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Abstract: Fluvial landscapes are a result of lithospheric tectonic movement, climate evolution and
surface processes. Existing evidence proves that regional tectonic deformation can be reflected by the
evolution of fluvial landforms. The southern Alashan Block lies the closest to the northeastern Tibetan
Plateau and has become the latest plateau outward expansion boundary. Yabrai Shan is located at the
intersection of the Tibetan Plateau, Alashan and Ordos Blocks, thereby recording the evolution of
the surface processes and tectonic activities in the northeastern Tibetan Plateau and its surrounding
regions. Herein, we conducted the quantitative landform analysis and field investigations of Yabrai
Shan, and the spatiotemporal distribution of geomorphological parameters indicated that Yabrai Shan
is in the mature stage of geomorphological evolution controlled by tectonic activities of the Yabrai
range-front fault. Based on the paleochannel reconstruction model and previous research on fault
activity, two tectonic acceleration events were identified, with estimated geomorphic response times
of 0.15–1.10 Ma and 1.42–2.92 Ma. Different distribution characteristics of two-phase knickpoints
are caused by the change of tectonic stress in this region, revealing that the late knickpoints are the
result of tectonic acceleration under the influence of the northeast expansion of the Tibetan Plateau.
The transformation of Yabrai Shan from the original extensional environment affected by the Ordos
Block to the compressional environment affected by the northeast expansion of the Tibetan Plateau
occurred after 1.10 Ma.

Keywords: southern Alashan block; fluvial landforms; two-phase uplift of Yabrai Shan; outward
expansion of Tibetan Plateau; Late Cenozoic

1. Introduction

The tectonic transformation between the Tibetan Plateau and Alashan Block is an
important scientific topic related to the uplift and expansion of the northeastern Tibetan
Plateau during the Late Cenozoic. There are numerous debates regarding this scientific
topic, the majority of which focus on two issues. The first issue concerns the eastward
propagation of the Altyn Tagh Fault (ATF), i.e., the ATF extending eastward and entering
the interior of the Alashan Block or terminating at the western end of the Hexi Corridor,
which is related to the two major hypotheses regarding the northern Tibetan Plateau de-
formation [1–6]. The second issue concerns the north-eastward expansion pattern of the
Tibetan Plateau, i.e., the stepwise northeastern expansion or its quasi-contemporaneous
deformation at the northeastern margin. The Tibetan Plateau gradually extended to the
Alashan Block through tectonic transformation [7–9]. However, adequately addressing
these issues requires extensive research in a variety of areas, such as active tectonics and
the Late Cenozoic tectonic deformation. The southern Alashan Block lies the closest to
the northeastern Tibetan Plateau and has become the latest plateau outward expansion
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boundary [10]. Yabrai Shan is located at the intersection of the Tibetan Plateau, Alashan and
Ordos Blocks, recording the surface processes and tectonic activities around the surround-
ing regions. Previous studies in this area have focused on the Mesozoic-Cenozoic tectonic
evolution of the basins and mountains [5,11,12] and the Late Quaternary slip-rate of the
Yabrai range-front fault [13–15]. Clarifying the relevant content is of great significance in
order to comprehend the tectonic transformation between the northeastern margin of the
Tibetan Plateau and southern Alashan Block.

Fluvial landforms record signs of fault activity, depositional processes and incisions.
Accelerations of mountain uplifts are attributed to the tectonic activities of the controlling
faults [16–18]. Bedrock channels adjust the slope of the channels to enhance the incision
rates and achieve new equilibrium states [16], and the adjustments of stream longitudinal
profiles are achieved through knickpoint migrations [17]. Previous research has highlighted
quantitative analysis of fluvial landforms and provides a practical approach for interpreting
the interactions between tectonic activities and surface processes [18]. The stream power
model and related geomorphic parameters, based on numerous field investigations and
numerical simulations, are used for depicting the spatiotemporal patterns of tectonic
activities in active orogenic belts [19–22]. The stream power model and relevant sub-
models have been widely used in quantitative analyses of fluvial landscapes, such as the
eastern [21] and northeastern margins of the Tibetan Plateau [22], and the Andes in South
America [23].

In this study, we obtained a series of geomorphological parameters and conducted
a field investigation to assess the fluvial evolution of Yabrai Shan. By conducting the
quantitative geomorphological analysis based on the ASTER GDEM 30 m data and sur-
veying the distribution of geomorphological parameters, we study the relationship of
terrain-geomorphic parameters-tectonic activities, discuss the implication of knickpoints
and estimate the geomorphic response time.

2. Geological Setting

Yabrai Shan is located at the intersection of the Tibetan Plateau, Alashan and Ordos
Blocks; it is an important mountain range in the southern Alashan Block and the natural
boundary between the Badain Jaran and Tengger Deserts (Figure 1a). The Yabrai range-
front fault is approximately 80 km long, lies at the boundary between the Yabrai Shan
and Yabrai Basin and is an important active fault in the Alashan Block [3,23]. It exhibits a
normal fault, with low slip rate and less modern, strong earthquakes [24,25].

