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Abstract: To assist in the implementation of a fine 3D terrain reconstruction of the scene in remote
sensing applications, an automatic joint calibration method between light detection and ranging
(LiDAR) and visible light camera based on edge points refinement and virtual mask matching is
proposed in this paper. The proposed method is used to solve the problem of inaccurate edge
estimation of LiDAR with different horizontal angle resolutions and low calibration efficiency. First,
we design a novel calibration target, adding four hollow rectangles for fully automatic locating of the
calibration target and increasing the number of corner points. Second, an edge refinement strategy
based on background point clouds is proposed to estimate the target edge more accurately. Third, a
two-step method of automatically matching between the calibration target in 3D point clouds and
the 2D image is proposed. Through this method, i.e., locating firstly and then fine processing, corner
points can be automatically obtained, which can greatly reduce the manual operation. Finally, a
joint optimization equation is established to optimize the camera’s intrinsic and extrinsic parameters
of LiDAR and camera. According to our experiments, we prove the accuracy and robustness of
the proposed method through projection and data consistency verifications. The accuracy can be
improved by at least 15.0% when testing on the comparable traditional methods. The final results
verify that our method is applicable to LiDAR with large horizontal angle resolutions.

Keywords: LiDAR; visible light camera; edge refinement; virtual mask; automatic calibration

1. Introduction

At present, traditional large-scale digital map technology has been well developed
and applied, such as Google Maps, Baidu Maps, etc. However, the work related to fine
terrain reconstruction in a small scale is relatively limited. In order to obtain the fine 3D
topographic map in a small scale, the simplest way is to use unmanned aerial vehicles
(UAVs) to reconstruct terrain using the tilt photography technology. Tilt photography
technology uses pure 2D image analysis and modeling to restore the 3D structure from
2D information, and its calculation accuracy is directly affected by image quality and
imaging environment. Recently, more and more research has been conducted on the fine 3D
terrain reconstruction technology using UAVs equipped with light detection and ranging
(LiDAR) and visible light cameras. The visible light camera can obtain high-resolution
color information, but it is particularly vulnerable to the influence of external weather,
illumination, and other factors; it also lacks the 3D information of the target. LiDAR can
quickly obtain the 3D information of space objects, but it cannot get the texture, color, and
other information of objects. Therefore, the LiDAR and visible light camera can achieve
excellent complementary effects in performance. This will greatly improve the performance
of existing UAVs 3D terrain reconstruction or low-altitude remote sensing works [1–7].
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However, since the data obtained by the two sensors are based on their respective coordinate
systems, and data fusion requires that the data collected by two sensors should be expressed
in LiDAR or camera coordinate system. It is necessary to determine the transformation
matrix between two coordinate systems through joint calibration, that is, the extrinsic
parameters between LiDAR and the camera together with the intrinsic parameters of
the camera.

Currently, according to the characteristics of different methods, we divide the cali-
bration between the LiDAR and visible light camera into a target-based method and a
target-less method. For details and representative works, refer to Figure 1. The target-based
method is to find the 2D feature points in an image coordinate system and the 3D feature
points in a LiDAR coordinate system with the help of a standard target to establish geomet-
ric constraints and solve the extrinsic parameters of sensors through perspective-n-point
(PNP) or nonlinear optimization. According to the shape of calibration target, it can be
divided into 1D objects, such as line-feature-based target [8–10], 2D objects, such as chess-
board [11–13] or circular holes [14], and 3D objects [15,16], such as spherical targets [17].
Refs. [18,19] detected the corner points in images and point clouds by the intersection
of edge fitting lines, respectively, and solved calibration parameters by a linear equation.
The calibration target they used was a monochrome board. This is mainly due to the fact
that two different colors have different effects on LiDAR ranging, which will affect the
accuracy of plane fitting. Refs. [20–22] introduced nonlinear optimization to improve the
calibration accuracy. Ref. [23] adopted the method of space joint calibration combining
coarse measurement and fine adjustment. The innovation of [24] was to use a known plane
to estimate the 3D corners. Refs. [24,25] used a LiDARTag and intensity information to
locate target, which was similar to the method in [26].
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Figure 1. The representative methods of calibration between the LiDAR and visible light camera.

The target-less method can be divided into mutual-information-based approach [27,28],
motion-based method [29,30], and learning-based technique [31–35]. The mutual-information-
based approach can make full use of environmental information to complete online calibration.
However, the disadvantage is that it needs to be carried out in the natural scene, and if the
scene characteristics cannot meet the expectations, it will lead to considerable deviation of
results. The motion-based method takes the calibration of LiDAR and camera as a hand–
eye calibration problem, which can recover the right transformation by a series of rigid
transformations. This method needs accurate motion information, so the static system is not
applicable. Many learning networks use the convolutional neural network (CNN) to solve
this task. These networks can calibrate the LiDAR–camera system without using calibration
targets, matching information, and motion information, but the accuracy is dependent on the
size of the training data set and the structure of the CNN. In the application, it requires high
texture information of the environment and high computational power, and often needs to
use a graphic processing unit to accelerate data processing.

The target-based method is still the mainstream because of its stability and low com-
putational performance requirements. Therefore, sensors will undergo stable and high-
precision target-based calibration methods to calibrate the extrinsic parameters before
leaving the factory. The existing methods mainly have the following problems. First, the
adaptability of LiDAR with different horizontal angle resolutions (θ) of calibration methods
is not considered. For example, the method based on edge estimation [18,19] had a great
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difference in the effectiveness of LiDAR with θ = 0.1◦ and large θ = 0.4◦. The second is
that the camera intrinsic parameters, such as distortion coefficients, are not considered in
the optimization process. The two-stage method, first calibrating the intrinsic parameters
and then solving the extrinsic parameters, brings a lot of inconveniences to large-scale
commercial applications in terms of efficiency. Third, for the locating of the calibration
target, manual filtering is not conducive to the improvement of the automation level. The
method of using intensity information to locate special marks will have different effects on
LiDAR ranging due to two different color objects.

