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Abstract: The high variability of rainfall in the Sahel region causes droughts and floods that affect
millions of people every year. Several rainfall forecasting models have been proposed, but the
results still need to be improved. In this study, linear, polynomial, and exponential models are
developed to forecast rainfall in the Bani and Senegal River basins. All three models use Atlantic
sea surface temperature (SST). A fourth algorithm using stepwise regression was also developed for
the precipitation estimates over these two basins. The stepwise regression algorithm uses SST with
covariates, mean sea level pressure (MSLP), relative humidity (RHUM), and five El Niño indices. The
explanatory variables SST, RHUM, and MSLP were selected based on principal component analysis
(PCA) and cluster analysis to find the homogeneous region of the Atlantic with the greatest predictive
ability. PERSIANN-CDR rainfall data were used as the dependent variable. Models were developed
for each pixel of 0.25◦ × 0.25◦ spatial resolution. The second-order polynomial model with a lag of
about 11 months outperforms all other models and explains 87% of the variance in precipitation over
the two watersheds. Nash–Sutcliffe efficiency (NSE) values were between 0.751 and 0.926 for the
Bani River basin and from 0.175 to 0.915 for the Senegal River basin, for which the lowest values are
found in the driest area (Sahara). Results showed that the North Atlantic SST shows a more robust
teleconnection with precipitation dynamics in both basins.

Keywords: model; Sahel; SST; PERSIANN-CDR; RHUM; MSLP

1. Introduction

The Sahel is a semi-desertic region covering Africa’s territory from the Atlantic Ocean
to the Red Sea and dividing the Sahara Desert from the moist savannah. This region is
widely known for being vulnerable to desertification, for its scarce water availability and
rapid environmental degradation [1]. Indeed, interannual rainfall has seen important
changes in the last five decades. Severe drought in the 1970s and 1980s brought famine
and humanitarian crisis in the region [2–4]. While at the break of the current century,
Samimi et al. [5] observed intense rainfall in 2007, equivalent to values with a return period
of 1200 years. In addition, Biasutti [6] reports an increase in rainfall in the central and
eastern Sahel, as well as a decrease in rainfall in the western Sahel, with intense and
isolated rainfall.

Rainfall variability at the Sahel is dynamically related to the variability of atmospheric
circulation, Hadley cells, and West African Monsoon (WAM) circulation [6]. WAM is a
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coupled atmosphere-ocean-land system [7] responsible for summer rainfall in the Sahel
from May to October [4,6], with the most significant rainfall happening in July–August–
September (JAS) [8,9]. The WAM flows as a shallow moist surface air layer from the Gulf
of Guinea, overlaid by the main northeast trade winds, which blow from the Sahara and
which is known as Harmattan. The convergence of the trade winds and WAM form the
Intertropical Convergence Zone (ITCZ), which is characterized by low pressure, laden with
heat and moisture [10].

Sufficient and reliable observations are necessary to understand the great interannual
variability of precipitation in the Sahel, and therefore the evolution of the hydrological
regimes. However, in the Sahel, surface and high-altitude observations are very rare and
when they do exist, their reliability is always questionable [8].

Weather forecasts are a result of field observation and general circulation models
(GCM). However, due to the small amount of observed data and inconveniences of the
MCG scale, it is not possible to satisfactorily answer key questions about the interrelation
of atmosphere-ocean-land [11,12]. As a result, statistical models are more popular for
applications that require a high spatial and temporal resolution scale [13]. Nonetheless,
every climate model has future forecast uncertainty due to common systematic bias [6].

In West Africa, rainfall forecasting is performed by the Prévisions Climatiques Saisonnières
en Afrique Soudano-Sahélienne forum (PRESASS, [14,15], formerly known as Prévisions Clima-
tiques Saisonnières en Afrique de l’Ouest (PRESAO). Every year, between April and May, the
forum is carried out to elaborate on that year’s seasonal forecast. The event is summoned by the
African Center of Meteorological Application for Development (ACMAD) and the CRA (Centre
Regional de Formation et d’Application en Agrométórologie et Hydrologie Opérationelle—
AGRHYMET) [16]. For the rainfall forecast, Climate Predictability Tool (CPT) and techniques
such as statistical methods, dynamic models, and experts’ judgment are used [13]. Forecasts
are then compared to climate outlooks in international climate centers, and a consensus is
reached to communicate the forecast to users. Such outlook is categorical, meaning that it
consists of qualitative descriptions such as: above normal, normal, and below normal rainfall
probability [13,16]. However, currently used PRESASS forum’s forecasts and models are not
precise enough, and drought and flooding catch authorities and people off guard. That is why
it is necessary to develop better models [12,13].