According to the difference of fault strike and geomorphology features, the fault can
be divided into three segments, namely the southwest, middle, and northeast segments
(Figure 1b). The southwest segment strikes 60◦NE and extends approximately 35 km
along the front of Yabrai Shan; it is dominated by normal fault activity, accompanied
by left-lateral-slip motion and cuts off the root of the alluvial fan near the foot of the
mountain. The middle segment is approximately 30 km long and strikes 40◦NE; its typical
geomorphological feature is the fault bedrock surfaces formed by normal faults, and faults
migrate towards the basin. The northeast segment strikes 75◦N–85◦E, and it is dominated
by left-lateral-slip motion with thrust components [11].

The strata in the Yabrai Shan are primarily Cenozoic, Mesozoic and Precambrian,
while there is also a small number of Paleozoic deposits. The Precambrian strata are
the oldest crystalline basement in this region. It is a set of shallow to medium-deep
metamorphic rocks with complex lithology and huge thickness, mainly composed of
schist, gneiss and migmatite, scattered in the magmatic rocks. The Paleozoic strata are
practically undeveloped, with few exposed Carboniferous-Permian strata. The Mesozoic
strata are primarily Jurassic and Cretaceous. The Jurassic strata is a set of continental
sedimentary clastic rocks with complex clastic compositions, indicating the depositional
environment of fluvial and lacustrine facies. The Cretaceous strata is a set of variegated
clastic deposits, indicating an alternating depositional environment of lacustrine and
alluvial facies. Except for bedrock mountains, most of the areas are Cenozoic alluvial and
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aeolian deposits. Magmatic rocks developed in this region, including Mesoproterozoic,
Paleozoic and Mesozoic. The rocks are influenced by their regional structure, striking
NE–SW, and the foliation and gneissosity are mostly oriented in the same direction. The
main lithology is granite, diorite and gabbro [26].
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Figure 1. (a) Topography and major active faults in the northeast Tibetan Plateau, modified from [6,12].
(b) The geological map of Yabrai Shan. The red boxin (a) shows the location of Yabrai Shan. The red
line and red circles in (b) represent the Yabrai range-front fault and seismicity in this area. Fault data
from [12,26] and seismicity data from CENC and USGS catalogue.

Yabrai Shan is characterized by a dry continental climate with cold and dry winters,
hot and dry summers and an average temperature of 9.6 ◦C. It is dry all year with little
rainfall and snowfall, and high evaporation, with the annual average evaporation being
30 times greater than the average annual precipitation. Water resources are scarce, com-
prising primarily seasonal rivers. Most of the surface water is temporary with strong
seasonality, primarily accumulating towards the basin after heavy rainfall. The rivers in
this region are usually dry, and ice and snow meltwaters are not present, nor are flowing
tributaries. Flowing water occurs only during heavy rainfall in the summer, and its flow is
dependent on the amount of precipitation [26].

3. Methods
3.1. Stream Power Incision Model

The stream power incision model considers the channel elevation change as the
difference between the bedrock uplift rate and the stream erosion rate. When the bedrock
uplift is balanced with the river erosion, the channel elevation no longer changes, and the
channel morphology tends to be stable. For a channel in a steady state, a channel profile
analysis can be performed. The erosion rate of the bedrock channel is primarily determined
by the erosive capacity of the river. Erosion rate E is expressed as a function of the erosion
coefficient, drainage area and channel slope [16,27,28]:

E = KAmSn (1)
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where K is the erosion coefficient affecting the relationship between the erosion rate, wa-
tershed area and channel gradient, including the effects of climate, lithology, sedimentary
flux and channel width on the erosive capacity of the river. A is the drainage area, S is the
channel slope, m is the drainage area index and n is the channel gradient index; both m and
n are positive indices.

According to the stream power incision model, the change of river channel elevation
depends on the difference between the bedrock uplift and river erosion rates, and can be
expressed as follows:

∂z/∂t = U(x, t)− KAm(∂z/∂x)n (2)

where z is the channel elevation, x is the distance from the bedrock channel to the outlet,
t is time and U is the rock uplift rate. When the river reaches equilibrium, the bedrock
uplift rate is equal to the river incision rate, the elevation of the river no longer changes and
the channel profile remains stable. Subsequently, Equation (2) can be written as follows:

0 = U − KAm(dz/dx)n (3)

Equation (3) can also be expressed as follows:

S = (U/K)1/n A−m/n (4)

Equation (4) is obtained through physical derivation, and its form is consistent with
the empirical model based on actual observations [16,28]. According to the empirical model,
the channel gradient is a power function of the drainage area.

S = ks A−θ (5)

where ks and θ are two important geomorphological parameters that express channel profile
characteristics [28]:

ks = (U/K)1/n (6)

θ = m/n (7)

Here, ks is the channel steepness index, which is a function of the uplift rate U and
erosion rate K, and indicates the difference in regional uplift activity [22,27,29–32]. θ is
the channel concavity and indicates the depression degree in the channel. In general, θ
ranges between 0.3 and 0.6; it is not significantly affected by the structure and is related to
lithology, climate and erosion processes [17,18,20].