To solve the adaptability of edge fitting under different θs, we propose an approxi-
mation edge fitting technology based on background point clouds, which can refine the
edge points under different θs by using a known geometric size of the calibration target.
According to the geometric shape of the designed calibration board, a set of corner points
extraction schemes of full-automatic locating and fine processing are designed, which can
greatly reduce the manual operation and do not depend on the intensity information of
LiDAR and special marks. Finally, camera intrinsic parameters are taken into account,
and their initial values are sent to the optimization function, which avoids the inefficiency
caused by the two-stage method when calibrating a large amount of equipment. The main
contributions of this paper are as follows: We design a novel calibration target and propose
a joint automatic calibration method based on edge refinement and virtual mask matching.
An improved edge refinement scheme is introduced to refine the edge points. The maxi-
mum error of the edge estimation of the calibration board in this method does not exceed
5.0 mm, which greatly improves the accuracy of the corner points. The high-precision
corner detection method makes the final calibration accuracy better than state-of-the-art
techniques, especially in scenes with sparse point clouds, such as θ is 0.4◦. An automatic
location method, locating firstly and then fining processing, is proposed to get the corner
points, which do not need any parameters set by users in the calibration process. In the
experiments, we take multi-lines LiDAR as an example, such as 64 lines, and verify the
accuracy and robustness of proposed method.

In the following sections, Section 2 is a brief introduction of the proposed method,
Section 3 is the concrete introduction, Section 4 is the experiment and discussion, and
Section 5 is the conclusion.

2. Proposed Calibration System and Computational Flow Chart

Figure 2a,b show the design of the calibration board. We need to place the calibration
board about 30.0 cm in front of a flat wall to better obtain the points of the background wall
for edge refinement, as shown in Figure 2c. In Section 3.1, we will use Euclidean distance
to cluster all objects. In order to prevent the calibration board and the flat wall from being
clustered into a category, the calibration board needs to keep a certain distance from the
wall, e.g., 30.0 cm is considered in this paper. Actually, other suitable distances can also
be used in practical applications. Holes dug in the calibration board are convenient for
us to use geometric information for locating. Figure 2d is a diagrammatic sketch of this
method, which involves the locating and matching of 3D feature points, the locating and
refinement of 2D feature points, the solution of optimization equations, and the 3D–2D
projection results. If we unify the data to the LiDAR coordinate system, we can get the
point clouds with color, or unify the data to the camera coordinate system, and we can also
get an image with sparse depth information. The symbols and function we will use in the
following sections are given in Table 1.
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Table 1. Symbols and functions definitions.

Symbols and Functions Description

pL
i
(

xL
i , yL

i , zL
i
)

a 3D point in LiDAR coordinate system
pC

i
(

xC
i , yC

i , zC
i
)

a 3D point in camera coordinate system
qi(ui , vi) a 2D point in image coordinate system

P/Q a 3D/2D points set
PCi a point cloud belonging to a same class of objects
Vi a 3D space vector

scale a scale factor about Vi
ss the step size of scale
th the expanded threshold of edges

ringi a scanning line of LiDAR

θ/θs θ is the horizontal angle resolutions, θs is the plural
form of θ

R
(
rx , ry, rz

)
a rotation matrix around the X, Y, and Z axes

T
(
tx , ty, tz

) a translation matrix in the direction of X, Y, and Z
axes

ux/uy the coordinates of the image principal point
fx/ fy the scale factors in image x and y axes
k1, k2 the distortion coefficient of the image

Box a bounding box in 2D plane

Score(PCi)
a matching score between PCi and the preset point
cloud

N(PCi) the number of points in PCi
S(Box(PCi)) the area of Box enclosing PCi

c the number of cells for image segmentation
ε the gray threshold of image

E(q, q′) the error function of q and q′
HuberLoss(E(q, q′)) the loss function of E(q, q′)
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3. Proposed Method
3.1. Automatic Locating Calibration Board

In this section, we describe how to automatically locate the point clouds of the cal-
ibration board (PCboard) and the background wall (PCwall). First, to reduce the influence
of ground points on 3D clustering, we use patchwork [36] to remove the ground. This is a
robust algorithm for removing the ground, which can reduce the ring filtering parameters.
The effect is illustrated in Figure 3a. We can cluster all objects according to Euclidean
distance (Figure 3b), and each object after clustering is called PCi. The normal vector VPCi
of PCi is obtained by plane fitting, shown in Figure 3c. Performing rotation transformation
according to VPCi and VX(1, 0, 0) to transform the PCi to the YOZ plane, which is called
PC′i. We take the geometric centroid of PC′i as the center and generate a box with the same
size as our calibration board in the YOZ plane, as shown in the Figure 3d,e. We calculate
the matching Score between each PC′i and the preset box, and redefine PC′i as the set of
PCin and PCout:

PC′i = PCin ∪ PCout (1)

where PCin is the set of red points in Figure 3d, PCout is the set of black and blue points,
and the Score(PC′i) is:

Score
(

PC′ i
)
= ScoreA× ScoreB× ScoreC (2)

where ScoreA = N(PCin)/N(PCout); ScoreB is the ratio of the short side (w) to the long
side (h) of the Box(PCin), ScoreB = w/h; ScoreC is the ratio of S(Box(PCin)) to the actual
calibration board square, ScoreC=S(Box(PCin))/S(board). Since our calibration board area
is just 1.0 m2, ScoreC = S(Box(PCin)).
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Figure 3. Automatic locating calibration object processing procedure. (a) is the point clouds with
ground, (b) is the result of clustering, (c) is a schematic diagram of 3D to 2D conversion, (d) is an
auxiliary diagram for locating, (e) is the point clouds with the highest matching score, (f) is the point
clouds after removing the connecting rod, (g) is point clouds of calibration board (red points) and
background point clouds (green and blue points).
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Let us take Score as the evaluation function to screen PC′i. Three parts of Score can
filter out the objects with a large or small number of points to ensure that the cluster where
the calibration board is located can be filtered out with a high score. Figure 3e is the one
with the highest Score among many point clouds. In Section 4.2, we will analyze the impact
of ScoreA, ScoreB, and ScoreC on the automatic locating calibration board. It can be found
that the connecting rod of the calibration board is also selected, shown in Figure 3e. The
results of Figure 3c,d are ideal. In fact, due to the Euclidean clustering, the connecting rod
of the calibration board will also be clustered into one category. We need to discard it for
it should not participate in the calculation. Finally, we can delete the ring with a small
number of point clouds by traversing each ring, as shown in the Figure 3f. The obtained
red point cloud is PCboard. We select a 1.0 m × 1.0 m × 1.0 m box in the center of PCboard to
ensure that the PCwall (blue point clouds and green point clouds in Figure 3g) is framed
together. Therefore, the calibration board is required to be placed within 1.0 m in front
of the background wall. So far, we have acquired PCboard and PCwall through automatic
locating, and we can further refine the edge points by the method described in next section.

