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Abstract: The altimetric accuracy of aerial laser scanning (ALS) data is one of the most important
issues of ALS data processing. In this paper, the authors present a previously unknown, yet simple
and efficient method for altimetric enhancement of ALS data based on the concept of lidargrammetry.
The generally known photogrammetric theory of stereo model deformations caused by relative
orientation parameters errors of stereopair was applied for the continuous correction of lidar data
based on ground control points. The preliminary findings suggest that the method is correct, efficient
and precise, whilst the correction of the point cloud is continuous. The theory of the method and its
implementation within the research software are presented in the text. Several tests were performed
on synthetic and real data. The most significant results are presented and discussed in the article
together with a discussion of the potential of lidargrammetry, and the main directions of future
research are also mapped out. These results confirm that the research gap in the area of altimetric
enhancement of ALS data without additional trajectory data is resolved in this study.
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1. Introduction

Since aerial laser scanning (ALS) became a common mapping technology, the problem
of its accuracy has been discussed and investigated [1,2]. The ALS data accuracy is con-
cerned with the accuracy of raw scanning effect [3,4] or the accuracy of the digital elevation
model (DEM) [5,6]. An accuracy assessment of the ALS data is usually based on ground
control points (GCPs) [7], intersection of the lines [8], lines (or edges) [9], planes [10] or
spatial objects, e.g., boxes [11]. Several authors describe the sources of systematic and
random errors of ALS data [12–15]. There are more accuracy factors of ALS data than in
photogrammetric mapping [1].

1.1. ALS Data Accuracy Assessment

More complex and advanced solutions for the assessment and enhancement of ac-
curacy are proposed on the basis of specifically designed GCPs [16], linear features [17],
roofs [18] or other geometric features [19]. The algorithms use the methods known from
photogrammetric block adjustment of independent models [20], iterative closest point
(ICP) [13], high accuracy time interval measurement methods of pulse of LiDAR (Light
Detecting and Ranging) [15] and the calculation models for temporal variance and spatial
variance for taking into account the physical conditions of the atmosphere [21]. Recently,
LiDAR platforms for unmanned aerial vehicles (UAVs) have gained increasing popular-
ity, whilst their accuracy is assessed on test fields [22] for digital terrain model (DTM)
generation [23] or for specific purposes like forest analysis [24–27].

There are several commercial solutions for ALS data registration. The most popular
comprise TerraMatch software of Terrasolid Ltd. [28] and Riegl’s RiProcess software [29].
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There are two main options for data registration implemented in TerraMatch software:
surface-to-surface matching and tie lines matching, according to the type of matching
method. The surface-to-surface method has three main steps: finding matches for heading,
roll and pitch angles and mirror scale corrections for the whole dataset; finding matches
for elevation correction or roll and elevation correction for individual strips; and finally,
finding so-called fluctuations, which is elevation correction for overlapping strips in short,
time-parametrised strip sections. Solvable parameters of this method comprise easting,
northing and elevation shifts and drifts, heading, roll and pitch shifts and drifts, mirror
scale and fluctuating elevation.

The tie lines matching analogically have these three steps, but the reference data are
basically roofs’ intersecting lines and other geometrical edges. In this case, the solvable
parameters are:

• Easting, northing and elevation shifts;
• Heading, roll and pitch shifts;
• Fluctuating easting/northing, elevation, and roll and pitch.

All these processes need trajectory data for the calculation.
RiProcess software has three main options for strips adjustment. The first is “no rigid

no translation”, which is the trajectory correction without easting, northing and elevation
shifts of all the data (global shifts). The second option, “no rigid with translation”, allows to
correct the trajectory with global shifts. The last option (“rigid with translation”) translates
the data globally without any local shifts and drifts of the trajectory.

In both cases—i.e., the Riegl software and Terrasolid software—the trajectory data
is necessary because the method is based on the main principle of ALS scanning: each
point of the point cloud is a function of adequate trajectory point, measured-out angle and
measured distance. The point cloud modifications are a consequence of trajectory changes.
All the above methods could be considered trajectory data-driven methods. The approach
presented here does not require the trajectory data. The point cloud is directly modified,
and therefore it can be named as a point data-driven method, whilst the trajectory could be
modified as a secondary matter.