The log-log slope-area method is the conventional approach regarding channel profile
analysis; it linearly regresses the log value of the slope and drainage area, with the negative
of slope being concavity and the intercept being the log value of the steepness index. How-
ever, the calculation of slope requires a series of operations such as smoothing, resampling
and differentiation of elevation, thereby introducing problems, such as large deviation
of the regression analysis error results [31]. To address this, an integration approach was
developed. It directly solves the steady-state stream power incision equation and yields the
analytical formula for the channel elevation z as a continuous function, thereby avoiding
the deviation caused by calculating the slope. Equation (3) can also be expressed as follows:

dz = (U/K)1/n A−m/n dx (8)

Both sides of Equation (8) are integrated as follows:

z = (U/K)1/n
∫ x

xb

(
A0/A

(
x′
))m/ndx′ + z(xb) (9)
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where z(xb) is the elevation of the water outlet. To ensure that the dimensions of the
integral term were the same as those of the traceability distance of the channel, A0 was
introduced as a reference drainage area.

Here, χ was introduced and constrained by the topological information of the river [33]:

χ =
∫ x

0

(
A0/A

(
x′
))m/ndx′ (10)

where A0 can be any value with a physical unit corresponding to the actual drainage area.
A0 was set to 1, and the watershed outlet was set as the boundary condition of the equation,
i.e., z(xb) = 0. Therefore, Equation (9) was written as follows:

z(x) = ksχ(x) (11)

The χ-plot was drawn with the χ value as the abscissa and elevation z as the ordinate,
thereby being a straight line passing through the origin, and the gradient of the χ-plot
being the river steepness index. Abrupt changes of ksn from upstream to downstream in
the channel longitudinal profiles were recognized as knickpoints.

Knickpoints can be characterized as moving points along the bedrock channel [18].
There are two forms of knickpoints: vertical-step and slope-break (Figure 2) [34]. Both
morphologies can be identified on slope-distance, slope-area or χ-plot plots, featured with
obvious changes of channel gradient. Vertical-step knickpoints are spatially related to
the discrete heterogeneity along the profile. The spatial correlation of landslides, debris
flows or coarse gravel of locally resistant substrate at tributary junctions and tributaries
depicts that these are usually fixed in space. Thus, the vertical-step knickpoint has no
direct tectonic significance, except in most landslides in rapidly rising areas. Slope-break
knickpoints constitute the spatiotemporal response to persistent changes. When erosion
occurs, these knickpoints migrate to the upper reach at a predictable rate; while devel-
oping systematic patterns, they play a significant role in the tectonics interpretation of
erosion landform.
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Figure 2. Classification of knickpoints in terms of (a,d) the channel profile, (b,e) log-log slope-area
and (c,f) χ-plot, modified from [34]. Assuming both the upstream and downstream channels have
reached the stable state, the geomorphic response time of a knickpoint can be estimated by the
stream power incision mode. The blue, red lines and green points represent the upstream channel,
downstream channel and knickpoints, respectively. The morphologies depict a transient perturbation
of the fluvial system or fixed in place by a resistant substrate, landslide debris or active faults.
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Based on the above principle, the distance between two knickpoints can be expressed
as follows:

∆z = (U1 − E)τ (12)

where ∆z is the difference of the erosion amount, U1 represents the uplift rate of the
downstream channel, U2 represents the uplift rate of the upstream channel and τ is the
geomorphic response time, which is also the time of forming knickpoints (Figure 3).
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When the exponent n equals 1, according to Equation (2), the response time of the
knickpoints can be constrained by [35–37]:

τ = ∆z/(U − E) = ∆z/U1[1− ksn2/ksn1] (13)

where ∆z refers to the relative elevation between the knickpoint and the water outlet
and ksn1 and ksn2 represent the normal steepness index of the downstream and upstream,
respectively. These parameters can be obtained through river longitudinal profile analysis.
U1 is the current tectonic activity rate, which can be obtained through thermal chronological
data, cosmogenic nuclides, river downcutting rate and other methods [16,30,35,36].

3.2. Hypsometric Integral

For a watershed, the ratio z(x)/zmax of any elevation to the maximum elevation
is taken as the ordinate, the ratio A(x)/Amax of the area above elevation to the total
watershed area is taken as the abscissa and the resulting graph is called a hypsometric
integral curve [38]. The area enclosed by this curve and the horizontal and vertical axes are
the hypsometric integrals (HI), which can be expressed as follows:

HI =
∫ 1

0
z(x)/zmaxd[A(x)/Amax] (14)

When the area is larger than 1 km2, it is dominated by fluvial erosion [17,18,38].
Equations (10) and (11) can be imported into Equation (14), which can subsequently be
simplified through integration by parts:

HI′ = ks/zmax·1/Amax

[(
A(x)

∫ x

0
(1/A(x))m/ndx′

)
|L0 +

∫ L

0
(1/A(x))m/n·A(x)dx

]
(15)

