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Abstract: There are limited studies on the semantic segmentation of high-resolution synthetic aperture
radar (SAR) images in building areas due to speckle noise and geometric distortion. For this challenge,
we propose the large receptive field feature fusion network (LRFFNet), which contains a feature
extractor, a cascade feature pyramid module (CFP), a large receptive field channel attention module
(LFCA), and an auxiliary branch. SAR images only contain single-channel information and have
a low signal-to-noise ratio. Using only one level of features extracted by the feature extractor will
result in poor segmentation results. Therefore, we design the CFP module; it can integrate different
levels of features through multi-path connection. Due to the problem of geometric distortion in
SAR images, the structural and semantic information is not obvious. In order to pick out feature
channels that are useful for segmentation, we design the LFCA module, which can reassign the
weight of channels through the channel attention mechanism with a large receptive field to help the
network focus on more effective channels. SAR images do not include color information, and the
identification of ground object categories is prone to errors, so we design the auxiliary branch. The
branch uses the full convolution structure to optimize training results and reduces the phenomenon
of recognizing objects outside the building area as buildings. Compared with state-of-the-art
(SOTA) methods, our proposed network achieves higher scores in evaluation indicators and shows
excellent competitiveness.

Keywords: synthetic aperture radar images; semantic segmentation; cascade feature pyramid module;
large receptive field channel attention module; auxiliary branch

1. Introduction

Synthetic aperture radar (SAR) [1] is an active earth observation system and is not
affected by light, climate, and clouds during the imaging process. The imaging resolution
is independent of the flight height and can work around the clock. Synthetic aperture
radar technology has become one of the most important methods of high-resolution earth
observation [2]. The unique advantages of SAR make it widely used in various fields, such
as ocean glacier monitoring, earth resource surveys, and crop identification [3].

The imaging geometry of SAR belongs to the oblique range projection type [4]. SAR
images contain microwave characteristic information of ground objects and targets. The
imaging results are affected by various factors, such as wavelength, incident angle, and
polarization mode, and are closely related to the structure of the target, arrangement, and
material. Therefore, SAR and optical images are very different in imaging mechanisms,
geometric characteristics [5], radiation characteristics, and so on. These characteristics
mentioned above leads to difficulty in extracting information from SAR images. Semantic
segmentation technology can enhance the readability of SAR images [6].
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In the SAR image semantic segmentation field, the commonly used traditional methods
include support vector machine, decision tree, etc. [7]. Traditional methods use manually
designed extractors for feature extraction [8]. Designing this type of method requires
professional knowledge and a complex parameter adjustment process. At the same time,
each method is only suitable for specific situations with poor generalization ability and
robustness. In recent years, with the development of deep learning, neural networks have
shown powerful image feature extraction capabilities [9]. Deep learning methods rely
on data-driven feature extraction, which can obtain the feature representation of specific
datasets through learning samples. The feature representations of datasets are more efficient
and accurate, and the ability to extract features is more robust. The applications of deep
learning to semantic segmentation of SAR images have just started and still have a lot of
room for development [10]. Therefore, SAR image semantic segmentation based on the
deep learning method can explore the feasibility of the deep learning method itself. On the
other hand, it can explore what kind of network and which network structure is suitable
for semantic segmentation [11].

The existing deep learning methods mainly deal with low-resolution, large-scale SAR
images [12]. In low-resolution SAR images, unique characteristics, such as overlay, have
little impact on the readability of the images. However, in high-resolution SAR images,
these characteristics will significantly affect the readability of images. Figure 1 shows the
contrast between an optical remote sensing image and a SAR image of the same area, and
the enlarged part shows the image of high-rise buildings. It can be seen that there is an
apparent overlapping phenomenon in the SAR image, and the boundary of buildings is
not clear, which is difficult to distinguish. For the above reasons, semantic segmentation
on high-resolution SAR images in building areas is more difficult than general semantic
segmentation [13].

Figure 1. The comparison of an optical remote sensing image and a SAR image in the same area. The
left image is the optical remote sensing image, the right image is the SAR image, and the high-rise
building area is enlarged.

Therefore, we proposed a novel semantic segmentation framework for SAR images
in building areas called the large receptive field feature fusion network (LRFFNet), which
is composed of four parts: a feature extractor, a cascaded feature pyramid module (CFP),
a large receptive field channel attention module (LFCA), and an auxiliary branch. SAR
images contain single-channel information and have a low signal-to-noise ratio. If only
low-level features are analyzed, it is difficult to accurately judge the representative category
of pixels [14], we need to consider all level features at the same time and design a CFP
model that can better capture contextual information. To solve the problem of locating
key channels [15], we design an LFCA model. This module can judge the value of the
channels and reassign the weights through the attention mechanism. It will give greater
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weight to the channel with more information. Our proposed channel attention mechanism
can strengthen the importance of useful channels for segmentation tasks and suppress
useless information, thus enabling the fast and accurate localization of useful channels.
Due to the special imaging mechanism of SAR, different ground objects may have similar
backscattering characteristics [16], so the identification of ground object categories is prone
to errors. For this reason, we design an auxiliary segmentation branch to optimize the
segmentation results and reduce segmentation errors.

Our main contributions are summarized below:

• We design a network called LRFFNet that outperforms many SOTA works on the SAR
semantic segmentation task.

• The proposed CFP module can fuse multi-level features and improve the ability to
capture contextual information.

• The proposed LFCA module can reassign the channel weights, the channel with more
information is given higher attention, the useless information is suppressed, and the
ability to locate the channel containing key information is improved.

• Our proposed auxiliary branch can restrict the network to perform segmentation
within the building area and reduce the phenomenon of color blocks generated outside
the building area and optimize the segmentation results.

The rest of this paper is organized as follows. Section 2 introduces the related work on
the semantic segmentation of optical images and SAR images. Section 3 describes the overall
framework and important components of LRFFNet. Section 4 details the experiments and
analysis on the SARMV3D-BIS dataset. The conclusion of this paper is in Section 5.

2. Related Work

Semantic segmentation is an important direction of computer vision [17]. Unlike im-
age classification, semantic segmentation achieves pixel-level classification of images [11].
Semantic segmentation is an output-intensive task. Semantic segmentation on SAR im-
ages can classify different regions into different categories, thereby assisting humans in
understanding the image [18].