3.2. Approximation Edge Fitting

This section introduces an approximation edge fitting method, which can better fit
the problems of inaccurate edge estimation caused by θ. As shown in Figure 4a, due to
θ of LiDAR, two adjacent laser beams, one on the target and the other outside the target,
cannot really scan the edge of the object. It can be seen from Figure 4b,c that although the
laser spots of LiDAR have randomness within a certain range, overall, the blue laser spots
with θ = 0.4◦ are far from the real edge. Figure 4d–f show the sparsity of different θs The
distance between the measured value and the real edge is closely related θ and the test
distance, and the larger the θ, the worse the edge estimation of the target. Except the θ,
vertical angle resolution, related to the number of rings of the LiDAR, may also be another
factor. From Figure 4d–f, we can find that under the same number of lines of the LiDAR,
the measurement results under different θs have different density levels of point clouds.
Therefore, in the following sections, we take the LiDAR with 64 lines as an example (details
are listed in Section 4.1) to research the calibration of different θs, while ensuring the same
vertical angle resolution of the LiDAR, paying attention to the effect improvement in the
case of different θs.
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Figure 4. Point clouds distribution map with different θs, (a) is the top view of LiDAR, (b) is point
clouds of three different θs and (c) is a partial diagram (black rectangle) of (b). Red point in (d) is
θ = 0.1◦, green point in (e) is θ = 0.2◦, and blue point in (f) is θ = 0.4◦.
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As shown in the Figure 5a, for the partial schematic diagram of the calibration board
scanned by LiDAR, we use ringi as an example, where the green background edge point
is pb

i

(
xb

i , yb
i , zb

i

)
, the red foreground edge point on the board is p f

i

(
x f

i , y f
i , z f

i

)
, the direction

vector (blue dotted line) between these two points is Vi

(
⇀
x i,

⇀
y i,

⇀
z i

)
, where

⇀
x i = xb

i − x f
i ,

⇀
y i = yb

i − y f
i ,

⇀
z i = zb

i − z f
i . The set of background edge points is Pb, pb

i ∈ Pb; the set of

edge points of the foreground calibration object is P f , p f
i ∈ P f .
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Figure 5. Illustration of edge points extraction. (a) is a partial view of (b), and (c) is a top view. Yellow
points indicate the scanning points of LiDAR, red points indicate the edge points on the board, green
points indicate the points projected to the board plane, and blue points indicate the improved points
by the proposed method. The black dotted line is the scanning line of the LiDAR, the red line is fitted
by the red points, and the blue line is fitted by the blue points.

Due to θ, the red line l f fitted by P f is still a certain distance from the actual black
edge line, so the quadrilateral fitted with these edge points is often smaller than the actual
size, and with the increase of test distance or θ, the difference between the quadrilateral
and the real size is larger (the verification is shown in Section 4.2). It is necessary to expand
P f to approach the actual edge. First, we should get the points on the calibration board
(PCboard) and background wall (PCwall), which have been achieved in Section 3.1. Then, the
edge points on the background, i.e., yellow points in Figure 5c, should be projected to the
calibration board plane according to the direction of the laser beam of LiDAR. We match the
foreground point (red point in Figure 5b) and background point (green point in Figure 5b)
of each scanning ringi, which can be easily realized by the sorting algorithm. At this time,
we can obtain the background edge point Pb

i and calibration board edge point P f
i . We

choose Vi, the direction of the blue arrow in Figure 5a,c as the outward expansion direction.
The outward length of the expansion is the distance between two points multiplied by
a scale coefficient, scale ∈ (0 ∼ 0.5), and the blue middle edge point pm

i
(
xm

i , ym
i , zm

i
)

in
Figure 5c can be obtained:

pm
i = p f

i + scale ∗Vi (3)

where pm
i must be located between p f

i and pb
i . By traversing all the rings, we can obtain the

remaining edge point set Pm after approximation. We use Pm as the new edge points to fit
the edge line and obtain the blue edge line l1, shown in Figure 5b. Similarly, the edge line
l2, l3, and l4 can also be computed.

As for the selection of scale, we use the actual size of the calibration board (Figure 2b)
for reference. Taking scale = 0.1 as the initial value. The newly expanded edge points are
used to fit a rectangle by random sample consensus (RANSAC). The termination condition
of RANSAC fitting is the difference between the calculated rectangle size and the actual
physical size. If this difference is less than the th, the outward expansion can be stopped,
and the edge of the current outward expansion should be saved. If the difference is larger
than th, it indicates that there is still a gap between the measured result and the actual size,
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and it needs to be further expanded. That is, scale needs to continue to increase with a
step size (ss):

scale = scale + ss (4)

where scale is not recommended to exceed 0.5, because when scale is greater than 0.5, pm
i is

closer to the green point in Figure 5. If scale is less than 0.5, pm
i is closer to the red point

in Figure 5. We prefer the edge point to be the point on the calibration board rather than
outside. The scale is expanded to 0.4 in ss of 0.01 in the later experiment.

In the subsequent experiments of this paper, th = 0.005 m is selected as the experimental
data. The smaller the th, the higher the estimation of the edge point accuracy, but the longer
the detection time. By repeating the above process, a rectangular edge point cloud with an
error of no more than 5 mm from the actual physical size can be measured (we will verify
this in Section 4.2).

3.3. 3D Virtual Mask Matching

This section introduces a scheme for obtaining 3D feature points of the calibration
board by using virtual mask matching. The edge point clouds, PCedge and PCboard, are
combined into a new point clouds (PCcalib), PCcalib = PCedge∪PCboard. We generate a virtual
mask PCmask with N(PCmask) random points in YOZ plane with the same size as our board,
shown in Figure 6, set N(PCmask) = 104. We use the iterative closest point (ICP) method
to match the PCmask with the PCcalib, and the matching result is a rigid transformation
matrix H. The feature points P

(
pL

1 , pL
2 , . . . pL

20
)

we need can be calculated by P′ ∗ H, where
P′
(

p′L1 , p′L2 , . . . p′L20
)

are feature points set on the PCmask.
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Figure 6. Schematic diagram of virtual mask matching. Red points represent the 3D feature points
we need, green points represent the refined edge points, and blue points are generated for matching.