Compared to the total area of the watershed, the drainage area in the headwaters was
extremely small. The A(L)/Amax value was approximately equal to 0. Equation (15) can be
simplified as follows:

HI′ = ks/zmax·1/Amax

∫ L

0
(1/A(x))m/n·A(x)dx (16)

Equation (16) is a definite integral, and HI is proportional to the river steepness index
ks. The HI index reflects the strength of the regional tectonic activities [39,40].
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4. Results

Landforms are generally shaped by tectonic movements and carved by denudation
processes. Geomorphological parameters were calculated to clarify whether the feedbacks
between fluvial landform evolution and regional tectonic activities are significant. In
this study, based on the Topographic Analysis Kit (TAK) [41] of Topotoolbox [42] and
ChiProfiler [43], combined with field evidence, 30 m ASTER global digital elevation model
data were used for quantitative geomorphic analysis.

We extracted the changes of ksn in this area to analyze the geomorphological features
(Figure 4a). The spatial distribution of ksn involved high values in the southern edge and
low values in the northern edge of the Yabrai Shan. The highest ksn value was identified at
the southern edge, and high values were concentrated near the Yabrai range-front fault. The
χ values were calculated to assess the migration trends of watersheds and to describe the
mutual capture relationships among the rivers (Figure 4b). The water outlet was prescribed
the same elevation and there were differences on both sides of watersheds. The χ values
were higher in the northeastern segment, and gradually increased towards the northwest
in the southwest and middle segments.
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Figure 4. Distribution of geomorphic parameters in Yabrai Shan. (a) Channel steepness index and
(b) χ. The black boxes in (a) indicate the swath profiles positions. The pink areas in (b) represent the
watersheds used for the river longitudinal profiles.

Four swath profiles with widths of 5 km were extracted. One was parallel to the
mountain range, whereas the remaining three were perpendicular (Figure 5). These swath
profiles measured the maximum, minimum and average elevations in the strip area, and
provided quantitative evidence on the elevation changes of peaks and valleys and the
degree of erosion. In the southwestern segment of the Yabrai Shan, the average elevation
is ~1400 m, the peak elevation is ~1800 m and the higher terrain is near the southern
margin (Figure 5a). In the middle segment, the average elevation is ~1500 m, the maximum
elevation difference reaches 450 m and the terrain fluctuates greatly, with the tilting degree
being greater than that in the southwest segment (Figure 5b). In the northeastern segment,
the average elevation is ~1700 m and the terrain is practically symmetrical (Figure 5c).
Results show that the terrain in the northeastern section of Yabrai Shan is higher than that
in the southwest section (Figure 5d).
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Figure 5. Swath profiles (a) in the southwest, (b) middle and (c) northeast of Yabrai Shan, and (d) 
along the strike of the Yabrai range-front fault. The location of these swath profiles was shown in 
Figure 4(a). Bold black, and upper and lower lines in the strip area denote the average, maximum 
and minimum elevations, respectively. The maximum, minimum and average elevations in the strip 
area demonstrate the topographic features of the peaks, river valleys and average altitudes, respec-
tively. 

We also calculated the HI of basins with more than 10 km2, while basins exceeding 
100 km2 were divided into sub-basins. For statistical analysis, 0.05 was used as a statistical 

Figure 5. Swath profiles (a) in the southwest, (b) middle and (c) northeast of Yabrai Shan, and
(d) along the strike of the Yabrai range-front fault. The location of these swath profiles was shown in
Figure 4a. Bold black, and upper and lower lines in the strip area denote the average, maximum and
minimum elevations, respectively. The maximum, minimum and average elevations in the strip area
demonstrate the topographic features of the peaks, river valleys and average altitudes, respectively.

We also calculated the HI of basins with more than 10 km2, while basins exceeding
100 km2 were divided into sub-basins. For statistical analysis, 0.05 was used as a statistical
unit of HI (Figure 6). The convex, S, and concave shapes corresponded to the infant
(HI > 0.6), mature (0.35 < HI < 0.6) and old (HI < 0.35) stages of the geomorphological
evolution [38]. The HI values of the basins ranged from 0.23 to 0.81 in the study area and
were concentrated between 0.35 and 0.60 (71.8%). There were no HI values lower than
0.25 or higher than 0.80, with the 0.45~0.50 values accounting for the largest proportion
(23.3%).
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The spatial distribution showed that the HI values in the southwestern Yabrai Shan
were higher than those in the northeast section (Figure 7). The HI values near the fault
were higher than those away from the fault. Moreover, along the Yabrai range-front
fault, the HI values in the middle and southwest sections were higher than those in the
northeast section.
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During our field investigation, we had the opportunity to qualitatively observe
the major river channels in this region (Figure 8). Channels are typically confined by
bedrock walls, and bedrocks are severely ruptured and jointed, while plucking is the main
erosion process.