2.1. Traditional Approaches

Traditional methods do not rely too much on domain knowledge but use features
designed manually, including pixel color [19] in different image spaces, histograms of
oriented gradients [20], scale-invariant feature transform [21], bag of visual words [22], and
so on. Based on these artificially designed features, many methods have been designed.

Although the result obtained is not strictly semantic classification in unsupervised
segmentation, the content is recognized, and the image is divided by content. The k-means
algorithm is one of the representative algorithms [23]. The process is randomly placing
k centroids in the feature space, assigning data points to the centroids in the principle
of proximity, and then gradually adding the centroids to the cluster. Another method is
a graph-based image segmentation algorithm [24]. The core idea of this algorithm is to
regard each pixel in the image as a vertex and use an indicator such as color difference
as edge weights. A minimum spanning tree method is used to cut the edges. Fei et al.
proposed a soft association strategy to make the clustering differentiable [25]. In this
method, each pixel is assigned to various clusters with different probabilities. Bo et al.
proposed DSFA for pixel-level tasks [26]. The author uses two symmetric deep networks
project the input images and use the SFA process on the transformed features. To re-
duce the size of the involved optimization problems, Huang et al. proposed a scalable
subspace clustering method [27]. The method integrates a concise dictionary and robust
subspace representation. Other unsupervised methods include Active Contour Models [28],
Watershed Segmentation [29], etc.

There are many representative algorithms in the field of supervised semantic segmen-
tation. Random decision forests [30] is an ensemble learning method in which multiple
classifiers are trained and used. The structure of the classifier is a decision tree, the leaves
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represent the categories, and the features are used to determine the branch direction.
SVM [31] is a generalized linear classifier for the binary classification of data that converts
the original problem into a convex quadratic programming problem and has a strong
nonlinear fitting ability. When the original data are linearly separable, SVM finds the
optimal classification hyperplane in the original space. When the original data are linearly
inseparable, SVM will add slack variables to map the nonlinear data to a high-dimensional
space and become linearly separable. In addition, there are methods such as Markov
Random Fields [32], Conditional Random Fields [33], etc.

2.2. Deep Learning-Based Methods

With the development of deep learning in recent years, many excellent frameworks
have been proposed and applied to semantic segmentation tasks.

Long et al. proposed the FCN semantic segmentation framework [34]. The network
uses the deconvolution layer to upsample the feature map of the last layer. Then restore the
feature map to the same size as the input image so that a prediction can be generated for
each pixel. Unet [35] is a variant of the FCN structure and adopts a symmetrical network
structure. The overall structure can be regarded as two parts. The first half is for feature
extraction, the second half is for upsampling, and a jump connection structure is used to
achieve retrieving edge features. EncNet [36] designs the context encoding module by
adding the prior knowledge of the scene and uses semantic encoding loss to regularize the
training of the features extracted by the module, which is more conducive to the training
process. In APCNet [37], the authors found that GLA plays an essential role in constructing
contextual features. Based on this, an ACM block was designed, and the final representation
matrix at different scales was obtained by incorporating affinity coefficients. A more robust
attention mechanism is proposed in EMANet [38], which extracts a more compact set
of bases from the original features through the expectation maximization algorithm and
reduces the computational complexity. The DeepLab series [39–42] use atrous spatial
pyramid pooling to gather receptive fields of different scales and effectively expand the
filter without increasing the number of parameters and computational complexity. In
addition, the author introduces the multi-grid policy; that is, using atros convolution
many times.

The PSPNet [43] proposed by Zhao et al. aggregates the context of different regions
through the pyramid pooling module and the pyramid scene analysis network so that the
model can understand the global context information. Fu et al. proposed DANet [44], which
reconciled the relationship between local features and global dependencies by introducing
a spatial attention mechanism, and a channel attention mechanism. CCNet [45] proposed
by Huang et al., obtains the context information of the pixel through the intersection path
of each pixel. Then, through a recurrent operation, each pixel can finally capture the whole
image dependencies of all pixels. CGNet [46], proposed by Wu et al., is mainly composed
of CG blocks. Residual learning is mainly used in the CG block, including local residual
learning (LRL) and global residual learning (GRL). The CG block can provide the joint
features of local features, and the surrounding environment context is learned. Finally, the
learning of joint features is further improved by introducing global context features. In
order to solve the problem of insufficient spatial resolution, BiSeNet [47] designs a small
stride spatial connection path. To further expand the receptive field, a fast downsampling
strategy is adopted to redesign the context path.

However, most semantic segmentation models are oriented toward optical images
(which are obtained from the visible light band sensor). SAR adopts the side-view mode
to transmit and receive radar waves, and the obtained images have a low signal-to-noise
ratio, making it more difficult to distinguish the content. Applying these models directly to
the SAR image semantic segmentation does not work well [48].

Wang et al. proposed and evaluated a deep neural network topology for the automatic
segmentation of SAR images named HR-SARNet [49]. Ding et al. used parallel multi-
scale branches to improve the embedding of local discriminative features and proposed
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MP-ResNet [50]. Wu et al. adopted the fully convolutional network (FCN) and U-Net
architecture and proposed the MS-FCN method [51]. Yue et al. built a multiscale attention
model by using multiscale feature extraction, channel attention extraction, and spatial
attention extraction [52]. They designed a loss function by combining lovasz-softmax and
cross-entropy losses and proposed a novel attention fully convolutional network. Based
on U-Net, He et al. added a global feature attention module to the decoder of U-Net,
proposed a new semantic segmentation network IGFU-Net [53], and used it on SAR images.
Semantic segmentation of urban and non-urban areas was achieved with better accuracy
than U-Net. Cha et al. proposed a multimodal representation learning method for SAR
semantic segmentation based on contrastive multi-view encoding [54], using EO images,
SAR images, and label masks at the same time. Facing extremely imbalanced glacier data,
Davari et al. used the Matthews Correlation Coefficient (MCC) as an early stopping crite-
rion [55] while also improving the distance map-based Binary Cross Entropy (BCE) loss
function. Bi et al. proposed a context-based method for the semantic segmentation of PSAR
images [56]. Taking the channel-consistent feature set defined by the authors as input,
the three-dimensional discrete wavelet transform (3D-DWT) technique is used to extract
multiscale features that are robust to speckle noise. Then, a Markov Random Field (MRF)
is applied during the segmentation process to enforce label smoothing spatially. The above
techniques enable context information to be fully integrated into the segmentation process
to ensure accurate and smooth segmentation.