The purpose of this study is to establish a forecasting model for rainfall during the
rainy season (May–October) across the Bani and Senegal River basins in West Africa to
propose appropriate insight for decision-making processes regarding water management.
In order to achieve this objective, ocean-atmospheric variables and linear and non-linear
models were used. Statistical techniques such as principal component analysis (PCA)
and cluster analysis over Atlantic SST, RHUM, and MSLP variables were used while
creating potential forecasting models to find the region with the highest rainfall predictive
power. In linear, polynomial, and exponential models, SST was used as the only predicting
factor. While in the linear stepwise regression model RHUM, MSLP covariables, Niño1 + 2,
Niño3.4, Niño4, Oceanic Niño (ONI), and trans-Niño (TNI) indices were used, aside from
SST. As a response variable for models, Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks—Climate Data Record (PERSIANN-CDR)
data were used [17]. It is worth mentioning that forecasting was performed with the same
spatial resolution of PERSIANN-CDR (0.25◦ × 0.25◦) for the 725 pixels that make up the
Bani and the Senegal River basins.

2. Materials and Methods
2.1. Description of the Study Region

Sahel is the vast semi-arid region of Africa separating the Sahara Desert to the north
from tropical savannas. From west to east, the Sahel stretches from northern Senegal—
southern Mauritania to Eritrea and northern Ethiopia. This place is home of nearly
130 million people. The main means of livelihood are stockbreeding, fishing, and subsis-
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tence agriculture. The latter is the most important sector and the main means of livelihood
for most of the people who inhabit this region [18].

This study considers only the western part of the Sahel located between 13◦W to
4◦W and 8◦N to 20◦N, comprising the areas of the Bani River basin at Beneny Kegny
hydrometric gauge (upper Niger) and the Senegal River basin at Bakel (Figure 1). Most of
the basins’ area is located in the Sahel (semi-arid climate), while the southern part of the
basins has a tropical savanna climate, and the north of the Senegal River basin (center of
Mauritania) corresponds to warm desert climate.
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Figure 1. Location of the basins of the Bani River at Beneny Kegny (upper Niger) and the Senegal
River at Bakel on a digital elevation model (DEM). Location of rain gauges (blue dots) and buoys in
the Atlantic located off the coast of West Africa (magenta boxes) and the Sahel region (yellow stripe).

Delimitation of the basins was performed based on a digital elevation model (DEM)
of 3 arcs of a second (0.000833◦, ~90 m) of spatial resolution, taken from the Shuttle Radar
Topography Mission (SRTM) [19], available at https://srtm.csi.cgiar.org/, accessed on
20 December 2018. In a study conducted by Bâ et al. [20] on the Senegal River, a ~1 km
resolution DEM was used to delimit the Senegal basin. This study revealed that the drainage
areas up to the Bakel and Kayes hydrometric gauges are larger than those reported by
the official map of the Organisation pour la Mise en Valeur du fleuve Sénégal (OMVS).
However, the area that was not considered by the OMVS is in the northern part of the
watershed located in the Sahara Desert, which does not contribute to the runoff.

The Bani River is the main tributary of the Niger River. The Bani basin at the Beneny
Kegny hydrometric gauge has an approximate area of 112,000 km2 [8]. The basin's topogra-
phy (Figure 1) is characterized by an elevation between 270 and 760 masl. The slope varies
between 0% and 10%, and the average slope of the basin is 0.85%. On average (1981–2000),

https://srtm.csi.cgiar.org/
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the annual rainfall varies between 1250 mm in Odienne (south of the basin at 400 masl) to
615 mm in Segou (north of the basin at 280 masl) [21]. According to the GlobCover [22],
the land cover is mainly characterized by crop mosaics (Mosaic Cropland), lush vegetation
(grassland, shrubland, forest), and small shrubs, while in a small part of the south, the
ground is covered by forest [23].

The Senegal River basin at Bakel has an approximate area of 440,000 km2, its altitude
range varies between 15 and 1400 masl, the terrain’s slope varies between 0% and 19% and
the average slope is 1.08% (very gently sloping). Annual rainfall is about 80 mm year−1

in the northern part of the basin, while at the southern edge of the basin it can reach
2000 mm year−1 [8]. According to the GlobCover [22], the land cover in the north of
the basin is characterized by a lack of vegetation (bare areas), the center of the basin is
covered by brushwood, crop mosaics (Mosaic Cropland) and lush vegetation (grassland,
shrubland and forest), while the southern part of the basin is covered by evergreen forests
(broadleaved evergreen forest) and semi-deciduous forest [23].

2.2. Input Data

In several countries of the region, meteorological data are not free and the available
data records lack continuity and reliability [8,24]. In some weather stations, daily rainfall
has been recorded since the beginning of the last century, but data from recent years are not
accessible. The most recent data to which we had access have observations prior to 2015.
Analysis shows these data have a suitable quality [8,25].

Recent studies have shown that rainfall data from satellite products provide suitable
results in this region [8,25,26]. For example, the PERSIANN-CDR product [17] has records
from 1983 to present at 0.25◦ of spatial resolution and daily frequency. Monthly PERSIANN-
CDR data have been evaluated by Bâ et al. [8] in 18 rain gauges located in West Africa
and then used the same daily rainfall for flow simulation. The results of the evaluation
were satisfactory (R2 > 0.8) at most gauges. PERSIANN-CDR data can be found at the
website of the Center for Hydrometeorology and Remote Sensing (CHRS) at the University
of California, Irvine (https://chrsdata.eng.uci.edu/, accessed on 16 September 2018).