3.4. 2D Corner Points Detected in Image

We design an automatic matching method according to the characteristics of our
calibration board, which can automatically find corners in images and finely process
corners. It is mainly divided into two steps: corner points locating and corner points
refinement. First, we use a region growing algorithm (RGA) to locate 2D feature points
roughly. We divide the input image into c × c cells, and use the center point of each cell as
the seed point of RGA, as shown in Figure 7a. In the next experiment, we choose c = 10,
that is, the original image is divided into 10 equal parts horizontally and vertically, and
100 seed points are obtained. Since our calibration board is pure white, we only grow
the seed points whose gray value is greater than ε, and set ε to 127, half of the maximum
grayscale value, which can quickly filter out invalid seed points. Then, rectangle detection
is carried out for the RGA results of each seed point, shown in Figure 7b. It is obvious
that multiple rectangles are detected at the same location, shown in Figure 7c, which is
not conducive to the selection of corner points. Finally, we perform the k-mean clustering
method on all rectangles. The clustering index is the distance between the center points of
each rectangular box. The k-value of clustering is five, which exactly corresponds to five
rectangles to be detected. The clustering result is five clusters of rectangular boxes, and
each cluster has at least one rectangle. The mean value of corner points of each cluster of
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rectangular boxes is taken as the corner points for roughly locating position, as red points
shown in Figure 7d.
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Figure 7. Automatic extraction process of 2D feature points. (a) shows the original image and seed
points in each of cells, (b) presents the rectangle detected after the RGA by one seed point, (c) is the
local graph of (b), it can be clearly seen that multiple rectangles are detected at the same location,
green points in (d) illustrate refined corner points, red points illustrate roughly detected corner points,
(e,f) are the partial diagram of (d), (g) is the detected and sorted corner points, the points in the
yellow ellipse are used to fit l′q2

q1 , and (h) shows the final corner points colored in the original image.

After obtaining the corner points of roughly locating, it can be clearly found that the
locating position is not accurate (red points in Figure 7d–f). This is because the rectangle
detection has poor robustness and accuracy. It is necessary to further refine the corner
points. Taking q1 and q2, the green points in Figure 7g as an example, we connect q1 and q2
to obtain a straight line lq2

q1 , count all the points close to lq2
q1 , which are circled by a yellow

ellipse in Figure 7g. We use these points to refit the line and get the refined l′q2
q1 . We solve

the connecting lines between the other points in the same way and estimate the refined
corner points by the intersection of straight lines. As described in the green dots, it can be
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found that the green points after the fine processing are more accurate than the red points
detected before. In Figure 7g, for convenience of representation, we visualize the result
in pixels. However, in fact, the coordinates of these corner points are sub-pixel. Finally,
according to the order of feature points in Figure 7h, each refined corner point is sorted to
facilitate pairing with 3D feature points.

3.5. Optimization Equation Modelling

In this section, an optimization equation is established to find the best intrinsic pa-
rameters of the camera and solve the extrinsic parameters of LiDAR and camera. The
optimization process is intended to find the best LiDAR–camera extrinsic parameters and
camera intrinsic parameters to minimize the re-projection error between the 3D–2D feature
points. Through the methods of Sections 3.1–3.4, we can obtain 3D and 2D feature points
after refinement processing. We use Pi

(
pL

i,1, pL
i,2, . . . pL

i,20

)
and Qi(qi,1, qi,2, . . . qi,20) to repre-

sent 3D/2D feature points set measured at the i th position, i ∈ (1, n), n is the number of
test positions. The projection process from 3D points to 2D points needs to go through a
rigid transformation model, pinhole imaging model, and distortion model. The detailed
formulas are as follows: 

xC

yC

zC

1

 = [R∗|T∗]


xL

yL

zL

1

 (5)

qu

qv

1

 =

 fx 0 ux
0 fy vy
0 0 1

x′C
y′C
1

 (6)

where x′C = xC/zC, y′C = yC/zC, R∗ represents the best rotation matrix, T∗ represents
the best translation matrix, and K∗ =

{
fx, fy, ux, vy

}
represents the best camera intrinsic,

qu and qv are the coordinates of a 2D point in the image. Now we consider the distortion
model of the camera, and we use D = {k1, k2} to represent it. The final imaging of the
camera is as follows:

r2 = x′C ∗ x′C + y′C ∗ y′C (7)

x
′′C = x′C

(
1 + k1 ∗ r2 + k2 ∗ r4)

y
′′C = y′C

(
1 + k1 ∗ r2 + k2 ∗ r4) (8)

qu

qv

1

 =

 fx 0 ux
0 fy vy
0 0 1

x
′′C

y
′′C

1

 (9)

According to Equations (5)–(9), we establish the following optimization equations to
solve R∗, T∗, K∗, and the best distortion parameter D∗ :

[R∗, T∗, K∗, D∗] = arg min
R,T,K,D

n

∑
i=1

20

∑
j=1

HuberLoss{Ei,j[qi,j, KD
(

RpL
i,j + T

)
]} (10)

where the form of Ei,j(·) is:

Ei,j
(
q, q′

)
=

√
(qu − q′u)2 + (qv − q′v)2 (11)

and HuberLoss(·) is:

HuberLoss(δ) =
{

δ δ ≤ 1
2
√

δ− 1 δ > 1
(12)

Therefore, our optimization problem can be transformed into the optimization of
f(Q,P). The initial value of the camera’s intrinsic parameters is given in advance, which
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can come from the coarse calibration result of the camera, or the initial value given by
the camera manufacturer. We use ceres optimizer (http://ceres-solver.org/, accessed on 1
December 2022) to optimize the intrinsic and extrinsic parameters. In the optimization, we
set the maximum iteration as 500 and stopping tolerance as 10−10.

f (Q, P) =
n

∑
Pi∈P
Qi∈Q
i=1

20

∑
pL

i,j∈Pi
qi,j∈Qi

j=1

HuberLoss{Ei,j[qi,j, KD
(

RpL
i,j + T

)
]} (13)

4. Experiments and Discussions
4.1. Proposed Experiment System

We setup the system with a LeiShen LiDAR with 64 lines and DaHeng camera with
resolution of 1920 × 1200, shown in Figure 8a, and the field of view (FOV) of these
two sensors is shown in Figure 8b. The size of the calibration target has been shown in
Figure 2b. The maximum value of LiDAR’s detection range is 100.0 m. The wavelength is
905 nm. The rotation speeds of our LiDAR can be set to 300.0 rpm (i.e., 5.0 Hz), 600.0 rpm
(i.e., 10.0 Hz), and 1200.0 rpm (i.e., 20.0 Hz), and the corresponding θ are 0.1◦, 0.2◦, and
0.4◦, respectively. We simulate the LiDAR with different θs by switching the rotation speed
of the LiDAR motor. We mainly analyze the influence of θ on calibration, so other variables
are fixed. In the controlled experiments of different methods in this section, only the θ
is different.
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FOV of two sensors.