3. Proposed Method

In this section, we first introduce the overall structure of our proposed network.
Then we present the main components of the network, including the feature extractor, the
cascaded feature pyramid module, the large receptive field channel attention module, and
the auxiliary branch.

3.1. Overall Architecture

We propose a semantic segmentation method on the basis of the encoder-decoder
architecture. As shown in Figure 2, our model can be divided into three parts according to
different functions: a feature extractor, a semantic segmenter, and an auxiliary branch. The
feature extractor is the encoder, through which the multi-level features can be extracted
from the input image.

LFCA
Cat
And
conv

CFP CFP

FCN

Feature Extractor Semantic Segmenter 

Auxiliary branch 

Figure 2. Overall architecture.

The feature extractor plays the encoder role. It can extract features from the input
image. They are then sent to the semantic segmenter and the auxiliary branch. The
role of the semantic segmenter is to recover feature resolution and generate pixel-level
predictions. This structure mainly contains two cascade feature pyramid (CFP) modules
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and a large receptive field channel attention (LFCA) module. Optical images contain
grayscale information about multiple visible light bands, while SAR images only contain
information about the microwave band. In addition, SAR images have geometric distortion.
Based on the above reasons, semantic segmentation on SAR images is more difficult. The
feature maps obtained from the feature extractor have a total of 4 levels, from low-level to
high-level. Low-level features contain more structural information, and high-level features
contain more semantic information. If only one level of feature is used for segmentation,
it is sufficient for optical images but not for SAR images. The CFP module can complete
the fusion of all levels of features through multi-path connections. The LFCA module can
help the network focus on the channel that is more favorable for the segmentation task.
Considering that SAR images can be divided into building and non-building areas, and
the identification of ground object categories is prone to errors, we propose the auxiliary
branch. The FCN structure is used in this branch, which can optimize the network training
effect and improve the quality of predicted images.

3.2. Feature Extractor

The feature extractor uses the ConvNeXt structure. This is a pure convolutional neural
network proposed by Liu et al. [57], which achieves top-1 accuracy in the ImageNet seg-
mentation task. The network structure is adjusted and improved on the basis of ResNet [58].
The proportion of each stage is improved in the macro design, using depthwise separable
convolution, inverse bottleneck layer, etc. In the detailed design, the activation function in
the network is changed from ReLu [59] to GELU [60], and fewer activation functions are
used. ConvNeXt uses fewer normalization layers than ResNet, and the normalization layer
used is LN [61] rather than BN [62]. The overall structure of the feature extractor is shown
in Figure 3.

×3 ×3 ×9 ×3

Conv LN Block 𝛽!

𝛽"

𝛽#

𝛽$

Convolutional Layer

Layer Normalization

ConvNext Block

Block Block Block

Image

Features  

64×64×192

128×128×96

32×32×384

16×16×768

Shape  

Figure 3. Feature extractor structure.

In the feature extractor, the input image first passes through a 4× 4 convolution layer,
then a normalization layer. After these two layers of processing, the image resolution
becomes one-fourth of the original. Then the feature will be processed through a series
of ConvNeXt Blocks. These ConvNeXt Blocks are divided into four parts, namely, four
stages. Each stage contains 3, 3, 9, 3 blocks. ConvNext Block contains depth-wise conv2d,
layer normalization, GELU activation function, scale layers, and droppath layer, and these
layers are connected in series. We did not modify the original network structure and
parameters. The features extracted through the four stages are β0, β1, β2, β3, these features
then enter the decoder layer to perform feature fusion and other operations to extract
sufficient information.

3.3. Semantic Segmenter

The role of the semantic segmenter is to extract information from the multi-level
features. The decoding operation is completed by recombining the feature layers to generate
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a semantically segmented image. We design an efficient structure to accomplish the
generation of semantic segmentation images. The structure includes two cascaded feature
pyramid modules (CFP) and a large receptive field channel attention layer (LFCA). The
specific model structure can be seen in Figure 2.

3.3.1. Cascade Feature Pyramid Module

Feature Pyramid Networks (FPN) [63] involve constructing a series of images or
features of different scales for model training and testing. Features at different levels
contain information with different emphases; low-level features mainly reflect details such
as light, shade, and edges, and high-level features have rich semantic information. The
structure of FPN is shown in Figure 4, “UP” denotes the upsampling layer, which uses the
bilinear interpolation method. After the upsampling operation and the feature addition
operation, the low-level features can obtain high-level information. The use of low-level
features alone cannot contain the overall structural information. The fusion of high-level
features into low-level features takes into account the structural and semantic information
at the same time. Meanwhile, the features fused through the FPN structure will have richer
expression capabilities. This structure can improve the robustness of the segmentation
algorithm for the segmentation performance of objects of different sizes. The single-path
connection from high-level features to low-level features in FPN limits the ability of feature
fusion. We design a multi-path connection method to improve the model and propose a
CFP module. The structure of our proposed CFP is shown in Figure 5, “RE” denotes the
upsampling layer, “ADD” denotes the element addition operation, and “CBR” denotes the
series structure of the convolutional layer, BN layer, and activation function layer.

UP

UP

UP

𝛽!

𝛽"

𝛽#

𝛽$

𝛽!%

𝛽"%

𝛽#%

𝛽$%

Figure 4. Structure of the feature pyramid model (FPN).

In the FPN structure, the underlying features are fused with the upper features through
the upsampling method. The implementation of upsampling is the bilinear interpolation
method. In addition to enlarging the size, the upsampling layer has almost no other effect.
It even introduces unnecessary values due to the calculation method, which affects the
calculation of subsequent features. In our model, we add a convolutional layer after the
upsampling layer, which has a 1× 1 kernel size. By doing so, the model can not only
achieve the effect of enlarging the size of the feature but also achieves the adaptive filling
of the feature value. The input to CFP is denoted as (β0, β1, β2, β3), a total of four layers of
features. After CFP layer processing, the output intermediate layer features are β

′
0, β

′
1, β

′
2,

β
′
3. This process can be written as

β
′
0 = β0 + fcbr( fre(β1) + fre(β2) + fre(β3))

β
′
1 = β1 + fcbr( fre(β2) + fre(β3))

β
′
2 = β2 + fcbr( fre(β3))

β
′
3 = β3

(1)
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where fcbr(·) represents a series of operations in the order of the 1× 1 convolution, batch
normalization, and ReLU activation function. fre(·) represents the upsample operation,
whose purpose is to resize the high-level features so that they can be added to the target
feature layer. The specific method used by the upsampling layer is bilinear interpolation.
For the top-level feature β

′
3, we do not perform any calculation but keep the original value.