1.2. Lidar and Image Data Integration

There are three main possible kinds of analytical workflow for ALS enhancement
by integration with image data [30]: so-called co-registration, which is a common and
simultaneous adjustment of external orientation parameter (EOP) and point cloud posi-
tion [31–33]; using lidar data for image EOP adjustment [34–36]; and using image data for
system calibration [37] or registration [38,39]. The approaches of lidar data with image data
registration and enhancement can be divided into two groups of methods: rigid methods
and non-rigid methods [40]. The rigid methods are categorized as system-driven methods
and data-driven methods. System-driven methods are based on calibration of the system:
scanners and camera and additional sensors. It can be processed with the use of feature
extraction [41], special targets [42] and by direct georeferencing of lidar data and images
together, if calibration parameters of separate sensors and georeferencing are available [43].

Data-driven methods, based on the features extracted from point clouds and images,
can be divided further into intensity-based methods and feature-based methods. Intensity-
based methods use the similarity between images and intensity factor of point clouds,
and based on these relations, they lead to better registration accuracy [44]. Feature-based
methods use features found on both sets of data qualified as the corresponding ones [45,46].

The second group of methods comprises non-rigid methods: the methods of rigid
registration with non-rigid correction and the methods of piecewise rigid registration. Rigid
registration with non-rigid correction methods reduces the influence of internal calibration
errors of the scanner or other nonlinearity errors of the devices. First, the ICP is used for
robust registration, and then the lidar data is refined by thin-plate splines [47] or cubic
splines [48]. Motion distortion of single scans before registration also has to be corrected,
which can be done successfully [49]. The piecewise rigid registration is applied mostly to
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mobile mapping lidar data, where the trajectory is divided into short segments, which are
treated as rigid constituents of non-rigid totality [50,51]. Originally, the method was used
for medical applications [52] and also for precise registration of images of a rolling shutter
camera [53].

Generally, within the last few years, the proposed solutions have become more and
more mathematically and physically complex. Park et al. presented a solution based on
a deep convolutional neural network (CNN) and the fusion of LiDAR data and dense
depth information of stereo images [54]. Nguyen et al. determined the relative position
of both datasets by graph transformation matching (GTM) of a 3D building segmented
from lidar data and 2D building segments of image data [55]. Li et al. first used Structure
from Motion (SfM) (IMU- and GNSS-aided) of UAV images and then iteratively minimised
the differences between the depth maps derived from SfM and the raw lidar data [40].
Some researchers convert lidar data to lidar intensity images [56,57] or lidar intensity and
elevation images [58] for further data integration processing.

1.3. Lidargrammetry

The idea of discrete lidar data conversion to raster data and the usage of synthetic
image with optical images is very close to lidargrammetry. The generation and application
of synthetic lidar images for different purposes are present in the literature worldwide
since the late 1990s [59–61]. The term “lidargrammetry” is used [62] for the comparison
of different methods of fusion of “airborne laser scanning-imagery”. The definition spec-
ifies that: “lidargrammetry concerns the production of inferred stereopairs (ISPs) from
LiDAR intensity images, intended to stereo digitize spatial data in digital photogram-
metric stations” [63], and the authors refer to the experience and solutions of the Geocue
Group [64–66], which developed the algorithm and software for lidar data stereo plotting.
At that time, some other companies, such as MD Atlantic and NIIRS10 [67], Optimal Geo-
matics [68] and Dephos Software Ltd. [69], also used and developed lidargrammetry in their
technology. Analogically, the stereoscopy was applied on the basis of lidar data but also
from SAR data (stereo radargrammetry) for digital surface model (DSM) generation [70].

There are two basic approaches to lidargrammetry [63]. The first approach consists in
the generation of intensity lidar orthophotos with stereo-matches, based on photogrammet-
ric traditional theory of stereo-orthophotos, whilst the [71–75] second approach is supposed
to generate stereopairs of central projection images [69,76].

Teo et al. generate not only synthetic stereo images of intensity, but also range im-
ages [76]. Geocue patent is based on the generation of two tiled overlapping triangu-
lated irregular networks (TOTIN), and stereo images are generated directly from these
TOTINs [66]. The synthetic stereopairs can also be generated in a slopeward direction
(e.g., for better building footprint visibility), and the precision of the stereo plotting can
be appropriately modelled by B/H (base to height) ratio, and flexibly adopted to different
conditions according to on-line accuracy analysis results [77]. Additionally, the point clouds
are being densified: additional points are added in obscured areas with the use of Delaunay
triangulation [78].