4.2. Experiments

• Experiment 1: 3D feature points detected

This section verifies the accuracy of approximation edge points. We take the measure-
ment results of the size of the calibration board as the evaluation index and analyze the
evaluation index by the original edge points and the approximated edge points. Table 2
displays the measurement results under three θs when the test distance is 7.0, 10.0, and
12.0 m. Without any processing, due to the influence of θ, the length of the quadrilateral was
lower than the actual value (1000.0 mm × 1000.0 mm), which also means that the selection
of edge points was not accurate. The size of the bounding box (BB) will be much larger than
the actual size or much smaller, which indicates the instability of initial edge points. After
the approximation processing, when scale = 0.4, the measurement error reached within
5.0 mm. Compared with the results of BB, our method is more accurate for the estimation
of edge points. The result can be seen that our approximation processing can make the
measurement result reach the true size. In Figure 9, we can find that the edge estimation
results at different θs are preferable to the initial values. In the following experiments, we

http://ceres-solver.org/
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will apply this approximation refining strategy to [18,19,22]. The final calibration results
are also greatly improved.

Table 2. Calibration board size measurement results.

Distance(m) θ(◦) BB Scale = 0.1 Scale = 0.2 Scale = 0.4

w (mm) h (mm) w (mm) h (mm) w (mm) h (mm) w (mm) h (mm)

7.0
0.1 1012.34 996.22 984.11 981.82 997.90 991.14 998.51 997.95
0.2 994.32 1004.66 979.91 987.12 993.41 997.94 997.20 996.22
0.4 1003.72 993.731 974.41 988.20 994.90 997.01 997.81 999.17

10.0
0.1 1003.50 967.51 981.64 970.10 992.73 995.74 998.20 999.46
0.2 984.19 1004.14 970.04 983.17 990.73 997.76 997.21 998.03
0.4 992.16 1009.49 981.64 970.10 992.73 995.74 994.20 996.76

12.0
0.1 977.75 979.99 960.40 971.44 982.07 990.14 998.00 994.41
0.2 978.03 979.76 954.70 988.00 991.43 996.01 996.24 996.90
0.4 975.39 969.98 954.55 965.54 981.14 989.33 997.29 996.71

The w and h, respectively, represent the lengths of two sides of a rectangle fitted with the currently refined edge
points; BB represents the 2D bounding box of this point clouds.
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Figure 9. Refined edge point visualization results. Red points are the points scanned by LiDAR;
green points are refined edge points. The blue lines are the boundary lines as large as the calibration
object. (a) is the display of refined points when θ = 0.1◦, (b) is the result when θ = 0.2◦, and (c) is the
result when θ = 0.4◦.

• Experiment 2: Automatic locating results

The experiment in this section is to verify the effect of automatic locating of the
calibration board. After clustering in one frame data, nine objects, shown in Figure 10
and Table 3, can be obtained. It can be found that objects with many points, shown in
Figure 10a,b, will lead to the reduction of overall final Score due to the reduction of ScoreA.
For objects with a small number of point clouds, the final Score will reduce due to the
decrease of ScoreB and ScoreC, shown in Figure 10d–i. Only our target board, whose ScoreA,
ScoreB, and ScoreC all maintain the value close to 1.0, has the highest final Score. It can be
said that our locating index is not affected by the number and shape of point clouds. For this
reason, in Euclidean clustering, there is no need to specify the parameter of the minimum
number of cluster point clouds. In this experiment, we set the minimum number of clusters
as 30. Therefore, our method does not require the user to set additional parameters. In
addition, the distance parameter of clustering needs to be specified additionally. The
distance between LiDAR and the calibration board is often placed between 5.0–10.0 m.
Within this distance range, the distance between adjacent points is not sensitive to the
change of distance between the calibration board and the LiDAR origin point. We can set it
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as 30.0 cm, which requires that our calibration board cannot be interfered by other objects
within 30.0 cm around during the calibration process.
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Table 3. Matching score of different objects.

θ(◦) Object N ScoreA ScoreB ScoreC Score IsTrue

0.1

Figure 10a 34,884 0.031361 0.997999 0.996798 0.031198 False
Figure 10b 4180 0.136842 0.992114 0.987158 0.134019 False
Figure 10c 1116 0.870968 0.994576 0.982246 0.850865 True
Figure 10d 312 0.282051 0.134227 0.250382 0.009479 False
Figure 10e 283 0.745583 0.461738 0.302227 0.104046 False
Figure 10f 263 0.365019 0.279073 0.349486 0.035601 False
Figure 10g 243 0.786008 0.400130 0.255705 0.080421 False
Figure 10h 202 0.876238 0.338324 0.215452 0.063871 False
Figure 10i 201 0.671642 0.323524 0.214348 0.046576 False

0.2

No. 1 9514 0.04225 0.99512 0.98902 0.04158 False
No. 2 7917 0.04724 0.99461 0.99401 0.04670 False
No. 3 2004 0.12974 0.99707 0.98869 0.12789 False
No. 4 555 0.81441 0.98390 0.94908 0.76051 True
No. 5 156 0.30769 0.17733 0.18889 0.01030 False
No. 6 142 0.76056 0.46460 0.30043 0.10616 False
No. 7 132 0.36363 0.29602 0.31777 0.03420 False
No. 8 106 0.94340 0.39433 0.36821 0.13698 False
No. 9 101 0.66336 0.34315 0.21464 0.04886 False

0.4

No. 10 3887 0.02727 0.96699 0.96381 0.02541 False
No. 11 2276 0.06678 0.48287 0.80706 0.02602 False
No. 12 1689 0.13025 0.99809 0.99416 0.12924 False
No. 13 529 0.24952 0.99838 0.99115 0.24692 False
No. 14 447 0.30648 0.98646 0.97205 0.29389 False
No. 15 318 0.24842 0.52587 0.65521 0.08559 False
No. 16 279 0.87813 0.97943 0.95880 0.82464 True
No. 17 49 0.91837 0.72605 0.19707 0.13140 False
No. 18 48 0.33333 0.32933 0.30258 0.03321 False

The Nos. 1–18 represent different objects after Euclidean clustering and N indicates the number of points belonging
to one point cloud; the bold data indicate the optimal value in the current column; the item “IsTrue” indicates
whether it is the calibration board.
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• Experiment 3: Re-projection error analyses

This section is the evaluation of calibration accuracy. We compare the proposed
method with other comparable methods. For each method, we select at least 100 pairs of
feature points for a re-projection error test. Figure 11a–r are the error distribution diagrams
of three methods. We can show the error distribution of different methods more clearly
in the form of error circles. Figure 12a–o show the experimental results of different frame
numbers. Table 4 is the qualitative and quantitative analysis comparing the results.