𝛽!

𝛽"

𝛽#

𝛽$

𝛽!%

𝛽"%

𝛽#%

𝛽$%

RE
ADD
CBR

RE
ADD
CBR

RE
ADD
CBR

Multipath
connection

Feature fusion method

resize

resize

resize
Add C B R

Conv BN ReLu

Figure 5. Structure of our proposed (CFP).

The features obtained after the processing of CFP are then processed by the LFCA
model. Details of the computations performed in the LFCA model are in Section 3.3.2. After
processing by the LFCA model, we obtained features β

′′
0, β

′′
1, β

′′
2, and β

′′
3. Then, the feature

is processed by the second CFP, obtaining the features β
′′′
0 , β

′′′
1 , β

′′′
2 , and β

′′′
3 . We call the

structure of two connected CFPs C-CFP. Then, we obtain the final semantic segmentation
result map by

predict = fdc( fcbr(β
′′′
0 ⊕ fre(β

′′′
1 )⊕ fre(β

′′′
2 )⊕ fre(β

′′′
2 ))) (2)

where fdc(·) means a series of operations in the order of the dropout and 1× 1 convolution.
fcbr(·) means a series of operations in the order of the 3× 3 convolution, batch normaliza-
tion, and ReLU activation function. fre(·) means the upsample operation, and ⊕ represents
concat operation.

It can be obtained from the equation that after the feature fusion layer, the features
of the second level are fused with the features of the first level, the features of the third
level are fused with the features of the second level, and the first level at the same time,
and the fourth level of features are fused with the previous three levels of features at the
same time. This connection method enhances the cross-layer information-sharing ability
between different feature levels.

3.3.2. Large Receptive Field Channel Attention Module

Starting with SEnet [64], introducing a channel attention mechanism into convolution
shows great potential for performance improvement. By judging the amount of information
in the channel, different weight factors are assigned to different channels so the network
can focus on more valuable channels. The general expression of the channel attention
mechanism can be expressed as:

F = σ(WY) (3)

where F is a weight factor to be multiplied to the different channels of the feature, which
has a shape of (c× 1). σ is the activation function, and W is the weight matrix, which has a
shape of (c× c). Y is the set of features obtained from the previous process.
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An advanced channel attention mechanism module is designed in EcaNet, and the
name is the ECA module. This module implements the avoidance of dimensionality reduc-
tion operations that negatively affect the predictions of the channel attention mechanism.
In the ECA module, the global average pooling layer and one-dimensional convolution
are used to calculate the channel weights. The one-dimensional convolution layer used
in the ECA module achieves effective cross-channel interaction. In the ECA module, the
calculation process of the attention mechanism can be described as follows:

F = σ(C1DK(GAP(Y))) (4)

where Y is the set of features obtained from the previous process. GAP(·) means global
average pooling layer. C1DK means a one-dimensional convolution layer.

At the same time, we observed that the global average pooling operation is used to
calculate the channel weight in Squeeze and Excitation Networks (SENet), style-based
recalibration module (SRM), and Efficient Channel Attention Network (EcaNet), which
limits the expressive ability of the model. The calculation process in ECAlayer can be
summarized as follows: perform a global pooling operation on the input feature to obtain a
one-dimensional feature vector, then perform a one-dimensional convolution on the one-
dimensional vector to obtain the channel allocation weight, and then multiply the weight to
the original feature to get the weighted features. In the original network, the global average
value of the feature of each channel is used as the weight value. The result is that only
global features are considered, and the local features are ignored, which is not conducive
to distinguishing between large targets and small targets. Therefore, we redesigned the
weight calculation method and replaced the GAP layer and one-dimensional convolutional
layer in ECAlayer with grouped convolution.



ω1,1 · · · ω1,k

...
. . .

...
ωk,1 · · · ωk,k

ωk+1,k+1 · · · ωk+1,2k

...
. . .

...
ω2k,k+1 · · · ω2k,2k

. . .
ωc−k,c−k · · · ωc−k,c

...
. . .

...
ωc,c−k · · · ωc,c



(5)

In our designed channel attention mechanism, the form of W in Equation (3) is ma-
trix (5). In this equation, k represents the number of groups. When the value of k is larger,
there will be more levels of features for communicating information across channels, and
the number of parameters of the network will increase accordingly. In our experiments,
we set k to 4. We chose a super-large convolution kernel as the convolution kernel of the
grouped convolution, and the size of the convolution kernel we chose is (H, W), which is
the size of the input feature map. The advantage of taking the convolution kernel of the
same size as the feature map is to obtain a larger receptive field. Our proposed structure
can process each pixel independently, and the overall calculation will not have coupling
effects due to the use of small convolution kernels. Therefore, the network can have a better
target positioning capability.

In the LFCA module, the residual structure is also used, and the network structure
is shown in Figure 6. We use a total of four such structures, which are connected after
the output of the features by the CFP. After the feature map with shape (H, W, C) enters
this module, the weights with shape (1, 1, C) are generated by the grouping convolution
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layer. k in matrix (5) is represented by “Group” in the figure. The larger the value of this
parameter is, the more channels will be crossed. Then the generated weights are multiplied
by the feature and added to the feature to obtain the final output of this module. The
calculation process of the LFCA module can be described as follows:

F = σ(Y + GC(Y)) (6)

where GC means group convolution layer, and Y is the set of features obtained from the
previous process.

𝐻×𝑊×𝐶 1×1×𝐶

Adaptive Selection of
Group

Group = 2

Figure 6. Structure of our proposed LFCA.