For this study, rainfall of 20 rain gauges were used (Figure 1) to evaluate the PERSIANN-
CDR data. A total of 456 monthly images of PERSIANN-CDR product between 1983 and
2020 were used and evaluated in the concomitant period. The rainfall data are obtained
from the Meteorological Services of Mauritania, Senegal, Guinea, Mali, and Cote d’Ivoire.
These data are used only in the validation process of satellite estimated products.

The historical PERSIANN-CDR data are used as the dependent variable in the fore-
casting models. The basins of the Bani and Senegal Rivers are made up of 725 pixels of
0.25◦ × 0.25◦. In addition, data from the Atlantic Ocean, sea surface temperature (SST),
mean sea level pressure (MSLP), relative humidity (RHUM), and 5 Pacific indices Niño1 + 2,
Niño3.4, Niño4, ONI, and TNI are used as explanatory variables of the models.

SST is the main variable in the rainfall forecast [2,13]. In the forecast models, the
Tropical Atlantic (70◦W, 20◦E, 20◦S, 40◦N) was used as the predictor variable of the linear,
polynomial, and exponential models. In addition, the MSLP and RHUM data (in the
same extension) and the El Niño Southern Oscillation (ENSO) indices were included in
a multivariate model. These indices are based on the SST anomalies of tropical Pacific
regions, Niño1 + 2 (90◦W to 80◦W, 0◦ to 10◦S), Niño3.4 (170◦W to 120◦W, 5◦N to 5◦S),
Niño4 (160◦E, 150◦W, 5◦S, 5◦N), ONI (170◦W to 120◦W, 5◦N to 5◦S), and TNI (Niño1 + 2
and Niño3.4) [27].

The reanalysis data of the SST product of ERA5 were used at 0.25◦ × 0.25◦ of spatial
resolution and daily frequency [28]. These data come from two providers. Before September
2007, SST data are from the Group for High-Resolution Sea Surface Temperature (GHRSST)
of the National Centers for Environmental Information (NCEI). As of September 2007, data
from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) [29] were used.
Data from ERA5: SST, MSLP, and RHUM are available at https://cds.climate.copernicus.
eu [28], and the NCAR/UCAR Climate Date Guide El Niño indices are available at https://
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climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni [27],
accessed on 25 September 2018.

Sea temperature data from 5 buoys are used to validate the SST of the Atlantic Ocean.
These data were obtained from The Prediction and Research Moored Array in the Tropical
Atlantic (PIRATA) of the National Data Buoy Center, The National Oceanic and Atmo-
spheric Administration (NOAA) [30]. Buoy data are available at https://www.ndbc.noaa.
gov/, accessed on 26 September 2018. Buoys located near the coast of West Africa that
have continuous records were chosen (Figure 1). The assessment, on one hand, of the
PERSIANN-CDR and SST products and, on the other hand, of the forecast models, is car-
ried out at point-to-pixel. That is, the rainfall of the rain gauges and the temperature of the
buoys are compared with the data of the raster cells where the gauges/buoys are located.

2.3. Ocean-WAM Teleconnections

It is known that the Atlantic Ocean is the main source of humidity for West Africa [2,13],
but it is necessary to know which region is better tele-connected between ocean-atmospheric
variables and WAM. In addition, it is important to find the optimal time lag between the
variables and the WAM. In previous studies, authors divide SST using some techniques
such as Folland et al. [4] in a study on the Sahel, they grouped pixels of the SST anomalies
into 10◦ x 10◦ cells. Gado et al. [31] and Sittichok et al. [13] decreased the number of SST
components of the Atlantic using PCA and canonical correlation analysis (CCA).

Phenomena with a social impact on the region, such as droughts and floods, are related
to the tropical Atlantic variability (TAV). The TAV has interactions, particularly with trade
wind fluctuations, SST, and precipitation [32]. The SST is tele-connected with rainfall that
varies between 0, 6, and 12 months depending on the place in the ocean [13,31]. In this
study, PCA and cluster analysis were used, with the purpose of grouping pixels of the
Atlantic SST homogeneous values and finding the region with the best teleconnection
between ocean variables and rainfall of the Bani and Senegal River basins. The PCA
performs an orthogonal test transformation on the 456 monthly images between 1983
and 2020. The result is a reduced set of synthetic explanatory covariates, called principal
components, which are not correlated to each other [33,34]. Clustering was applied to
group the pixels with maximum homogeneity in each group. The k-means method was
used to find the differences between groups [34]. The cross-correlation analysis helped to
find the optimal lag between the predictors (SST, RHUM, MSLP, El Niño indices) and the
PERSIANN-CDR precipitation.

2.4. Forecasting Models

Linear and non-linear models are commonly used to find the relationship of predictors or
explanatory variables to the response variable [2]. The linear, second-order polynomial, step-
wise, and exponential models are defined in Equation (1) through Equation (4), respectively.