After testing a large number of feature points, our proposed method has a maximum
error of no more than 2.0 pixels at each angle resolution, shown in Figure 11a–c. The method
of [18] used half of the average distance between adjacent scanning points, as a new position
of an edge point was greatly affected by θ. It can also show up from the error circles of
Figure 11d–f, which is not suitable for using in LiDAR with large θ. It can be observed in the
re-projection error analysis that the projection error is about five times of ours in Table 4. On
the one hand, it is related to the poor estimation of edge points, and on the other hand, it is
related to the linear equation solution without considering the camera distortion. We apply
the approximation edge point fitting method to solve corner points and solve the calibration
parameters with the same linear equation. Finally, we can find that the re-projection error
is significantly reduced, shown in Table 4. Ref. [22] used a two-stage calibration method,
and the deviation of camera intrinsic parameter calibration affected the final calibration
effect. In addition, the feature point pairs of [22] are manually selected, which is extremely
inconvenient for large-scale applications. Ref. [19] obtained the point clouds at different
positions by means of distance statistical filtering, which to a certain extent solved the
error caused by LiDAR in ranging to the calibration system. However, the amount of data
processed is too heavy (300 frames at least). Compared with the method that we only use
one frame of data, our method is obviously better. Similarly, we use our edge refinement
method to replace the steps of extracting corner points in [19,22], and conduct experiments
on the re-projection error of corner points. It can be found in Table 4 that the accuracy had
been improved. Ref. [22] ignored the influence of θ on edge estimation, whilst Ref. [19] only
considered the accuracy of edge estimation from one side. Our method considers four sides
of the calibration board at the same time, and takes the actual size of the four sides as the
reference index for fine processing, which has a higher accuracy. Through the comparison
experiment with [18,19,22], we can find that improving the accuracy of corner points can
effectively improve the accuracy of calibration. The edge refinement method proposed in
this paper is helpful to improve the accuracy of corner points. The work of [20] applied
two chessboards and one auxiliary calibration object to calibrate the extrinsic parameters of
the camera and LiDAR system, which was not convenient. Ref. [24] had high accuracy, and
the 3D feature points obtained were the same as the actual physical size. However, when
applied to LiDAR with large θ, it is not as stable as our method. This is because when θ is
large, the distance between the edge point of the calibration board and the real edge is often
large, which will affect the matching accuracy. Finally, we make a qualitative evaluation of
various methods in Table 4. We can clearly find from Figure 11a–c that, using our method,
the re-projection error will not change significantly with the increase of θ, and the overall
error remains within 2.0 pixels (red circles). In general, our method is superior to other
methods in stability and automation level.

Figure 12a–o analyze the re-projection results under different numbers of frames. It
is obvious that other methods need at least 3–5 frames of data to converge, and with the
increase of θ, the error of final convergence will also increase. The proposed method has a
low re-projection error in the first frame, and with the increase of the number of frames, the
error change is not significant. By increasing the position of the calibration board, more
data can be obtained. We use 2–10 positions to carry out the calibration experiment, shown
in Table 5. It can be clearly found that with the increase of data volume, the average value
and variance of re-projection error are reduced, which also shows the robustness of the
proposed method. Our calibration board can add 20 more pairs of feature points without
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adding a position, which is larger than the data volume of other methods, and the results
are more convincing.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 27 
 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 11. Cont.



Remote Sens. 2022, 14, 6385 16 of 25Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 27 
 

 

   
(j) (k) (l) 

   
(m) (n) (o) 

   
(p) (q) (r) 

Figure 11. Error circle of different methods, the 𝑢𝑒𝑟𝑟𝑜𝑟  𝑎𝑛𝑑 𝑣𝑒𝑟𝑟𝑜𝑟  are projection errors in the hori-

zontal and vertical directions, respectively. (a–c) are proposed methods, respectively, correspond-

ing to 𝜃 = 0.1, 0.2, and 0.4; we select one frame data for each position, (d–f) are methods in [18], 

respectively, corresponding to 𝜃 = 0.1, 0.2, and 0.4; (g–i) are the methods in [22], respectively, cor-

responding to 𝜃 = 0.1, 0.2, and 0.4, (j–l) are the methods in [19], respectively, corresponding to 𝜃 = 

0.1, 0.2, and 0.4, (m–o) are the methods in [20], respectively, corresponding to 𝜃 = 0.1, 0.2, and 0.4, 

and (p–r) are the methods in [24], respectively, corresponding to 𝜃 = 0.1, 0.2, and 0.4. 

Figure 11. Error circle of different methods, the uerror and verror are projection errors in the horizontal
and vertical directions, respectively. (a–c) are proposed methods, respectively, corresponding to
θ = 0.1, 0.2, and 0.4; we select one frame data for each position, (d–f) are methods in [18], respectively,
corresponding to θ = 0.1, 0.2, and 0.4; (g–i) are the methods in [22], respectively, corresponding to
θ = 0.1, 0.2, and 0.4, (j–l) are the methods in [19], respectively, corresponding to θ = 0.1, 0.2, and 0.4,
(m–o) are the methods in [20], respectively, corresponding to θ = 0.1, 0.2, and 0.4, and (p–r) are the
methods in [24], respectively, corresponding to θ = 0.1, 0.2, and 0.4.
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Figure 12. Re-projection error of different numbers of frames. The symbols and vertical lines represent
the mean and 3σ range of re-projection errors calculated by different methods. (a–c) are the results
compared with [18], (d–f) are compared with [22], (g–i) are compared with [19], (j–l) are compared
with [20], (m–o) are compared with [24].

Table 4. Calibration results of different methods.

Re-Projection Result

Method θ
(◦)

Error
(pixel)

Improved
(pixel)

Gain
(%)

Intrinsic
Parameters

Extrinsic
Parameters Stability Automation

Level

Proposed
method

0.1 0.9350 - - √ √
High High0.2 1.0942 - -

0.4 1.1992 - -

[18]
0.1 2.7422 2.2021 +19.7 √ √

Low Low0.2 3.2414 2.4074 +25.7
0.4 5.9693 3.0073 +49.6

[22]
0.1 2.1751 1.0416 +52.1

×
√

Middle Middle0.2 2.9751 2.0465 +31.2
0.4 4.8978 3.3172 +32.3

[19]
0.1 2.2684 1.6406 +27.7 √ √

Middle Low0.2 2.6452 1.9234 +27.3
0.4 4.4114 3.7310 +15.4

[20]
0.1 1.3317 - -

×
√

Middle Low0.2 1.3982 - -
0.4 3.1492 - -

[24]
0.1 0.7433 - -

×
√

Middle High0.2 2.4157 - -
0.4 3.5512 - -

Table 5. Mean and standard deviation of re-projection errors for 2–10 groups of images and
point clouds.