3.4. Auxiliary Branch

The content of SAR images can be divided into two parts, building area and non-
building area (background area). In order to reduce the phenomenon of recognizing the
objects in non-building areas as buildings in the process of segmentation, we designed the
auxiliary branch. The input of the auxiliary branch is the third level of the feature obtained
after the image is processed by the feature segmenter; that is, β2. The network structure
adopted by the auxiliary branch is the classic FCN network. The calculation process of the
auxiliary branch can be described as follows:

F = conv2(conv1(β2)) (7)

where conv1 represents a 3× 3 convolution. conv2 represents anothor 3× 3 convolution.

3.5. Loss Function

The final feature map obtained after processing with the semantic segmenter is F1.
The final feature map obtained after processing with the auxiliary branch is F2. The
generated features are then passed through a CLS layer to get the final predicted output.
The calculation process can be described as follows:{

P1 = conv1(F1)
P2 = conv3(F2)

(8)

where P1, P2 represents the predicted output of the two segmenters, conv1 represents a 3× 3
convolution, the other parameters are in_channel = 512, out_channel = 4. conv3 represents
a 3× 3 convolution, and the other parameters are in_channel = 512, out_channel = 2. In
the training phase, our LRFFNet uses the standard cross-entropy loss as the loss function,
and there is one in each of the semantic segmenter and auxiliary branches, which is defined
as follows: 

loss1(P1, G1) = − 1
N ∑N

k=1[G
1
k log(P1

k ) + (1− G1
K)log(1− P1

k )]

loss2(P2, G2) = − 1
N ∑N

k=1[G
2
k log(P2

k ) + (1− G2
K)log(1− P2

k )]

(9)
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where G1 denotes the ground-truth images, while G2 denotes the mask images. Figure 7
shows the two types of images. The details of producing mask images can be seen in
Section 4.3.3. k is the index of pixels, and N is the number of pixels in P1 and P2. The total
loss can be written as Equation (10), where α is set to 0.2 in our experiment.

loss = loss1 + αloss2 (10)

(1) Image (2) GT (3) Mask

(1) Image (2) GT (3) Mask

Figure 7. Examples of the original dataset and some results obtained.

4. Experiments and Discussion

In this section, we conducted extensive experiments using the SARMV3D-BIS dataset
to evaluate the performance of our proposed method. To achieve this goal, we compared our
method with some SOTA methods and analyzed the results. The details of the experimental
setup are in Section 4.1. The comparison experiments and analysis of our method and
SOTA methods on the SARMV3D-BIS dataset are provided in Section 4.2. The ablation
experiments and analysis of our model are presented in Section 4.3. The analysis of our
method is provided in Section 4.4.

4.1. Experimental Settings
4.1.1. Dataset Description

To prove the effectiveness of our proposed method on SAR image semantic segmen-
tation in building areas, the benchmark dataset we use is the SARMV3D-BIS dataset [65],
produced by the Chinese Academy of Sciences team.

The original SAR images in the dataset come from the Omaha city area of the United
States in the GF-3 beam stacking mode. According to the systematic process and method of
labeling based on the 3D model simulation back projection proposed by the data production
team, the SAR images are refined semantically. It contains the facade, roof, and shadow of
each building.

Figure 8 shows a partial dataset, and each column is a data pair. The first row is
the ground truth, where red represents the facade of the building, white represents the
roof of the building, blue represents the shadow of the building, and black represents the
background. The second row corresponds to the SAR image. The size of each image is
512× 512 pixels. The dataset can be divided into training set, validation set, and test set.
The training set contains 1280 image pairs, the validation set contains 369 image pairs, and
the test set contains 369 image pairs.
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facade

roof

shadow

background

(1) Image

(1) GT

(2) Image (3) Image (4) Image

(2) GT (3) GT (4) GT

Figure 8. A display diagram of some data in the dataset and the correspondence between different
colors and categories in the GT image are marked.

4.1.2. Comparison Methods and Evaluation Metrics

To demonstrate the superiority of our method for segmentation tasks on SAR images
in building areas, we compared the proposed LRFFNet with SOTA semantic segmentation
methods, which are UNet [35], EncNet [36], ApcNet [37], EmaNet [38], DeepLabV3 [41],
PspNet [43], DaNet [44], FPN [63], MP-ResNet [50], HR-SARNet [49], and MS-FCN [51].

To fairly compare with the SOTA methods on the SARMV3D-BIS dataset, we use the
widely used evaluation metrics, including intersection over union (IoU), mean intersection
over union (mIoU), Accuracy (Acc), mean Accuracy (mAcc), and all Accuracy (aAcc).

The IoU is calculated as follows:

IoUi =
GTi ∩ Predi
GTi ∪ Predi

(11)

mIoU =
n

∑
i

IoUi (12)

The Acc is calculated as follows:

Acc =
TP + TN

TP + FN + FP + FN
(13)

mAcc =
n

∑
i

Acci (14)

aACC =
NumTrue

Num
(15)

where i denotes the semantic categories and n is the number of classes. In particular, aAcc
is calculated by dividing the number of all correctly classified pixels in the prediction map
by the total number of pixels.

4.1.3. Implementation Details

Our network was tested on the following platforms, including AMD Ryzen 5 5600× CPU
@3.7 GHz, NVIDIA RTX 3090 Ti GPU with CUDA version 11.6. In the experimental setting, we
use random flip and random rotation data augmentation methods for the input image, and the
probability is set to 0.5. The optimizer we use is the adamw optimizer, where lr is set to 0.0008,
coefficients used for computing running averages of the gradient and its square betas are set to
(0.9, 0.999), the weight decay coefficient is 0.05, the warmup and learning rate decay strategies
are used at the same time, the warm-up interval is set to 300, the warmup ratio is set to 0.001,
and the decay strategy uses the poly strategy. The batch size was set to 8, and the network was
trained in 20,000 steps.
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4.2. Comparative Experiments and Analysis

We followed the experimental setup in Section 4.1, and several groups of comparative
experiments were carried out.

The SARMV3D-BIS dataset is a challenging task. SAR images already contain much
useful information, such as the structure, texture, and occlusion relationship between
the environment and the target. However, SAR images contain information about the
microwave band and have a lower signal-to-noise ratio compared with optical images.
Optical images can be distinguished well by the human eye, but interpreting SAR images
requires professional knowledge. Therefore, it is more challenging to interpret SAR images.
The segmentation of SAR images is more complicated. We made a statistic on the area of
each category in the dataset. The proportions of the four categories (background, facade,
roof, and shadow) in the dataset are 76.14%, 5.27%, 14.01%, and 4.57%. It can be seen that
the background accounts for a large part of the dataset, and the building area accounts for
less than 50%. In addition, the roof category in the building area accounts for a considerable
part, but the facade and shadow only account for less than 6%, which are small objects. The
unbalanced distribution of data categories is an important reason for why this dataset is
challenging for performing semantic segmentation tasks.