There are many different objectives of lidargrammetry application. Stereo observa-
tion of the virtual model of synthetic images is the most obvious and common for most
researchers of lidargrammetry. The model can be used for stereo plotting and feature
extraction [77,79], building footprint measurements [63], lidar data quality control [79] or
data registration [59].

1.4. The Objective of the Research

In this research, the authors used the idea of conversion of discrete lidar data to
synthetic images with arbitrary external and internal orientation parameters (EOP and IOP)
for altimetric data enhancement. All of the proposed methods of lidar data enhancement,
based on integration with image data, require both sets of data: lidar and photogrammetric
data. Contemporary methods of enhancement of lidar data applying approaches other
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than integration with photogrammetric data are also complex and sophisticated. A typical
approach is a trajectory data-driven method.

In this paper, a solution is proposed in the form of the lidargrammetric model defor-
mation method (LMD), which consists of a simple and effective approach for altimetric
ALS data enhancement. The theory of photogrammetric model deformation caused by
errors of parameters of relative orientation was used. This approach is simple and does not
require the trajectory data. That is why this can be defined as a point data-driven method.

2. Materials and Methods

This approach is dedicated to a block of ALS data, divided into single strips that are
not precisely consistent in height, whilst the solution might be applied in situations where:

• The data are postprocessed and their trajectory data are not accessible;
• It is not possible to enhance the data consistency with the assessable trajectory

data applications.

There are two cases in which height discrepancies of two overlapping ALS strips or a
single ALS strip are known:

• As height differences of two ALS strips measured in an overlapping area;
• As a height difference between strip side borders and ground control points (GCPs) or

existing DTM/DSM.

The strip deformation can be defined thanks to the height differences. Points of height
are located symmetrically to the approximated flight line projected on the XY plane of the
global coordinate system, close to the side borders of the strip. To simplify the terminology,
the pairs of these points are named as “point profile–PP”. The first PP should be located at
the beginning of the strip whilst the last one should be at the end, and the distribution of
intermediate PP should guarantee appropriate correction of the strip. The strip is divided
into segments by the intermediate PP. Further details will be provided by description of the
method. The corrections according to the two cases can be calculated in two manners.

In the first case, the correction is a half of the difference between the overlapping strips,
and such a correction will be applied with a positive sign to the strip which is lower and
with a negative sign to the upper strip.

In the second case, the correction is equal to the control point height minus strip height
and is applied with a positive sign.

The theory of photogrammetry describes the problem of height deformations of a
stereoscopic model caused by errors of relative orientation parameters (ROP) [80]. Figure 1
presents a general overview of this problem.

The height deformation of the stereo model presented in Figure 1 is caused by ROPs
and can be described according to K. Kraus [80] by following a mathematical relation of
the height model deformation:

dZ = dZ12 −
(X − B)

B
dBz +

XY
B

dom − YH
B

dka (1)

where dZ is a height model deformation in the model point (X, Y, H coordinates), B is a
photo base (distance between the centres of projection), dBZ is a height error of the first
projection centre, dom–error of ω angle of the first photo, dka–error of κ angle of the first
photo. The Equation (1) has to be converted in order to calculate ROP corrections (dBZ, dom,
dka) knowing the height deformation in the strip corners, represented by GCPs defined
by XYH coordinates. The height shift of both projection centres has to be done according
to the average height difference of all GCPs dZ12. The whole process has to be repeated
iteratively because the Equation (1) describes an approximated relation between height
model deformations and ROP errors.