Ŷ = b0 + b1

(
SST(lagSST)

)
(1)

Ŷ = b0 + b1

(
SST(lagSST)

)
+ b2

(
SST(lagSST)

)2
(2)

Ŷ = b0 + b1SSTlagSST + b2MSLPlagMSLP + b3RHUMlagRHUM + b4ElNiño1 + 2lagEl3ño1+2

+b5ElNiño3.4lagño3.4 + b6ElNiño4lagElNiño4
+ b7ONIlagONI + b8TNIlagTNI

(3)

Ŷ = b0 + e(SSTlagSST
b1) (4)

where Ŷ is the forecast precipitation, b0, b1, . . . , bn are the coefficients of the models and e is
Euler’s number, SSTlagSST, ..., TNIlagTNI are the ocean-atmospheric covariables with their
respective lag. The coefficients are obtained by the method of least squares; in the case of
the exponential model, they are obtained by trial and error in an iterative process.

https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://www.ndbc.noaa.gov/
https://www.ndbc.noaa.gov/
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Eight covariates were used in the stepwise regression model. The collinearity analysis,
measured with the variance inflation factor (VIF) suggests reducing the number of variables
to decrease variance inflation and avoid overfitting the model [35].

Rainfall forecasts in the 725 pixels of the study area are calculated using the SST data
of the Atlantic regions. Models of Equations (1)–(4) are applied in each of the pixels that
make up the basins of the Bani and Senegal Rivers. The results of Equations (1), (2) and (4)
of each SST region of the Atlantic are compared with the PERSIANN-CDR value of each
pixel (dependent variable). For the stepwise regression model, Equation (3), a combination
was made between all the predictors considering the lag of each of them.

Covariables series and the dependent variable (PERSIANN-CDR) were divided into
two samples, 70% for models’ development and 30% for model validation. This procedure
was carried out using an R script (see supplementary materials: https://github.com/
lebalcazar/sahel). About 600 iterations have been performed. The parameters of the
non-linear model, Equation (4), are calibrated by trial error, once these converge, the best
model parameters are obtained. In the R script, a maximum of 1000 iterations are restricted
to obtain the parameters of the exponential model; however, it was observed that they
converge after 100 iterations.

2.5. Model Assessment

Once the models are obtained for each pixel, an assessment is performed with the
validation sample for each pixel. Next, forecasts rainfall are compared with the observed
data using objective criteria such as adjusted coefficient of determination (R2adj), Equation
(5) and the Akaike information criterion (AIC), Equation (6). Models with significant
parameters (p-value < 0.05) are chosen, R2adj > 0.5 and lower AIC value are chosen, as
well as models that have a lag greater than or equal to six months, reasonable time for
authorities to take preventive measures [31].

R2adj = 1− n− 1
n− k− 1

(
1− R2

)
(5)

where n is the number of observations in the sample, k is the number of model variables
and R2 is the coefficient of determination, Equation (7). R2adj indicates the degree of
effectiveness of independent variables in explaining the response variable.

Increasing of independent variables escalate the value of the quotient. (n− 1)/(n− k− 1).
R2 is reduced as a function of the increment of variables; therefore, R2adj penalizes the addition
of coefficients in the model [36].

AIC = 2k− 2ln(L) (6)

where k is the number of variables in the model and L is the maximum likelihood value for
the estimated model.

The AIC proposed by Akaike [37] is used in model selection. This criterion considers
the goodness of fit and the complexity of the model, based on the penalty for the number
of explanatory variables used. For example, a model with a larger number of explanatory
covariates increases the probability of having a better fit, however, this can result in an
overfitting of the model and is penalized by the AIC.

On the other hand, the coefficient of determination (R2) and Nash–Sutcliffe efficiency
coefficient (NSE) were obtained [38]. In addition, error was calculated with percent bias
(PBIAS, [39]), relative error (RE), and mean absolute error (MAE) [40].

R2 =

 ∑n
i=1

(
obs1 − obs

)(
simi − sim

)
(

∑n
i=1

(
obsi − obs

)2
)1/2(

∑n
i=1
(
simi − sim

)2
)1/2


2

(7)

https://github.com/lebalcazar/sahel
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NSE = 1− ∑n
i=1(obsi − simi)

2

∑n
i=1

(
obsi − obs

)2 (8)

PBIAS =
∑n

i=1(simi − obsi)

∑n
i=1 obsi

× 100 (9)

RE =

∣∣∣∣ obsi − simi
obsi

∣∣∣∣× 100 (10)

MAE =
∑n

i=1|obsi − simi|
n

(11)

where obsi and simi are, respectively, the observed and simulated variable of the month i,
obs and sim are, respectively, observed and simulated mean, and n is the amount of data.

R2 measures the proportion of the variance explained by the model. R2 range varies
between 0 and 1, with 1 being the optimal value, and values greater than 0.50 are considered
acceptable [41].

The NSE is used to determine the relative magnitude of the residual variance and the
variance of the observations. NSE coefficient varies between −∞ and 1, when NSE is equal
to 1, it indicates a perfect simulation of the model. If the NSE equals 0, it indicates that the
predictions of the model are as accurate as the mean of the observed data. A negative NSE
indicates that the observed mean is a better predictor than the model [40,41].