We conduct experiments on the SARMV3D-BIS dataset using our method and some
other SOTA methods, and most comparison methods are improved based on the encoder-
decoder structure. For a more rigorous comparison, our experiments can be divided into
three groups. In the first set of experiments, the comparison method entirely refers to the
original paper, and most of them use the ResNet encoder. The experimental results are
shown in Table 1. In the second set of experiments, the comparison method uses ConvNeXt
as the encoder, which uses the same encoder as our proposed method. The purpose of
setting up this set of experiments is to eliminate the effects of using the different encoders.
The experimental results are shown in Table 2. In the third set of experiments, we compared
our method with the advanced network specially designed for SAR image segmentation.
In the three tables, the best experiment result is marked in red, and the following best
experiment result is marked in blue.

As shown in Table 1, our proposed method outperforms other methods in various
evaluation metrics. Specifically, the mIoU score of our LRFFNet is 8.16% higher than the
second-best method, DaNet. The mAcc score of our LRFFNet is 8.16% higher than the
second-best method, DeepLabV3. The aAcc score of our LRFFNet is 2.73% higher than the
second-best method, DaNet.

As shown in Table 2, compared with the SOTA method, our proposed method im-
proves on most evaluation metrics. Specifically, the mIoU score of our LRFFNet is 3.09%
higher than the second-best method, DeepLabV3. In particular, the IoU scores of LRFFNet in
background and roof increased by 0.38% and 2.82% compared to second place. Our method
also achieves SOTA performance on the hard-to-segment semantic classes of “facade” and
“shadow”. On the segmentation of “facade” objects, the IoU score of our LRFFNet is 4.94%
higher than the second-best method, DeepLabV3. On the segmentation of “shadow” objects,
the IoU score of our LRFFNet is 2.68% higher than the second-best method, DeepLabV3.
The mAcc score of our LRFFNet is 2.76% higher than the second-best method, DeeplabV3.
In particular, on the segmentation of “facade” objects, the Acc score of our LRFFNet is 5.53%
higher than the second-best method, DeeplabV3. On the segmentation of “shadow” objects,
the Acc score of our LRFFNet is 5.01% higher than the second-best method, PspNet.

In addition, another series of comparative experiments was carried out between our
method and methods designed for SAR image segmentation. The compared methods
include MP-ResNet, HR-SARNet, and MS-FCN. The experimental results are shown in
Table 3. As can be seen, our proposed method achieves improvements in all evaluation
metrics. To intuitively demonstrate the superiority of our proposed LRFFNet in the se-
mantic segmentation of SAR images in building areas, we performed visual comparison
experiments and produced a comparison result graph. The visualization results are shown
in Figures 9 and 10. Every two rows in the figure are a set of comparative experiments,
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including the original image to be classified, the ground truth, and the classification result
predicted by each method. Among them, the last block is the prediction result of our
LRFFNet. Our proposed method has good segmentation accuracy whether in the larger
category, such as background and roof, or in the smaller category, such as facade and
shadow. Compared with other methods, the semantic segmentation results obtained by
our method are closer to the ground-truth images in visual effect.

Table 1. Comparison of the results of our method and other SOTA methods for semantic segmentation
on the SARMV3D-BIS dataset.

Method
IoU per Class (%)

mIoU (%)
Acc per Class (%)

mAcc (%) aAcc (%)
BG FD RF SD BG FD RF SD

Unet 85.80 27.32 49.67 21.70 46.13 94.05 35.95 67.48 29.02 56.62 84.98
Res+PSPNet 89.76 34.80 60.48 27.79 53.21 96.62 43.77 74.54 35.98 62.73 88.56
Res+DeepLabV3 90.12 34.98 60.76 30.38 54.06 95.89 45.78 76.89 41.11 64.92 88.61
Res+EncNet 89.79 33.94 59.55 28.93 53.06 96.46 43.95 73.31 38.48 63.05 88.40
Res+ApcNet 89.93 32.91 60.40 29.78 53.26 96.41 42.23 74.78 39.83 63.31 88.52
Res+EmaNet 90.03 33.81 60.49 28.64 53.24 97.00 43.09 72.95 37.34 62.60 88.68
Res+DaNet 90.15 36.48 60.52 31.78 54.73 96.81 46.11 73.00 42.15 64.52 88.91

ours 93.01 47.63 70.57 42.14 63.34 97.16 61.81 81.44 56.25 74.17 91.64

The abbreviations are as follows: BG—background, FD—facade, RF—roof, SD—shadow. The best experiment
result is marked in red, and the following best experiment result is marked in blue.

Table 2. Comparison of the results of our method and other SOTA methods for semantic segmentation
on the SARMV3D-BIS dataset.

Method
IoU per Class (%)

mIoU (%)
Acc per Class (%)

mAcc (%) aAcc (%)
BG FD RF SD BG FD RF SD

ConvN+PSPNet 92.29 40.98 66.60 37.75 59.40 96.76 54.15 80.01 51.24 70.54 90.54
ConvN+DeepLabV3 92.50 42.69 66.35 39.46 60.25 96.88 56.28 79.38 53.11 71.41 90.74
ConvN+EncNet 92.39 40.98 66.14 36.08 58.90 96.81 54.40 79.80 49.01 70.01 90.47
ConvN+ApcNet 92.63 40.87 66.77 37.82 59.52 97.15 52.68 80.09 50.81 70.18 90.76
ConvN+EmaNet 92.62 41.50 67.31 37.72 59.78 97.08 53.30 80.69 50.86 70.48 90.81
ConvN+DaNet 92.33 40.15 66.11 37.14 58.93 96.82 52.95 80.00 49.96 69.93 90.47
ConvN+FPN 92.45 42.16 67.75 35.99 59.59 96.96 55.23 80.64 48.69 70.38 90.72

ours 93.01 47.63 70.57 42.14 63.34 97.16 61.81 81.44 56.25 74.17 91.64

The abbreviations are as follows: BG—background, FD—facade, RF—roof, SD—shadow. The best experiment
result is marked in red, and the following best experiment result is marked in blue.