θ(◦) NP 2 3 4 5 6 7 8 9 10

0.1
Mean 1.535 1.469 1.426 1.301 1.283 1.274 1.272 1.249 1.21

Std 0.696 0.703 0.549 0.658 0.565 0.529 0.547 0.492 0.476

0.2
Mean 2.109 1.945 1.637 1.470 1.457 1.408 1.324 1.303 1.256

Std 1.007 0.682 0.740 0.623 0.697 0.644 0.737 0.624 0.552

0.4
Mean 2.301 1.858 1.750 1.745 1.620 1.453 1.388 1.311 1.28

Std 1.372 0.720 0.712 0.630 0.720 0.802 0.790 0.755 0.586

NP represents number of test positions; Mean is the average error; and Std means the standard deviation.

• Experiment 4: Parameter consistency check

The calibration of LiDAR and camera is a no ground true problem, so the measurement
means of calibration effect is not only the re-projection error, but also the data consistency.
We collect data from a total of 100 positions, randomly select data from 10 positions for
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calibration experiments, randomly select 100 times, and record the intrinsic parameters
{ fx, fy, ux, vy, k1, k2} of camera and extrinsic parameters {R

{
rx, ry, rz

}
, T
{

tx, ty, tz
}

}. The
mean and Std are shown in the following Table 6; the change of intrinsic parameters is
less than 1.0%, the change of rotation matrix is about 0.1◦, and the change of translation
matrix is about 4.0 mm, which indicates that the calibration parameters of our method
are consistent.

Table 6. Mean and Std of optimization parameters.

θ(◦) fx fy ux(pixel) vy(pixel) k1 k2 rx(◦) ry(◦) rz(◦) tx(cm) ty(cm) tz(cm)

0.1
Mean 2825.75 2817.57 969.026 597.901 −0.220 0.187 89.767 −89.738 −0.321 −6.0651 9.6231 −1.4969
Std 1.947 2.382 6.471 2.873 0.001 0.010 0.042 0.032 0.103 0.5986 0.3348 0.1995

0.2
Mean 2826.23 2818.55 970.405 595.841 −0.230 0.161 90.001 −89.775 −0.582 −6.0065 10.0176 −1.5216
Std 2.827 3.463 5.824 3.604 0.009 0.000 0.069 0.035 0.111 0.4551 0.3172 0.4093

0.4
Mean 2826.85 2818.18 966.150 602.771 −0.236 0.201 90.106 −89.690 −0.624 −5.9884 8.4497 −1.7355
Std 3.146 3.955 9.0291 5.042 0.007 0.001 0.044 0.042 0.171 0.4098 0.4856 0.4395

• Experiment 5: Qualitative analysis of calibration accuracy

The following experiment is a qualitative measurement of calibration effect. In order
to verify the detection effect of UAVs under low-altitude remote sensing, we select different
reference objects 3.0–100.0 m away from the LiDAR for qualitative evaluation. We project
the point clouds onto the image plane and color them according to the distance. Figure 13
is the projection of the indoor environment and Figures 14–16 are the projection of the
outdoor environment. The farthest projection distance in Figures 14–16 is about 100.0 m,
which is enough to explain that our method has not offset in this distance. The buildings
and vehicles can also show that the proposed method can add accurate depth information
for nearby objects. The 3D reconstruction effect of Figure 17 also shows that the proposed
calibration method is helpful to the advanced application of the LiDAR–camera system.

Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 27 
 

 

 

• Experiment 4: Parameter consistency check 

The calibration of LiDAR and camera is a no ground true problem, so the measure-

ment means of calibration effect is not only the re-projection error, but also the data con-

sistency. We collect data from a total of 100 positions, randomly select data from 10 posi-

tions for calibration experiments, randomly select 100 times, and record the intrinsic pa-

rameters {𝑓𝑥, 𝑓𝑦, 𝑢𝑥, 𝑣𝑦, 𝑘1, 𝑘2} of camera and extrinsic parameters {𝑅{𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧}, 𝑇{𝑡𝑥, 𝑡𝑦 , 𝑡𝑧}}. 

The mean and Std are shown in the following Table 6; the change of intrinsic parameters 

is less than 1.0%, the change of rotation matrix is about 0.1°, and the change of translation 

matrix is about 4.0 mm, which indicates that the calibration parameters of our method are 

consistent. 

Table 6. Mean and Std of optimization parameters. 

𝜽(°)  𝒇𝒙 𝒇𝒚 𝒖𝒙(pixel) 𝒗𝒚(pixel) 𝒌𝟏 𝒌𝟐 𝒓𝒙(°) 𝒓𝒚(°) 𝒓𝒛(°) 𝒕𝒙(cm) 𝒕𝒚(cm) 𝒕𝒛(cm) 

0.1 
Mean 2825.75  2817.57 969.026  597.901  −0.220  0.187  89.767  −89.738  −0.321  −6.0651  9.6231  −1.4969  

Std 1.947  2.382  6.471  2.873  0.001  0.010  0.042  0.032  0.103  0.5986  0.3348  0.1995  

0.2 
Mean 2826.23 2818.55  970.405  595.841  −0.230  0.161  90.001  −89.775  −0.582  −6.0065  10.0176  −1.5216  

Std 2.827  3.463  5.824  3.604  0.009  0.000  0.069  0.035  0.111  0.4551  0.3172  0.4093  

0.4 
Mean 2826.85  2818.18 966.150  602.771  −0.236  0.201  90.106  −89.690  −0.624  −5.9884  8.4497  −1.7355  

Std 3.146  3.955  9.0291  5.042  0.007  0.001  0.044  0.042  0.171  0.4098  0.4856  0.4395  

• Experiment 5: Qualitative analysis of calibration accuracy 

The following experiment is a qualitative measurement of calibration effect. In order 

to verify the detection effect of UAVs under low-altitude remote sensing, we select differ-

ent reference objects 3.0 m–100.0 m away from the LiDAR for qualitative evaluation. We 

project the point clouds onto the image plane and color them according to the distance. 

Figure 13 is the projection of the indoor environment and Figures 14–16 are the projection 

of the outdoor environment. The farthest projection distance in Figures 14–16 is about 

100.0 m, which is enough to explain that our method has not offset in this distance. The 

buildings and vehicles can also show that the proposed method can add accurate depth 

information for nearby objects. The 3D reconstruction effect of Figure 17 also shows that 

the proposed calibration method is helpful to the advanced application of the LiDAR–

camera system. 

 

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 27 
 

 

 

Figure 13. Results of indoor projection effect. (a) is projection in initial parameters, that is, calibration 

is not performed, (b–d) are the projection of 𝜃 which is equal to 0.1, 0.2, and 0.4, respectively. The 

contents in yellow rectangles can provide detailed reference. 