PBIAS is used to determine how well the model simulates the average magnitudes for
the output response of interest. PBIAS is useful for long-term continuous simulations and
allows to identify the average bias of the model simulations. PBIAS range varies between
−∞ and ∞, 0 is the optimal value. Positive values indicate that the model overestimates
the observed rainfall and negative values indicate that the model underestimates the
rainfall [39].

RE is the quotient between the absolute error of the simulated rainfall and the observed
rainfall. This allows to understand the performance of the model among different responses.
In addition, the differences between the observed and simulated values are quantified as
relative deviations. This significantly reduces the influence of absolute differences during
peaks [40].

MAE measures the error of the values calculated by the model. It is calculated and
presented in the same unit of the model; therefore, it is easier to interpret. In addition, it is
very useful in long-term continuous simulations [40]. MAE usually has a magnitude that is
equal to or less than RMSE; however, it gives greater weight to the peaks, so adjustments
must be made using the standard deviation of the observations [41].

3. Results

The most relevant results obtained in this study are presented below.

3.1. Validation of Satellite Products

The process begins with the comparison between the monthly PERSIANN-CDR data and the
monthly gauged rainfall, followed by the comparison between ERA5 monthly mean temperature
and observed monthly mean temperature at 5 Atlantic buoys, Tables 1 and 2, respectively.

Results of the assessment of PERSIANN-CDR and SST products were satisfactory
considering the statistical criteria R2, PBIAS, and MAE. PERSIANN-CDR yields in 20
rain gauges (1983–2014) were between satisfactory to very good (0.510 ≤ R2 ≤ 0.879;
0.1 ≤ |PBIAS| ≤ 25.0; 3.0 ≤ MAE ≤ 58.0) (Table 1). PERSIANN-CDR assessments are
consistent with those obtained by Bâ et al. [8] in 18 rain gauges (1995–2015). The SST
assessment in 5 Atlantic buoys was also very good when comparing the SST ERA5 product
with the observed values in the Atlantic buoys between 1997 and 2019 (0.928 ≤ R2 ≤ 0.991;
0.60 ≤ |PBIAS| ≤ 1.40; 0.20 ≤MAE ≤ 0.38) (Table 2).
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Table 1. Validation of monthly precipitation of the PERSIANN-CDR product with the observed data
of 20 rain gauges between 1983 and 2014.

Rain Gauge R2 PBIAS (%) MAE (mm) N◦ of Data

Tidjikja 0.672 13.2 10.0 104
Kiffa 0.600 −0.1 21.0 115

Nema 0.510 9.0 23.0 116
Matam 0.538 2.3 28.0 120

Nioro-Du-Sahel 0.764 15.4 24.0 122
Bakel 0.756 3.2 30.0 159
Kayes 0.779 16.7 29.0 122

Goudiry 0.688 18.2 36.0 140
Segou 0.833 11.0 26.0 169

San 0.858 2.8 22.0 168
Kita 0.879 13.7 30.0 142

Kedougou 0.682 4.7 51.0 156
Bamako-Ville 0.817 0.8 34.0 140

Bamako-Senou 0.838 8.2 30.0 183
Labe 0.825 25.0 58.0 204

Siguiri 0.784 9.8 40.0 190
Sikasso 0.85 −1.7 29.0 202
Mamou 0.815 11.1 49.0 246
Odienne 0.827 4.1 35.0 120
Korhogo 0.717 −9.2 38.0 95

Table 2. Validation of the SST ERA5 with monthly mean temperature in 5 Atlantic buoys between
1997 and 2019.

Buoys R2 PBIAS (%) MAE (◦C) N◦ of Data

13001 0.977 −1.30 0.36 127
13002 0.991 −0.80 0.23 128
13010 0.983 −1.40 0.38 194
15002 0.987 −0.90 0.27 198
31006 0.928 −0.60 0.20 137

3.2. Classification of the Atlantic Variables

SST, RHUM, and MSLP Atlantic data were processed (456 monthly raster images of
each variable between 1983 and 2020). The PCA and cluster analysis allowed us to divide
the Tropical Atlantic into homogeneous regions. The PCA reduced the set of 456 images
into two principal components that explain 97.3% of the SST variance, 96.0% of the MSLP
variance, and 98.0% of the RHUM variance. The principal components were used in the
cluster analysis. The k-means method and the silhouette method suggest that the optimal
number of clusters is k = 3 for SST and RHUM and k = 2 for MSLP (Figure 2).
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3.3. Selection of Forecast Models

SST of the 3 Atlantic regions (Figure 2) was used in the linear, polynomial, and
exponential models. Cross-correlation analyses showed that SST has a higher correlation
with time lags of 5, 10, and 11 months, respectively, for the SST1, SST2, and SST3 regions.
Then, in the stepwise regression model, the covariables of the SST, RHUM, and MSLP
regions were used (Figure 2), and the indices of the Pacific Niño1 + 2, Niño3.4, Niño4, ONI,
and TNI.