Remote Sens. 2022, 14, 6269 10 of 18 
 

 

During our field investigation, we had the opportunity to qualitatively observe the 
major river channels in this region (Figure 8). Channels are typically confined by bedrock 
walls, and bedrocks are severely ruptured and jointed, while plucking is the main erosion 
process. 

 
Figure 8. (a–d): Photographs of the bedrock channel morphology in Yabrai Shan. The blue lines in 
(a), white dashed in (b) and white circle in (c) show the river direction, fault surface and a close view 
of a  channel, respectively. The red arrows indicate the fault. 

Twenty watersheds of Yabrai Shan were selected, and thirty-six rivers were subjected 
to channel longitudinal profile analysis. Eventually, knickpoints were identified along the 
river channels (Figure 9, Table 1). 

Table 1. Results of river longitudinal profiles. 

W No. Das 
(km) 

O-E 
(m) 

Downstream Upper Stream Knickpoints 
Ksn 

(m0.9) R2 Ksn 
(m0.9) R2 Kp-E (m) Chi (χ) A 

(km2) 
Dfm 
(km) 

Dfd 
(km) 

3 14.15 1268 354.75 0.99 38.85 0.96 1315 0.17 96.54 0.66 27.87 
4 15.82 1289 70.42 0.98 14.41 0.97 1313 0.35 11.23 0.52 9.69 
6 27.86 1339 358.35 0.96 90.04 0.98 1393 0.15 6.42 0.49 19.01 
7 37.33 1329 167.66 0.99 26.76 0.88 1612 1.78 15.17 3.23 7.52 
8 40.07 1322 323.60 0.97 6.70 0.89 1630 1.16 62.33 4.42 19.86 

10 61.99 1341 200.91 0.96 75.31 0.97 1532 0.92 170.80 4.95 28.48 
16 104.69 1659 55.45 1.00 14.73 0.98 1689 0.81 12.38 1.27 9.32 
17 107.67 1556 283.43 0.96 24.14 0.97 1658 0.33 47.79 0.95 15.88 
18 113.03 1554 137.85 0.95 81.28 0.95 1579 0.17 21.62 0.35 13.50 
19 120.63 1524 49.02 0.99 8.19 0.90 1704 3.53 5.79 6.24 6.24 
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The integral approach was used to analyze the channel profiles with a reference con-
cavity of 0.45. The lower reach had a high steepness index of ~183  𝑚଴.ଽ  in the 

Figure 8. (a–d) Photographs of the bedrock channel morphology in Yabrai Shan. The blue lines in (a),
white dashed in (b) and white circle in (c) show the river direction, fault surface and a close view of a
channel, respectively. The red arrows indicate the fault.

Twenty watersheds of Yabrai Shan were selected, and thirty-six rivers were subjected
to channel longitudinal profile analysis. Eventually, knickpoints were identified along the
river channels (Figure 9, Table 1).
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and climate change. Geomorphic parameters are the quantitative expression of external 
morphology formed by the internal forces, recording the information of geomorphic evo-
lution [21–23,34,44]. Compared with traditional topographic profiles, swath profiles can 
reflect the features of topographic fluctuation, thereby indicating the trend of macroto-
pography in the strip area [45]. In the middle segment, the maximum elevation difference, 
up to 500 m, may indicate the intense tectonic activity of a normal fault. In the northeast 
segment, the lower elevation difference is consistent with the previous research on the 
property of thrust and strike-slip fault [12]. The terrains manifest the different growth 
patterns in Yabrai Shan. In the southwestern and middle segments, the terrains incline 
towards the northwest, indicative of a typical normal fault-controlled landform (Figure 
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Figure 9. Longitudinal profile analysis of river channels. The selected watersheds were shown in
Figure 4b. (a–j) represent streams. Watershed numbers are at the top right. Blue lines, red-dashed
lines and red crosses indicate the original χ-z profiles, regressed χ-z profiles and the starts and ends of
the fittings, respectively. Inverted triangles indicate abrupt changes of ksn between upper and down
reaches, recognized as knickpoints. The red dot is the fault through the river channel, as shown in (g).

Table 1. Results of river longitudinal profiles.

W No.
Das
(km)

O-E
(m)

Downstream Upper Stream Knickpoints

Ksn
(m0.9) R2 Ksn

(m0.9) R2 Kp-E
(m) Chi (χ) A

(km2)
Dfm
(km)

Dfd
(km)

3 14.15 1268 354.75 0.99 38.85 0.96 1315 0.17 96.54 0.66 27.87
4 15.82 1289 70.42 0.98 14.41 0.97 1313 0.35 11.23 0.52 9.69
6 27.86 1339 358.35 0.96 90.04 0.98 1393 0.15 6.42 0.49 19.01
7 37.33 1329 167.66 0.99 26.76 0.88 1612 1.78 15.17 3.23 7.52
8 40.07 1322 323.60 0.97 6.70 0.89 1630 1.16 62.33 4.42 19.86

10 61.99 1341 200.91 0.96 75.31 0.97 1532 0.92 170.80 4.95 28.48
16 104.69 1659 55.45 1.00 14.73 0.98 1689 0.81 12.38 1.27 9.32
17 107.67 1556 283.43 0.96 24.14 0.97 1658 0.33 47.79 0.95 15.88
18 113.03 1554 137.85 0.95 81.28 0.95 1579 0.17 21.62 0.35 13.50
19 120.63 1524 49.02 0.99 8.19 0.90 1704 3.53 5.79 6.24 6.24

W No., Das, O-E, Kp-E, A, dfm, dfd are the watershed number. (Distance along the strike, Outlet Elevation,
Knickpoint Elevation, Drainage Area, Distance From Mouth and Distance From Divide).