Table 3. Comparison of the results of our method and other methods designed for SAR image on the
SARMV3D dataset.

Method
IoU per Class (%)

mIoU (%)
Acc per Class (%)

mAcc (%) aAcc (%)
BG FD RF SD BG FD RF SD

MP-ResNet 87.23 32.82 59.48 28.86 52.10 96.07 43.82 72.18 37.66 62.43 88.48
HR-SARNet 81.63 20.96 44.61 19.67 41.72 89.96 31.41 63.32 28.44 53.28 80.80
MS-FCN 85.83 30.12 55.77 25.92 49.41 95.07 41.07 73.23 36.73 61.53 84.69

ours 93.01 47.63 70.57 42.14 63.34 97.16 61.81 81.44 56.25 74.17 91.64

The abbreviations are as follows: BG—background, FD—facade, RF—roof, SD—shadow. The best experiment
result is marked in red, and the following best experiment result is marked in blue.
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a(1) Image a(2) GT a(3) PSPNet a(4) DeepLabV3 a(5) EncNet

a(6) APCNet a(7) EMANet a(8) DANet a(9) UNet a(10) Ours

b(1) Image b(2) GT b(3) PSPNet b(4) DeepLabV3 b(5) EncNet

b(6) APCNet b(7) EMANet b(8) DANet b(9) UNet b(10) Ours

c(1) Image c(2) GT c(3) PSPNet c(4) DeepLabV3 c(5) EncNet

c(6) APCNet c(7) EMANet c(8) DANet c(9) UNet c(10) Ours

Figure 9. Inference results of the first set of experiments.
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a(1) Image a(2) GT a(3) PSPNet a(4) DeepLabV3 a(5) EncNet

a(6) APCNet a(7) EMANet a(8) DANet a(9) FCN a(10) Ours

b(1) Image b(2) GT b(3) PSPNet b(4) DeepLabV3 b(5) EncNet

b(6) APCNet b(7) EMANet b(8) DANet b(9) FCN b(10) Ours

c(1) Image c(2) GT c(3) PSPNet c(4) DeepLabV3 c(5) EncNet

c(6) APCNet c(7) EMANet c(8) DANet c(9) FCN c(10) Ours

Figure 10. Inference results of the second set of experiments.

4.3. Ablation Experiments

In this subsection, we evaluated the effectiveness of two key modules of our pro-
posed method, the cascade feature pyramid module (CFP) and the large receptive field
channel attention module (LFCA). At the same time, we evaluated the effectiveness of the
auxiliary branch.
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4.3.1. Effect of Cascade Feature Pyramid module

We first set up a basic experiment (convN + FPN) in which we use ConvNeXt as
the feature extractor and FPN as the decoder. After that, we trained the (convN + CFP)
network and the (convN +C−CFP) network. These three sets of comparative experiments
prove the effectiveness of our proposed feature fusion module. At the same time, it is proven
that CFP can be used as a basic unit, and the network structure obtained by concatenating
CFP has better segmentation ability.

The comparison results of the three experiments can be seen in Table 4. Comparing
the results of the experiment (convN + FPN) and the experiment (convN + CFP), after
using our proposed CFP, the evaluation index mIoU increased by 1.43%, mAcc increased by
1.21%, and aAcc increased by 0.38%. Comparing the results of experiment (convN + CFP)
and experiment (convN + C− CFP), the evaluation index mIoU increased by 0.66%, mAcc
increased by 0.61%, and aAcc increased by 0.12%. This performance benefits from our
redesigned feature fusion path and redesigned feature fusion method. It proved that the
CFP layer could be regarded as a network unit, which can be flexibly combined and used
in series to expand the network capacity and improve the effectiveness of the network.

Table 4. Comparing the FPN structure with our proposed CFP and connected CFP (C-CFP) structures.

Component
mIoU (%) mAcc (%) aAcc (%)

convN FPN CFP C-CFP

X X - - 59.59 70.38 90.72
X - X - 61.02 71.59 91.10
X - - X 61.68 72.20 91.22

“X” represents that we use the corresponding component, “-” represents that we do not use the corresponding
component. The best experiment result is marked in red, and the following best experiment result is marked
in blue.

4.3.2. Effect of the Large Receptive Field Channel Attention Module

We first set up a basic experiment (convN + CFP) in which we use ConvNeXt as the
feature extractor and FPN as the decoder; then we trained the (convN + C− CFP + LFCA)
model to evaluate the effectiveness of our proposed LFCA. Table 5 shows the result of the
two experiments. It shows that after adding the LFCA model, the evaluation index mIoU
increased by 1.36%, the IoU of the facade increased by 2.19%, and the IoU of the shadow
increased by 2.19%. It can be seen that due to the addition of the attention mechanism
we proposed, the classification effect on small objects has been improved. At the same
time, the segmentation effect in other categories has also been improved. The IoU of the
background has increased by 0.36%, and the IoU of the roof has increased by 1.85%. In
the (conv + C− CFP + LFCA) model, the mAcc evaluation index increased by 1.33%, the
Acc of facade increased by 2.54%, the Acc of shadow increased by 0.7%, and the Acc of
roof increased by 2.07%. The LFCA model can distinguish between the importance of
channels, assign greater weight to channels that contain helpful information, and assign
small weights to channels with less content. LFCA helps the network pay more attention to
the information-rich channels, highlight the areas of significant interest, and improve the
network training effect.

To more intuitively understand the role of the LFCA layer, we performed visual
processing of the features before and after the LFCA layer. The features before going
through the LFCA layer are expressed as (β0, β1, β2, β3), and the features after going
through the LFCA layer are expressed as (β

′
0, β

′
1, β

′
2, β

′
3). The visualization result shown in

Figure 11 contains two examples. In order to make the SAR image and the label have a
more intuitive correspondence, we fused the original SAR image and the GT image with
50% each to generate the “image”. “Before” stands for the visualization result before the
LFCA structure processes the feature, and “After” stands for the visualization result after
the LFCA structure processes the feature. The warmer color temperature in the picture
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represents the more significant value in the feature, representing the area the network pays
more attention to. As can be seen in the figure, the feature map after LFCA processing
highlights the area where the target is located. The target and the background areas are
more clearly distinguished.