It has been observed that one section of the ALS strip (between the next two PPs) can
be considered analogically to the virtual stereo model.
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In photogrammetry, stereopair implicates the virtual stereo model; in lidargrammetry,
the ALS segment can implicate two lidargramms: synthetic images of a point cloud cap-
tured by a virtual camera or the nominal interior orientation parameters. The procedure is
implemented in the research tool named PyLiGram (Python LidarGrammetry). Its interface
is shown in Figure 2.
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The pair of lidargramms is a stereogram of normal, vertical images (omega = 0, phi = 0).
XY coordinates of each projection centre are calculated as a point of the intersection between
a regression line fitted with first degree polynomial to PP points and lines connecting pairs
of PP points. Then, flight height Hflight is calculated according to Equation (2):

H f light =
2.5 B ck
x f ormat

(2)

where B is a photo base, xformat is the size of the lidargram in flight direction in [mm] and
ck is a focal length, also in [mm]. The kappa angle depends on the virtual flight direction
calculated as a straight line connecting the first and the last projection centre. The intensity
value or RGB values of the points are centrally projected on the virtual image planes using
collinearity equations [80]. The RGB colour of lidargram pixels is interpolated.

After the generation of lidargrams, the continuous correction of the ALS segment can
be applied by changes of ROP of these lidargrams. Changes of ROPs of lidargrams lead to
ALS segment (and, in consequence, to ALS strip) deformation, analogically to errors of the
ROPs of the photos which cause deformation of the stereo model.

The discrepancies of the four corners of the ALS segment can be corrected in four basic steps.

• The first step is to change the height of both projection centres of the lidargrams dZ12
(Figure 3a).

• The second step is to change the height of the centre of the left lidargram dZ1
(Figure 3b).

• The third step is to change the kappa angle of the left lidargram dka (Figure 3c).
• The fourth step is to change the omega angle of the left lidargram dom (Figure 3d).

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 19 
 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3. Synthetic point cloud before (red) and after correction (green). Blue dots are the GCPs. The 

whole process is shown separately by four basic steps: (a) dZ12; (b) dZ1; (c) dkappa; (d) domega. 

The combination of these steps is used as corrections of the EOP when the corrected 

point cloud is going to be generated by space intersection. For the first segment of the ALS 

strip, the left lidargram is rotated by dkappa and domega, and its projection centre height 

Z is changed by dZ12 and dZ1. The right lidargram centre of projection is only changed 

by dZ12. Using such a new, corrected EOP, the new point cloud is calculated by 

photogrammetric intersection. 

The method can be used for single-strip processing and for an entire block of strip 

processing. The general organization of the ALS data correction process is presented in 

Figure 4. 

Figure 3. Cont.



Remote Sens. 2022, 14, 6391 7 of 17

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 19 
 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3. Synthetic point cloud before (red) and after correction (green). Blue dots are the GCPs. The 

whole process is shown separately by four basic steps: (a) dZ12; (b) dZ1; (c) dkappa; (d) domega. 

The combination of these steps is used as corrections of the EOP when the corrected 

point cloud is going to be generated by space intersection. For the first segment of the ALS 

strip, the left lidargram is rotated by dkappa and domega, and its projection centre height 

Z is changed by dZ12 and dZ1. The right lidargram centre of projection is only changed 

by dZ12. Using such a new, corrected EOP, the new point cloud is calculated by 

photogrammetric intersection. 

The method can be used for single-strip processing and for an entire block of strip 

processing. The general organization of the ALS data correction process is presented in 

Figure 4. 

Figure 3. Synthetic point cloud before (red) and after correction (green). Blue dots are the GCPs. The
whole process is shown separately by four basic steps: (a) dZ12; (b) dZ1; (c) dkappa; (d) domega.

The combination of these steps is used as corrections of the EOP when the corrected
point cloud is going to be generated by space intersection. For the first segment of the
ALS strip, the left lidargram is rotated by dkappa and domega, and its projection centre
height Z is changed by dZ12 and dZ1. The right lidargram centre of projection is only
changed by dZ12. Using such a new, corrected EOP, the new point cloud is calculated by
photogrammetric intersection.