The integral approach was used to analyze the channel profiles with a reference con-
cavity of 0.45. The lower reach had a high steepness index of ~183 m0.9 in the southwestern
Yabrai Shan, ~259 m0.9 in the middle Yabrai Shan and ~155 m0.9 in the northeastern Yabrai
Shan. The middle reaches had lower steepness index values of ~36 m0.9 in the southwestern
Yabrai Shan, ~55 m0.9 in the middle Yabrai Shan and ~31 m0.9 in the northeastern Yabrai
Shan. The upper reaches had low steepness index values of ~23 m0.9 in the southwest-
ern Yabrai Shan, ~31 m0.9 in the middle Yabrai Shan and ~17 m0.9 in the northeastern
Yabrai Shan. The average elevation of the knickpoints was approximately ~1507 m be-
tween the lower and middle reaches and approximately ~1568 m between the middle and
upper reaches.
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5. Discussion
5.1. Coupling Relationship of Terrain-Geomorphic Parameters-Tectonic Activities

Geomorphology is the result of internal and external forces, such as tectonic activities
and climate change. Geomorphic parameters are the quantitative expression of external
morphology formed by the internal forces, recording the information of geomorphic evo-
lution [21–23,34,44]. Compared with traditional topographic profiles, swath profiles can
reflect the features of topographic fluctuation, thereby indicating the trend of macrotopogra-
phy in the strip area [45]. In the middle segment, the maximum elevation difference, up to
500 m, may indicate the intense tectonic activity of a normal fault. In the northeast segment,
the lower elevation difference is consistent with the previous research on the property
of thrust and strike-slip fault [12]. The terrains manifest the different growth patterns in
Yabrai Shan. In the southwestern and middle segments, the terrains incline towards the
northwest, indicative of a typical normal fault-controlled landform (Figure 5a,b), and those
in the northeastern section are relatively symmetric, demonstrating a range development
in a state of natural expansion (Figure 5c). The overall characteristics of those are steep in
the southeast and gentle in the northwest.

The spatial distribution of ksn is influenced by the tectonic and non-tectonic factors,
such as lithology, precipitation and tectonic activities [34]. Herein, these factors were all
discussed. The strength of rock erosion resistance affects the erosion efficiency, thereby
affecting the shape of the river channel [29]. Magmatic rocks were widely developed in
the study area. Diorite has the largest distribution, and granite is also widely distributed.
Gabbro is less distributed in the later plutons. According to the field investigation, many
river channels involve a single lithology, like watershed 8 (Figure 10), and knickpoints
were developed. Meanwhile, different types of bedrocks exhibited similar ksn values. For
example, the granites were widespread in the southwestern, middle and northeastern
Yabrai Shan, and there were also little differences in ksn. Hence, lithology was not the
primary factor affecting the distribution of ksn.
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of 𝑘௦௡ largely depicts the intensity of tectonic activities [20,32,34,46]. The river channel 
steepness index suggested the uplift rate and was proportional to that of the bedrock. 
Tectonic activities in the southern margin of Yabrai Shan are strong and gradually de-
crease towards the north, while the southwestern and middle segments are stronger than 
the northeast segment. Meanwhile, the hypsometric integral of a drainage basin is a mor-
phometric parameter for describing the basin geomorphology, represents the volume of 
materials that have not been eroded in the watershed [38] and is related to the effects of 

Figure 10. River longitudinal profile and field photographs of watershed 8. (a) Channel longitudinal
profiles of watershed 8. Photographs of the river channel in the (b) upper reach, (c) down reach and
(d) knickpoint. The black boxes and purple fonts in (a) indicate the locations in the river channel
where the photographs (b–d) were taken. The blue lines in (b,c) show the river direction. The red
and white arrows in (c) and white arrow in (d) indicate the fault, the location where the photograph
(d) was taken and the knickpoint, respectively.