 

Figure 14. Results of outdoor scene test, 𝜃 = 0.1°. The contents in yellow rectangles in (a-d) are 

projections at different distances. 

Figure 13. Results of indoor projection effect. (a) is projection in initial parameters, that is, calibration
is not performed, (b–d) are the projection of θ which is equal to 0.1, 0.2, and 0.4, respectively. The
contents in yellow rectangles can provide detailed reference.
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Figure 14. Results of outdoor scene test, θ = 0.1◦. The contents in yellow rectangles in (a–d) are
projections at different distances.
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Figure 15. Results of outdoor scene test, θ = 0.2◦. The contents in yellow rectangles in (a–d) are
projections at different distances.
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Figure 16. Results of outdoor scene test, θ = 0.4◦. The contents in yellow rectangles in (a–d) are
projections at different distances.
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Figure 17. Results of 3D reconstruction effect. The test distances of (a–c) are 3.0 m, 5.0 m, and 7.0 m,
respectively, (d) is the test result of outdoor scene. The red point is the point in the non-common FOV
of the LiDAR and camera. The contents in yellow rectangles can provide detailed reference.

4.3. Discussions

Low-altitude UAVs have been used in many remote sensing fields [37] in recent years
such as urban management, crop monitoring, and industrial patrol inspection, etc. It is
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essential to apply multi-sensor fusion technology to low-altitude UAVs. Calibration is
the basic requirement for multi-sensor platforms where data need to be represented in a
common coordinate system for the purpose of analysis and information fusion [38]. The
target-based calibration method has become the first choice for the calibration methods
because of its stability and high accuracy. This paper designs a special calibration target
and its corresponding calibration algorithm, which can achieve high precision and great
calibration efficiency. While considering the calibration accuracy, we also consider the im-
plementation efficiency of this method. The fully automatic data processing flow and joint
optimization scheme make this method suitable for large-scale commercial applications.

At present, there are few methods to consider the effect of LiDAR with different θs on
calibration. Experiment 3 in this paper shows that LiDAR with different θs has significant
differences in calibration. The method of fine edge processing based on background
point clouds proposed in this method is to solve the problem of insufficient calibration
accuracy caused by large θ. After using the proposed method, the calibration accuracy and
robustness have been improved to some extent, as analyzed in Table 4, and the demand for
data volume has also been decreased, as shown in Figure 12 and Table 5. In addition, the
method in this paper focuses on large-scale application, so every step of the design is to
minimize the artificial setting of parameters, so as to improve the implementation efficiency
of calibration. The average processing time of this method for one frame of data, including
point cloud and image, is 7.5 s. It has higher time complexity than the traditional method,
which is one aspect that can be optimized in the future. However, we are more focused on
the improvement of calibration accuracy and automation level. Higher accuracy and less
human participation are our final goals. In terms of optimizing functions, we need to give
the initial extrinsic parameters in advance, which can be easily given by PnP [39,40].

Here, we discuss the advantages of the calibration board we designed. We have
designed a special hollow monochromatic plane plate, which has the following advantages:
(1) the monochromatic flat plate avoids the interference of different colors when the Li-
DAR is ranging, which is conducive to plane fitting and plane normal vector extraction.
(2) The hollow calibration object is convenient for automatically locating its position in the
point clouds by using geometric information. As for these two advantages, we conduct
the following comparative experiments. We paste a small piece of checkerboard on the
calibration object and find that the depth discontinuity with other positions appears at
the place where the LiDAR scans, shown in Figure 18. This phenomenon is related to the
intensity information performance of LiDAR itself. When we use the LiDAR to detect the
calibration object, the chessboard in black and white areas will make the ranging depth
uneven [18,19], while the monochromatic calibration board can reflect a flat plane. Our
method does not depend on the intensity information [41] or additional sensors [42], and
only uses geometric information to locate the calibration board; thus, it can be used with
any types of LiDAR device and has better universality.
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The advantages of the method described in this paper are as follows: (1) The refined
edge points enable the LiDAR with large horizontal angle resolution (θ = 0.4) to complete
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calibration with high accuracy; (2) The two-step corner points detection method designed
by us can realize fully automatic data processing, greatly reduce manual participation, and
does not need parameters to be manually set in the calibration process; (3) Our method does
not require a high amount of calibration data. For 5–10 positions, one frame of data per
position can complete the calibration with high accuracy. This is also related to the results
of our 2D and 3D feature point refinement processing because the feature points with
high accuracy can reduce the amount of data involved in optimization. The experimental
scheme in this paper also has some shortcomings. For example, our research is based on
LiDAR with 64 lines, and has not been verified on the LiDAR with fewer lines (32 lines
or less) [43,44], and the vertical angle resolution needs to be further considered, which
requires further research and improvements. In future work, we will apply the results of
joint calibration of LiDAR and visible light camera to the application of low-altitude UAVs
remote sensing, ground object recognition, depth information completion, and 3D terrain
reconstruction, etc. Our application scenario is to use UAV with a visible light camera and
LiDAR to conduct high-precision 3D mapping in a small range. The joint calibration of
these sensors is the pre-work of this application. In this paper, this calibration method
is completed in an indoor environment, as shown in Figure 2a. As for the verification
of an outdoor environment, in order to show the projection effect at different distances,
we chose the scene with very rich features, the nearest distance is 3.0 m, and the farthest
distance is 100.0 m, as shown in Figures 14–16. The final projection effect shows that the
projection of our method at different distances is accurate. As for the limitations of our
method on the application level, the efficiency of the algorithm is lower than that of a pure
image algorithm, which is also related to the increase of 3D data. In addition, we pay more
attention to the ground object detection within 100.0 m of low-altitude, and do not consider
the objects with a distance greater than 100.0 m, which is related to the inherent properties
of our LiDAR.

5. Conclusions

In this paper, we propose a novel, fully automatic joint calibration method of LiDAR
and visible light camera. Compared with the existing methods, we propose an approximate
edge fitting technology, which has obvious improvements based on the existing methods
and has definite accuracy improvement. Our method does not need to use the intensity
information of LiDAR, which has better universality for the method itself and can also be
applied when the LiDAR’s horizontal resolution is sparse, or the intensity information is
poor. For the automatic process, we propose a strategy of first locating and then refinement,
which can fully realize 2D and 3D corner points detection. In the calibration process, the
user does not need manual intervention, which greatly increases the efficiency of calibration.
In the aspect of effect display, we project the 3D point clouds onto the image plane and
show the calibration effect in different test distances. The 2D image with depth information
can be used for advanced visual applications. We also color the 3D point cloud according
to the calibrated parameters, which is instructive for 3D reconstruction.
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