The method can be used for single-strip processing and for an entire block of strip
processing. The general organization of the ALS data correction process is presented
in Figure 4.
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The input is ALS uncorrected data (1) as single strips (3) or block of strips (4) and GCPs
(2) distributed as is shown in Figure 5. The Z corrections (6) can be calculated by means of
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comparison of height of GCPs and point cloud or by means of comparison of the height of
two overlapping ALS strips (5). The height of the point cloud at a specific XY point is calcu-
lated as an average height of this XY point surrounding taken into account: inside of a circle
and in height tolerance. In the next step, the corrections of relative orientation parameters
(ROPs) (7) are calculated based on Z corrections according to the converted Equation (1).
The strips of ALS data are divided into segments and processed separately within segments.
The first pair of GCPs defines the beginning of the segment, whilst the second pair of
GCPs defines its end and the beginning of the next segment. Figure 5 presents one strip
with 6 GCPs divided into 2 segments. The data-correction process (8) is a calculation of
the new corrected point cloud relying on the spatial intersection of the homologous rays.
The algorithm uses collinearity equations and external orientation parameters corrected by
ROPs’ corrections. The new point cloud is generated in segments (10).
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After the first phase of research, the optimization change was applied. The ALS data
correction based on stereo deformation model theory is done without generating and
saving the pair of lidargrams on the disk. The process consists in correcting point by point
and the lidargrams become only additional virtual objects and not crucial to the process.
They can be generated optionally (9).

3. Results and Discussion

The presented method was tested on synthetic (a-tests) and real datasets (b-tests).
The were three basic tests: test 1—the correction of the single segment (short strip with
four GCPs); test 2—test of joints of two corrected segments; and test 3—test of correspon-
dence of two parallel overlapping strips.

3.1. Test 1a. Single Segment Correction Test of Synthetic Data

The flat synthetic strip was generated by the additional Python tool. All the points
were in a regular 0.1 m grid and of the same height. The GCPs were situated in the corners
moved slightly away from the edge of the point cloud. Their heights should cause all
four ROP corrections. The distribution of four GCPs and 21 check points is shown in
Figure 6. The check points were distributed on sloped straight lines to check whether the
transversal and longitudinal profiles of the corrected point cloud would be straight.

The result of the correction was reported and the height deviations on GCPs were
reduced to 0.000 m after the second iteration (Table 1), and the check point differences
were less than 0.001 m (point cloud averaged height). The presented result shows that the
corrections of the ROPs were properly.calculated and applied. The process was successful,
and the transversal and longitudinal profiles of such a corrected point cloud are straight
lines. In the other case, the slope profiles (neither transversal nor longitudinal) are not
straight in general.

3.2. Test 1b. Single Segments Correction Test of Real Data

The test data were point cloud of Riegl VUX-1UAV scanning system (Figure 7). A local
500-m-long road in the Krakow area was scanned. GCPs and check points were prepared
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by selection of data location and manual entry of height discrepancies. The average point
distance between 11.1 million points was about 0.05 m.
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Table 1. Height discrepancies of single segment of synthetic data before, during and after the process
and ROP corrections of the lidargram model.

Height Discrep. ftp1 [m] ftp2 [m] ftp3 [m] ftp4 [m]

Before process −0.100 0.400 0.200 −0.300
After 1st iteration 0.000 0.000 −0.028 −0.028

Final result 0.000 0.000 0.000 0.000

ROP corrections: dZ12 [m] dZ1 [m] dka [deg] dom [deg]

0.150 −0.228 −0.00201 −0.01005
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Figure 7. Strip of UAV lidar data with ten GCPs (red) and eight check points (green).

The data were corrected in four segments, and the results were analogical to the results
of the synthetic data: the differences on each GCP were 0.000 m after the third iteration
(Table 2), and the ROP corrections were calculated and applied properly.

The height differences of check points were below standard deviations of height
surrounding the check point (Table 3).

3.3. Test 2a. Segments’ Joint Testing of Synthetic Data

The next test was performed for the joints of the segments in the case of nonregular
GCP distribution. The synthetic data were corrected based on GCPs but two central GCPs
were shifted along a flight direction; one 10 m forward, and the other 10 m backward. For a
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strip width of 100 m, the height corrections defined by GCPs were about ±0.3 m. After the
correction process, two segments were created as shown in Figure 8.

Table 2. Height discrepancies of four segments of real data before, during and after the process and
final values of ROP corrections.

Height
Discrep.