Increased precipitation results in increased river runoff, and therefore an enhanced
erosion ability of the river, i.e., the erosion coefficient K increases, while ksn decreases. As
shown in Figure 11b, there were minor differences in precipitation across Yabrai Shan. The
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average annual precipitation of the watersheds is less than 125 mm/yr, and the regional
climate is dry. The spatial difference of geomorphic characteristics is independent of
precipitation; therefore, precipitation is also not the primary cause.
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and red lines represent the watershed, streams, streams used in the river longitudinal profile anal-
ysis and the Yabrai range-front fault, respectively. The red points in (a) were the knickpoints on the 
lithological boundary. Precipitation data derived from http://www.worldclim.org/ (November 
2021). 
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incision rate, thereby developing knickpoints, with the underlying cause being the decline 
of the base level of erosion [29,34,47]. The development of knickpoints were subjected to 
the difference of rock erosion resistance. Knickpoints caused by lithology differences have 
no tectonic significance [34]. The comparison of the lithological map with the locations of 
knickpoints showed that fifteen knickpoints lie in the lithologic boundary. These knick-
points were generated by lithological differences and were not involved in the analysis of 
the geomorphic response time. Due to the coupling relationship between 𝑘௦௡ and tectonic 
activities in this area [21,22,48], the variations of 𝑘௦௡ and the spatial distribution of knick-
points indicates that there were at least two tectonic acceleration events (Figure 12).  

Figure 11. Lithology and precipitation maps of Yabrai Shan. (a) Distribution of the lithology, water-
sheds(W), streams and knickpoints. (b) Regional precipitation of Yabrai Shan. The white, blue, black
and red lines represent the watershed, streams, streams used in the river longitudinal profile analysis
and the Yabrai range-front fault, respectively. The red points in (a) were the knickpoints on the litho-
logical boundary. Precipitation data derived from http://www.worldclim.org/ (15 November 2021).

Studies on tectonic geomorphology have proven that regional tectonic activities, to a
large extent, can be constrained by the normalized steepness index; hence, the distribution
of ksn largely depicts the intensity of tectonic activities [20,32,34,46]. The river channel steep-
ness index suggested the uplift rate and was proportional to that of the bedrock. Tectonic
activities in the southern margin of Yabrai Shan are strong and gradually decrease towards
the north, while the southwestern and middle segments are stronger than the northeast
segment. Meanwhile, the hypsometric integral of a drainage basin is a morphometric
parameter for describing the basin geomorphology, represents the volume of materials
that have not been eroded in the watershed [38] and is related to the effects of tectonic
elements [39,40]. A high HI value indicates that most materials in the watershed have
not been eroded, and the landform is in its infancy. According to the statistics, there were
no HI values lower than 0.23 or higher than 0.81; values of HI < 0.35 were approximately
4 % of the total, values of 0.35 < HI < 0.6 were approximately 87% of the total and values of
HI > 0.6 were approximately 9% of the total (Figure 6), revealing that Yabrai Shan is in the
mature stage with strong tectonic activities. In summary, the spatial distribution of ksn is
decoupled from lithology and precipitation and coupled with tectonic activities. Previous
research [12,14] on active tectonics also indicated that the geomorphological patterns are
controlled by the tectonic activities of the Yabrai range-front fault.

5.2. The Implication of Knickpoints

The sudden increases of ksn in the χ-plot profiles reflected increases in the fluvial
incision rate, thereby developing knickpoints, with the underlying cause being the decline
of the base level of erosion [29,34,47]. The development of knickpoints were subjected to
the difference of rock erosion resistance. Knickpoints caused by lithology differences have
no tectonic significance [34]. The comparison of the lithological map with the locations of
knickpoints showed that fifteen knickpoints lie in the lithologic boundary. These knick-
points were generated by lithological differences and were not involved in the analysis
of the geomorphic response time. Due to the coupling relationship between ksn and tec-

http://www.worldclim.org/
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tonic activities in this area [21,22,48], the variations of ksn and the spatial distribution of
knickpoints indicates that there were at least two tectonic acceleration events (Figure 12).
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Two stages of river incision were also found in the field, as shown in the photographs 
of the bedrock channel in watershed 10 (Figure 13). With the tectonic activity, the moun-
tain was uplifted and the incision rate increased, thereby controlling and affecting the re-
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grated faster or occurred earlier in the middle segment of Yabrai Shan, manifesting the 
developmental features of normal faults. However, in the late stage, the migration speeds 
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Figure 12. Scatter point distribution map of knickpoints in Yabrai Shan. ∆z indicates the elevation
difference between knickpoints and the watershed outlet. The blue points represent the early
knickpoints and the orange points represent the late knickpoints. The line represents the fitting of the
elevation difference between the knickpoints and the outlet.

Two stages of river incision were also found in the field, as shown in the photographs
of the bedrock channel in watershed 10 (Figure 13). With the tectonic activity, the mountain
was uplifted and the incision rate increased, thereby controlling and affecting the regional
landform evolution [47]. Hence, the generation of knickpoints resulted from the adjustment
responses of regional tectonic activities. In the early stage, the knickpoints migrated faster
or occurred earlier in the middle segment of Yabrai Shan, manifesting the developmental
features of normal faults. However, in the late stage, the migration speeds of knickpoints
in the northeastern section of Yabrai Shan were higher than those in the southwestern and
middle sections. The difference may have been induced by the change in tectonic stress.
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Figure 13. River longitudinal profile and field photographs of watershed 10. (a) Channel longitudinal
profiles of watershed 10. Photographs of the river channel in the (b) knickpoint between the middle
and upper reach, (c) upper reach and (d) knickpoint between the lower and middle reach. The black
boxes and purple fonts in (a) represent the locations in the river channel where the photographs
in (b–e) were taken. The blue lines and white arrows in (b–e) indicate the river direction and the
knickpoints, respectively.
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5.3. Geomorphic Response Time

