and the wind speed exert opposite effects, whereby the magnitude of
the wind speed eventually becomes the main controlling mechanism, thus resulting in a
larger absorption rate during the day on the Atlantic side. However, on the Pacific side, the
partial pressure difference and wind speed are shown to be higher at night, and together,
these factors cause the diurnal absorption rate to be smaller in the daytime than at night.

The model constructed herein extends the study of remote sensing data with regard to
polar research and diurnal variations. With the accumulation of remote sensing data, we
plan to further extend our study of carbonate systems in other sea ice regions and to try to
use higher-resolution spatial data to analyze carbonate systems in nearshore and coastal
ecosystems. Meanwhile, both C: Chl-a variability and DVM affect the results of the model;
our next step will be to analyze in more detail and try to clarify the contribution ratio of
diurnal variation and DVM in the change of the bbp signal for a better understanding and
awareness of pCO2.
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