# of
Segment ftp1 [m] ftp2 [m] ftp3 [m] ftp4 [m] ftp5 [m] ftp6 [m] ftp7 [m] ftp8 [m] ftp9 [m] ftp10 [m]

Before
process

1 0.2 0.61 0.1 0.894 - - - - - -
2 - - 0.1 0.894 0.6 0.69 - - - -
3 - - - - 0.6 0.69 0.681 0.753 - -
4 - - - - - - 0.681 0.753 0.789 0.637

After 1st
iteration

1 0.001 −0.0 −0.003 −0.009 - - - -
2 - - 0.009 −0.021 −0.012 −0.072 - -
3 - - - - 0.013 −0.016 0.005 −0.005
4 - - - - - - 0.0 0.002 0.001 −0.005

After 2nd
iteration

1 0.000 0.000 0.000 0.000 - - - - - -
2 - - −0.003 0.003 −0.006 0.002 - - - -
3 - - - - 0.000 0.000 0.000 0.000 - -
4 - - - - - - 0.000 0.000 0.001 −0.001

After 3rd
iteration

(final
result)

1 0.000 0.000 0.000 0.000 - - - - - -
2 - - 0.000 0.000 0.000 0.000 - - - -
3 - - - - 0.000 0.000 0.000 0.000 - -
4 - - - - - - 0.000 0.000 0.000 0.000

ROP cor-
rections:

# of
segment

dZi(i + 1)
[m]

dZi
[m] dka [deg] dom

[deg]

1 0.427 0.038 0.00302 −0.00755
2 0.465 0.134 0.00587 0.01389
3 0.640 0.076 0.00054 0.00039
4 0.717 −0.013 0.00041 0.00363

Table 3. Height discrepancies of check points and the standard deviations of the height of the
surrounding check point.

chp1 [m] chp2 [m] chp3 [m] chp4 [m] chp5 [m] chp6 [m] chp7 [m] chp8 [m]

Height discrep. 0.003 0.005 −0.001 −0.001 −0.005 0.004 0.003 −0.003
Height std. dev. 0.006 0.095 0.357 0.074 0.271 0.352 0.456 0.031
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Figure 8. Top view of two segments generated after correction process with red GCPs and green
check points distribution.

The result was positive but a significant disadvantage of this method was observed; in
the joints of the segments, an aperture height dZ in extreme check point nr 4 of 0.052 m
was observed (Table 4 and Figure 9).

Table 4. Height discrepancies of check points with 0.052 m aperture at chp4.

Height
Discrep. # of Segment chp1 [m] chp2 [m] chp3 [m] chp4 [m] chp5 [m] chp6 [m] chp7 [m]

1 −0.0 0.001 0.001 −0.025
2 0.027 0.001 0.0 0.001
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Figure 9. Magnification of the aperture dZ between two segments.

The reason for this problem is clarified in a description of test 1a: the transversal and
longitudinal profiles are straight, whereas all the others are not. Two central GCPs do not lie
symmetrically to the central line. They define the segment joints as neither transversal nor
longitudinal; they are sloped to the flight line. Only transversal and longitudinal profiles of
the deformed point cloud are straight. In this case, the yellow segment along this profile is
concave and the blue one is convex. The probable solution to this problem, which will be
implemented in the next release of the PyLiGram tool, is to align the joints of the segments
based on the average weight of the calculated heights of the points in the transition area.
The aperture is not significant, but the problem has to be solved. Meanwhile, the GCPs
have to be distributed as symmetrically to the flight line as possible.

3.4. Test 2b. Segments’ Joint Testing of Real Data

The real data were also captured by the UAV Reigl system with a VUX-1UAV scanner.
This specific fragment of S1 highway in Silesia was selected because of its curvature
(Figure 10). As before, the GCPs and check points were selected arbitrarily, and the altitude
discrepancies were applied. The average point distance between 11 million cloud points
was about 0.15 m.
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Figure 10. The curved highway with four segments and irregular GCP distribution.

The curvature and forest caused an irregular GCP distribution. The correction in this
case did not cause significant apertures between segments (Figure 11).

3.5. Test 3a. Testing of Correspondence of Two Parallel Overlapping Strips of Synthetic Data

The last two tests were dedicated to the problem of correspondence of the overlapping
strips (Figure 12). The first test was done on synthetic data: two parallel and overlapping
strips of different height. The strips were corrected by six GCPs each, three of which were
common, and the correctness of correspondence of the strips was checked by two points
located in the overlapping area.

The corrections defined on GCPs were about ±0.3 m. After the correction process, the
differences between the checkpoints and corrected strips were similar and came to about
0.001–0.002 m (Table 5).