Based on geomorphic displacement measurements and cosmogenic nuclide dating,
Yu et al. obtained the average vertical fault slip rate [12]. In this study, we obtained
geomorphic parameters, such as the relative elevation of knickpoints from the water outlet,
ksn1, ksn2. By combining our results with previous studies on active faults in this area, the
geomorphic response times of two tectonic acceleration events were estimated at 0.15–1.10 and
1.42–2.92 Ma (Figure 14), revealing a two-phase uplift of Yabrai Shan during the Late Cenozoic.
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The χ values indicated the stability of the drainage divide and reflected the dynamic
changes of the current watershed. When a river network reaches equilibrium, the χ values
are symmetrically distributed along the drainage divide [28,33,49]. The distribution of the
χ values in Yabrai Shan demonstrated that the watersheds have not reached the steady
state, the drainage divide moved to the northeast and the drainage area of the southeast
basins will increase. Hence, the estimated response time was longer than the real response
time, while the upper bound of the response time is reliable.

In the early stage, previous research indicated the Yabrai Shan was controlled by
regional tensional stress in the NW-SE direction, and a normal fault with NE-SW strike
and SE inclination was formed along the piedmont [12]. Controlled by this fault, the fault
activity accelerated, and the mountain uplifted, thereby forming early knickpoints on the
river channels. The geomorphic response times of the early knickpoints were ~1.42–2.92 Ma.
The spatiotemporal distribution of these knickpoints showed that the middle segment of
the Yabrai Shan responded to fault activity earlier than the southwestern and northeastern
segments (Figure 14).

Contrary to the early knickpoints, the late knickpoints indicated that the uplift rate
in the southwestern Yabrai Shan significantly decreased. Previous studies suggested that
the southern Alashan Block was subjected to regional compressive stress in the NE-SW
direction and the latest fault activity in the Alashan Block may be the latest impact of the
north-eastern expansion of the Tibetan Plateau [10,50–52]. Hence, during the Late Cenozoic,
the Yabrai range-front fault, under the influence of the northeastern expansion of the Tibetan
Plateau, was transformed into a regional compressive environment, thereby affecting the
fault activities, with the geomorphic response time being ~0.15–1.10 Ma (Figure 14).

Since the Cenozoic, the Tibetan Plateau has been experiencing a stepwise uplift and
expansion to the northeast, exerting influence on the regional tectonic evolution [12,50–56].
According to apatite (U-Th)/He dating, the North Qilian Shan was rapidly uplifted at
about 10 Ma [52]. Based on thermal analysis of the basin history, the Yumu Shan began to
rise at 4.0 Ma [55]. Research on the active tectonics at the southern margin of Heli Shan
revealed that the mountain uplift time was 1–3 Ma [6]. Due to the constrains of quantitative
geomorphology, the NE expansion of Tibet Plateau entered the Hexi Corridor and Heli Shan
at 0.6~2.1 Ma [50]. The tilting of Helan Shan shifted from the southwest to the northwest in
response to the northeast expansion of the Tibetan Plateau at 0.1~1.4 Ma [51].

These studies indicate that the northeast expansion of the Tibetan Plateau is a con-
tinuous process, extending from the North Qilian Shan to the northeast towards Yumu
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Shan, Heli Shan, Yabulai Shan and Helan Shan. Hence, the late stage knickpoints may
be the result of the Tibetan Plateau extending northeast across the Hexi Corridor into the
Alashan Block, causing rapid mountain uplift at 0.15–1.10 Ma. Consequently, the Yabrai
Shan experienced the transformation from the original extensional environment, affected
by the Ordos Block, to the compressional environment, affected by the NE expansion of the
Tibetan Plateau after 1 Ma.

6. Conclusions

In this study, we conducted the quantitative geomorphological analysis and field
investigation of Yabrai Shan, obtained the spatiotemporal distribution characteristics of
the geomorphological parameters and studied the geomorphic evolution in this area. The
conclusions are as follows:

(1) The spatiotemporal distribution of geomorphic parameters is coupled with tectonic
activity, and the geomorphic evolution of Yabulai Shan is controlled by that. The ksn
values indicate that the tectonic activity in the southern margin was strong, while
gradually decreasing towards the north. In addition, the HI values reveal that the
Yabrai Shan is in the mature stage of geomorphological evolution.

(2) The variations of ksn and the distribution of knickpoints indicate that there were at
least two tectonic acceleration events. The characteristic distribution of the two-stage
knickpoints is due to the altered tectonic stress in the area.

(3) The geomorphic of Yabrai Shan evolution recorded the transformation in this area
from the original extensional environment, affected by the Ordos Block, to the com-
pressional environment, affected by the north-eastern expansion of the Tibetan Platea
after 1 Ma.
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