It was observed that the SST is the most influential variable in the WAM and the coeffi-
cient of determination between PERSIANN-CDR and SST in a linear model is greater than
0.70. When the models are applied for each pixel, it is observed that the polynomial model
reproduces better rainfall in the Bani and Senegal River basins, followed by the stepwise
regression model. The highest performance was obtained with the polynomial model and
SST3, the north Tropical Atlantic region, and with a lag of 11 months (NSE = ~0.80). In the
south of the basins, at Mamou, Labe, Odienne, and Korhogo rain gauges, yields were better
with the stepwise regression model with the SST3 region; however, the AIC difference
between these models is negligible. On the other hand, in the north of the Senegal basin, no
model was able to reproduce rainfall with the selection criteria (p-value < 0.05, R2adj > 0.5,
and lower AIC).

To compare the results of the stepwise regression model in the three regions, the
covariates that contribute to improving the explanation of the variance of the phenomenon
are added to the SST. This model provided better results in the SST3 region with an R2adj of
0.845; that is, more than 84% of the precipitation variability is explained by the multivariate
model. However, to avoid overfitting the model, the VIF analysis [35] suggests using only
the SST, RHUM, Niño1 + 2, and TNI covariates.

In the northwest of the Senegal River basin at Bakel, Matam, and Kiffa rain gauges,
some pixels were better with the polynomial model and the SST1 region (Gulf of Guinea);
however, the lag of these simulations is 5 months, which is less than the objectives set in
this research. When comparing the AIC and R2adj between the polynomial model with
SST1 and SST3 regions, the difference is negligible (Figure 3).
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Table 3 shows that the polynomial model yields the highest NSE coefficient values,
followed by the stepwise regression model, the exponential model, and finally, the simple
linear model. In all cases, no model was able to predict rainfall in the northern Senegal
River basin. To have the rainfall forecast over the entire area of the basins, restrictions of
the selection criteria were removed: p-value < 0.05, R2adj > 0.5, AIC less, and lag greater
than or equal to six months. Figure 4 shows the performance of the polynomial model,
measured with the NSE, in the SST1, SST2, and SST3 regions. NSE is found to be higher
with SST of the North Tropical Atlantic (SST3) and an 11-month lag, especially in the south
of the basins, which is the most humid part of the studied basins.

Table 3. Performance of precipitation forecast models, measured with NSE: linear, exponential,
polynomial, and stepwise regression models at pixel-to-point.

Rain Gauges
Models

Linear (lm) Polynomial (Poly) Exponential (nls) Stepwise Regression

Tidjikja - - - -
Kiffa 0.509 0.629 0.627 0.610

Nema 0.541 0.685 0.674 0.585
Matam 0.501 0.673 0.674 0.617

Nioro-Du-Sahel 0.647 0.767 0.707 0.714
Bakel 0.645 0.752 0.677 0.676
Kayes 0.682 0.754 0.705 0.741

Goudiry 0.730 0.820 0.726 0.792
Segou 0.696 0.843 0.839 0.703

San 0.743 0.879 0.873 0.765
Kita 0.782 0.872 0.838 0.802

Kedougou 0.762 0.821 0.790 0.821
Bamako-Ville 0.772 0.865 0.855 0.791

Bamako-Senou 0.770 0.833 0.820 0.794
Labe 0.836 0.853 0.812 0.837

Siguiri 0.816 0.860 0.826 0.837
Sikasso 0.869 0.905 0.888 0.889
Mamou 0.815 0.815 0.755 0.842
Odienne 0.786 0.808 0.787 0.817
Korhogo 0.776 0.776 0.731 0.828

- Not estimated by models.
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Rainfall forecasts with the polynomial model (Figure 4) adequately reproduce seasonal
rainfall of the WAM. Figure 5 shows the spatio-temporal distribution of the rainfall forecast.
It shows that it is temporarily distributed between May and October, mainly in the south of
the Bani and Senegal basins. In July and August, the rainfall is distributed throughout the
basins’ area, with a decrease in rainfall as latitude increases. Rainfall forecasts from 1984 to
2020 are presented in Table A1, Appendix A (as complementary material). The average
rainfall in the period 1984–2020 is ~690 mm year−1, the minimum is ~490 mm in 1985, and
the maximum is ~830 mm in 2016.
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3.4. Comparison of the Forecasts with the Reference Rainfall

According to the PRESASS forecast [14], by 2021, summer rainfall in the Sahel and
Sudan regions was expected to be equivalent to or higher than normal. In addition,
rainfall was predicted to have an early to normal start and a late to normal end. As
historical PERSIANN-CDR data are available, these records were used to obtain the normal
precipitation (1991–2020) as in PRESASS [15].
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The results of this study were compared with those of PRESASS for 2021 as an example.
The gamma distribution function was fitted to each PERSIANN-CDR monthly precipitation
sample of each pixel to determine the quantiles at three characteristic values of probability
of non-exceedance. Figure 6 presents the monthly frequency hyetograph (MFH) at pixels
where a rain gauge is located for the rainy season (May to October) and rainfall of the year
2021. Rainfall quantiles were computed for probabilities of 0.30, 0.50, and 0.70, representing,
respectively, under normal, near normal, and above normal.
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At the beginning of the rainy season, and for all regions, forecasts are around normal
and almost equivalent to observed rainfall (PERSIANN-CDR). From May to October,
forecasts are around normal or over normal in most pixels. In general, the 2021 forecast is
consistent with the forecast of PRESASS [14].