Table 5. Height discrepancies of check points between strips of synthetic data.

Height Discrep. Strip chp1 [m] chp2 [m]

1 0.001 0.001
2 0.001 0.002
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3.6. Test 3b. Testing of Correspondence of Two Parallel Overlapping Strips of Real Data

The last test field was an ALS data of Krakow’s centre. One block of real archival
data from 2010 was chosen, and two overlapping strips were extracted afterwards (strip
one of 4.6 million points, strip two of 4.7 million points). The average distance of points
was 0.20 m. There were six GCPs measured on this data (two in the overlapping area), and
there were three check points also chosen in the overlapping area (Figure 13). The heights
of GCPs were changed: the real data were first deformed by these GCPs with changed
height. Then, both strips were corrected back using the GCPs with original heights. The
correspondence of the strips was checked on three check points (Table 6). The result was
positive within accuracy of height calculation from cloud points within selected radius and
tolerance. After two to three iterations of deforming and then two to three iterations of
correcting, both processes (one after the other) gave the initial position of the data. This
means that the process works correctly and precisely.
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Table 6. Height discrepancies of check points between strips of real data.

Height Discrep. Strip chp1 [m] chp2 [m] chp3 [m]

1 0.015 0.015 0.000
2 0.015 0.015 0.000

3.7. Summary of the Tests

All of the six presented tests are selected from a large amount of method tests and
tests performed on the PyLiGram application to present the possibilities of the method; its
potential and its limitations.

The synthetic data tests were very important and gave the first indicators of the
correctness of the method. It is significant that the greatest disadvantage of the method
was observed and specified on synthetic (rather than real) data. The synthetic data initially
had the same height, so possible unexpected results could not be interpreted as a result of
rough point cloud height calculation. The tests on real data were processed to check the
method with regards to the data with noise, low and medium vegetation, buildings and a
real situation: a straight road going through fields, a highway in the forest and an area of
the city centre.

The general results are: the method is correct, efficient and precise. The correction of
the point cloud is continuous. The thesis of the research, stating that the lidargrammetric
model deformation method (LMD) makes up a simple and effective approach for altimetric
ALS data enhancement, is confirmed by the results of the tests on synthetic and real data.
The only limitation of our approach is the need for GCPs in correct distribution.

The LMD method is applicable not only to UAV, but to all kinds of aerial LiDAR data,
including typical ALS point clouds captured by manned aircrafts.
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4. Conclusions

The LMD method (implemented in the research software PyLiGram) presented here is
an optional, new, effective and precise method of ALS data enhancement using integration
of LiDAR data processing with a photogrammetric approach by harnessing the idea of
lidargrammetry. The research will be continued in several directions, and the PyLiGram
tools will be further developed. There is probably a big potential in this method, and also
in lidargrammetry in general. The additional correction by phi angle application will be
implemented in the case of more GCP data. Automatic methods of strips overlapping area
alignment will be the subject of further research. The authors of this study plan to solve
the problem of aperture in segment joints by weighted average height calculations and to
change the means of calculation of the strip central line method as well. The segments will
have their own central lines to make the method more flexible for irregular strips of UAV
scanning systems. The biggest limitation of the method is the need for the GCPs, currently
with regular distribution.

The innovation and application value of the LMD method compared with typical
processing workflows is that simplicity of the algorithm and possibility to enhance the
altimetric data accuracy does not need the trajectory data. The method can be applied to all
lidar datasets and also to archival datasets. The only need is for GCPs and their appropriate
distribution within LiDAR strips. In the case of archival LiDAR blocks, it is necessary to
cut it in strips according to the location of GCPs. Such strips ought to have overlapping
areas where the GCPs are. The LMD method is flexible and adaptable to a large amount of
points—LiDAR data are usually very big. The process splits points into smaller chunks, so
the algorithm does not require large memory resources or high computing power.

The LMD method is developed in the wider context of using lidargrammetric data
for several purposes: seeking the optimal solution for integrated photogrammetric and
point cloud data formats and using lidargrammetric data as raster and vector data for
spatial edges detection. Methods of ALS data enhancement based on dense matching of
lidargrams will be the main direction of the research in the near future.
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