Table 5. The performance of the network after joining LFCA.

Components IoU per Class (%)
mIoU (%)

Acc per Class (%)
mAcc (%) aAcc (%)

ConvN C-CFP LFCA BG FD RF SD BG FD RF SD

X X - 92.66 45.08 68.85 40.13 61.68 97.21 57.65 80.43 53.52 72.20 91.22
X X X 93.02 47.27 70.70 41.16 63.04 97.21 60.19 82.50 54.22 73.53 91.64

Abbreviations are as follows: BG—background, FD—facade, RF—roof, SD—shadow. “X” represents that we
use the corresponding component, “-” represents that we do not use the corresponding component. The best
experiment result is marked in red, and the following best experiment result is marked in blue.

Before

After

Before

After

Figure 11. Visualization results of features before and after the LFCA module.

4.3.3. Effect of the Auxiliary Branch

The dataset we use has the following characteristics: the three categories of roofs,
facades, and shadows appear simultaneously and are closely connected. Every building
contains all three parts simultaneously. Therefore, we can divide the images into two
categories: building and non-building areas. In some segmentation results, the ground
objects in the non-building areas are identified as buildings. To reduce the occurrence of
such phenomena, we design an auxiliary branch.

The auxiliary branch is to add a segmentation branch to the original network. In our
setting, we put this branch after the features extracted by stage 2, and the network structure
is a classic FCN network. We want to strengthen the supervision of features and optimize
the quality of prediction results by adding an auxiliary branch. The following experiments
confirm that the auxiliary branch can achieve such an effect.

We first processed the original GT image and unified the three categories of roof,
shadow, and facade as one category. The generated mask image only contains two cate-
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gories: building and background. The dataset after processing is shown in Figure 7. Each
row is a set of data, including the original image to be segmented, the ground truth, and
the mask image. The image predicted by the auxiliary branch is compared with the mask
image, then the loss is calculated, and then back-propagation is performed to update the
network parameters. The images predicted in the auxiliary branch and the mask images
are used for loss calculation. As mentioned in Section 3.5, our network contains two loss
functions: AUX loss and SEG loss. In order to select the appropriate loss ratio, we carried
out several experiments and selected three representative groups of results for display. The
experimental results are shown in Table 6, where α comes from Equation (10) and represents
the ratio between the two losses. It can be seen from the data in the table that when we set
the ratio of aux loss and seg loss to 2:1, each index of the network has decreased compared
with the evaluation metrics in Table 5. Specifically, the evaluation index mIoU decreased by
0.61%, mAcc increased by 0.12%, and Acc increased by 0.23%. When we set this ratio to 1:1
and 0.2:1, the network has a small improvement in each index, and when the ratio is 0.2:1,
the score on each index is even higher. Specifically, the evaluation index mIoU increased by
0.30%, and mAcc increased by 0.64%. Therefore, we set the ratio of the loss function as 0.2:1
in LRFFNet.

Table 6. Experiment results obtained by selecting different loss ratios.

α (Ratio) mIoU (%) mAcc (%) aAcc (%)

2 62.43 73.41 91.41
1 63.14 73.77 91.65

0.2 63.34 74.17 91.64
The best experiment result is marked in red, and the following best experiment result is marked in blue.

The experimental results are shown in Figure 12. Each column is a set of data. “Image”
stands for the original input image, “GT” stands for ground truth, “Initia” stands for
the prediction result graph before adding auxiliary branches, and “Impro” stands for the
prediction result graph after adding an auxiliary branch. We marked the parts of the image
that needed special attention with a yellow dotted box. Comparing “Initial” and “Impro”
images, it can be seen from the experimental results that the phenomenon of separate color
blocks outside the mask area is reduced. Due to the use of the mask images, the network
can focus more on segmentation within the building areas and reduce the misclassification
of pixels outside the building areas as buildings. The segmentation results are closer to the
ground truth.

4.4. Analysis of Methods

We compared the proposed method with the SOTA methods on the SARMV3D-BIS
dataset and improved the evaluation metrics of mIoU, aAcc, and mAcc. According to
the results graph, the semantic segmentation results obtained using LRFFNet are closer
to the ground truth in visual perception. Later, in the ablation experiment, we used the
control variable method to perform a validation experiment on each module we proposed,
namely, CFP, LFCA, and the auxiliary branch. The multi-path feature fusion structure and
convolution feature fusion method are adopted in the CFP structure. Grouped convolution
is used in the LFCA structure to extract the channel weight value. By using the large
convolution kernel, different weights are given to the channels to emphasize the differences
between channels. The FCN structure is adopted in the auxiliary branch. It is added to the
network to reduce the occurrence of identifying ground objects in non-building areas as
buildings. The results of ablation experiments show that the various modules we proposed
are very effective for the SAR image semantic segmentation task.
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(1) Image

(2) Image

(3) Image

(1) GT

(2) GT

(3) GT

(1) Initial

(2) Initial

(3) Initial

(1) Impro

(2) Impro

(3) Impro

Figure 12. Comparison of the inference effects of our proposed network before and after adding the
auxiliary branch.

5. Conclusions

In this paper, we propose a new framework for semantic segmentation of the synthetic
aperture radar (SAR) images in building areas named large receptive field feature fusion
network (LRFFNet), which contains four components, namely, the feature extractor, the
cascade feature pyramid module (CFP), the large receptive field channel attention module
(LFCA), and the auxiliary branch. The dataset we use is SARMV3D-BIS. The semantic
segmentation task on SAR images differs from optical images. The boundary information
between objects is not apparent in the SAR images, so it is more challenging to extract
semantic information. Our proposed network can fully fuse the features extracted by the
feature extractor through a multi-path connection structure and enable sufficient informa-
tion exchange between different levels. At the same time, our proposed network can also
distinguish the importance of different channels in each feature level, highlight channels
with more information, and reduce the importance of channels with less information. In
addition, we observed ground objects in non-building areas being identified as buildings
in some segmentation results. Therefore, we design an auxiliary branch in our network
to facilitate the segmentation of our network in the building area through the supervision
of the intermediate layer and improve the score of evaluation metrics. Semantic segmen-
tation on SAR images is still developing, and many aspects can be improved, studied,
and explored. We hope this research can inspire more researchers in this area and deploy
practical applications.
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