When comparing the average rainfall of the forecast for the year 2021 with the normal
precipitation, 90% of the area corresponds to wet regions (Figure 7). In the south region of
the Bani and Senegal River basins and in the northern end of the Senegal River basin, the
forecast is classified as around normal.
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Table 4 shows the comparison between the rainfall forecasts (May–October) with the
PERSIANN-CDR for the years 2017–2021. It was found that the forecasts (FRC) are lower
but close to the observed rainfall (PERSIANN-CDR). The relative error varies between
1.1% and 38%. However, in the northern end of the Senegal River basin (such as Tidjikja,
see Table A2, Appendix A), the relative error can exceed 100% because the models do not
simulate rainfall well enough in this area.

Table 4. Validation of the forecasted rainfall (FRC) in a 4-pixel sample with the “observed” rainfall
PERSIANN-CDR (CDR) at the point-to-pixel from the last 5 years.

Year
Labe Nema Nioro-Du-Sahel Segou

CDR FRC RE CDR FRC RE CDR FRC RE CDR FRC RE

2017 1726.7 1815.4 5.1 312.4 295.5 5.4 571.8 618.2 8.1 781.7 795.1 1.7
2018 1595.0 1863.4 16.8 380.8 311.4 18.2 689.4 648.0 6.0 759.5 830.5 9.3
2019 1989.0 1767.4 11.1 262.7 282.8 7.7 661.4 593.7 10.2 907.8 765.4 15.7
2020 1682.7 1859.6 10.5 336.5 315 6.4 772.9 653.5 15.4 910.3 836.2 8.1
2021 1802.5 1879.0 4.2 231.9 321.4 38.6 609.3 665.5 9.2 841.8 850.6 1.0
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We measure the performance of the forecast model on each pixel, a sample of 4 pixels
where the weather stations are located. The errors for the remaining pixels are presented in
Table A2, Appendix A.

4. Discussion
4.1. Rainfall Distribution

In West Africa, rainfall has a negative gradient related to latitude. In the south, in the
upper part of the Bani and Senegal River basins, precipitation is about 2800 mm year−1,
while in the north, it is about 100 mm year−1 [8]. The humidity of West Africa is almost
entirely caused by WAM. The wet period is from May to October in the south of the
basins [4,6], and the rainiest months are July–August–September, in the area [7,8].

Previous studies in the Sahel report several hypotheses to describe the drought that
occurred in the last decades [31,42,43]. The most significant ones are listed below. Cooling
of the SST in the north Tropical Atlantic and sudden warming in the south leads to the
migration of the ITCZ further south, causing lower humidity in the region [2,9,32]. In
addition, the associated events such as El Niño and La Niña influence rainfall patterns of
tropical areas [42].

Satellite products were validated with observations in situ. PERSIANN-CDR [17]
precipitation and temperature product data were compared with the rain gauge data at
pixel-to-point, and the coefficient of determination was calculated. Results are consistent
with those reported in previous studies in the same region [8,24,25]. It is important to
highlight that the SST data were validated with observations on the Atlantic buoys at
pixel-to-point. The results were very good, and the R2 was higher than 0.93.

4.2. Atlantic Regions

Statistical methods of PCA and cluster analysis were used to regionalize SST, RHUM,
and MSLP of the Tropical Atlantic. Grouping into homogeneous regions optimizes the
computing time of the forecasting processes. In recent studies, different techniques
have been used to reduce the spatial-temporal dimension of the variables. For instance,
Sittichok et al. [13] used PCA methods, canonical correlation, and stepwise regressions be-
tween the Atlantic and Pacific to reduce the number of components and select the optimal
lag. Folland et al. [4] grouped the 2.5◦ × 2.5◦ SST into 10◦ × 10◦ cells to reduce the number
of components. Studies carried out by Gado Djibo et al. [2,31] used the method proposed by
Sittichok et al. [12,13] to estimate optimal lag. In addition, they used Bayesian algorithms
to detect change points for the purpose of combining models with dynamic parameters.

4.3. Rainfall Forecasts

The performance of the linear and exponential models evaluated with the NSE criteria
provided values in the ranges of (0.509, 0869) and (0.627, 0.888), respectively, for the
20 pixels where rain gauges are located (Table 3). For these pixels, the NSE results of the
stepwise regression model were between 0.585 and 0.889. Sittichok et al. [13] also used a
stepwise model and obtained an NSE of 0.387 (Table 5).

Rainfall estimates with the polynomial model and the SST of the tropical north Atlantic
yielded the best results. NSE varies between 0.629 and 0.905, with a lag of 11 months.
Forecasts were better in the southern basins of the Bani and Senegal Rivers. However, in
the northern part of the Senegal River basin (desert area), none of the four models was able
to reproduce the rainfall with the selection criteria. To have one model for each pixel of this
dry region, restrictions on the criteria were removed, and the models with the lowest AIC
were selected. It seems that SST alone cannot explain the dynamics of precipitation in the
Sahara. This region is characterized by very low annual rainfall (<100 mm). Several factors
may cause this permanent drought. The high temperatures mean that the sea humidity
does not reach the area. The extremely overheated winds constitute barriers to this arrival
of humidity. Other factors should be considered for the seasonal rainfall forecasting in
this area.
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Table 5. Comparison of results of the precipitation forecast models of this study with previous studies.

Author Data/Location Sources and
Characteristics

Models (Rainfall
Forecast)

Lag
(Months) Efficiency

In this study

Atlantic SST
(0.25◦ × 0.25◦), PCA
cluster analysis/Bani

basin

ERA5 Second-order
polynomial 11

SST: NSE mean = 0.867
SST: NSE max = 0.926
SST: NSE min = 0.751

In this study

Atlantic SST
(0.25◦ × 0.25◦), PCA

cluster analysis/Senegal
basin

ERA5 Second-order
polynomial 11

SST: NSE mean = 0.711
SST: NSE max = 0.916
SST: NSE min = 0.133

Sittichok et al. [12,13]

Atlantic and Pacific
SST/(2◦ × 2◦),

combination of regression,
PCA and ACC/Sirba

basin

Meteorology and Water
Resource Centre of
Ceara State, Brazil

Stepwise regression 5
12

Atlantic SST NSE = 0.231
Pacific SST NSE = 0.387

Gado Djibo et al. [2]

SLP, RHUM,
Ta, zonal wind and

meridional
wind/Sirba basin

NCEP- DOE Reanalysis
(NOAA), 2.5◦ × 2.5◦

Linear

SLP: 0
RHUM: 8

Ta: 7
VWIND: 8
UWIND: 7

SST: 12

SLP: NSE = 0.46
RHUM: NSE = 0.52

Ta: NSE = 0.53
VWIND: NSE = 0.28
UWIND: NSE = 0.32

SST: NSE = 0.34

Non-linear
SLP: 9

RHUM: 7
Ta: 8

SLP: NSE = 0.31
RHUM: NSE = 0.36

Ta: NSE = 0.45

Gado Djibo et al. [31] Ta, SLP, RHUM Climatic Research Unit Linear
Ta: 14
SLP: 0

RHUM: 8

Ta: NSE = 0.76
SLP: NSE = 46

RHUM: NSE = 0.52

Garric et al. [44] Gulf of Guinea SST CRU, NCEP/NCAR,
ECMWF)

Linear, stepwise
regression 12 SST: r = 0.67

Folland et al. [4] SST

Meteorological Office
Historical Sea Surface
Temperature data set
version 3 (MOHSST3)

Stepwise regression
Linear Discriminant 1 SST: r = 0.54

SST: r = 0.72

Furthermore, for the pixels of the Bani River basin, the minimum value of NSE was
greater than 0.696, and the lowest maximum value was 0.869 for each of the four models.
Those values for the pixels of the Senegal River basin were 0.164 and 0.855.

The monthly rainfall forecasts using the polynomial model of each pixel were cal-
culated for the historical period of PERSIANN-CDR. Appendix A (Table A1) presents
forecasts for the two basins. Comparison between forecasts and PERSIANN-CDR with
their corresponding relative error (RE) are given in Appendix A (Table A2) at 20 pixels
where gauges are located. RE is small for all pixels except for the one corresponding to
Tidjikja, located in the Mauritanian desert. Overall mean relative error was about 12.6%.

Findings of research show that the SST of the north of the Tropical Atlantic and the
SST of the Gulf of Guinea has a strong teleconnection with rainfall at the Sahel. The average
NSE was 0.80, and the maximum NSE was 0.926. MAE was ~30 mm month−1, and the
polynomial model was the one with the lowest error. Gado Djibo et al. [31] obtained
satisfactory results with the Bayesian method of multiple point change and air temperature
(NSE = 0.76, lag = 14 months). In another study, Gado Djibo et al. [2] combined linear
models and reported the following results, with air temperature (NSE = 0.53, lag 7 months),
with SST (NSE = 0.34, lag = 12 months), RHUM (NSE = 0.52, lag = 8 months). It is worth
noting that a non-linear model does not always turn out to be better than a linear model [31].
Results from the polynomial model are 26% and 42% better than those reported in previous
studies [2,31] and 46% better than the model of [12] (Table 5).

5. Conclusions

The availability of long series of global satellite-based meteorological products with
high spatial and temporal resolution is increasingly facilitating and stimulating the im-
plementation of rainfall forecasting models, particularly in undergauged regions. More
so, if one considers the challenges that arise in Africa due to climate change and intensify-
ing rainfall variability. The forecasting models using these satellite datasets can provide
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valuable up-to-date information useful to decision makers. Millions of people in the Sahel
region, who have suffered from the effects of droughts and floods, will be able to benefit
from the information provided by these forecasting tools to better anticipate the planning
of activities related to water, particularly for agriculture. During the last decades, several
authors tried to develop models that would predict whether the rainy season would be
wet, normal, or dry in the Sahel region. Statistical seasonal rainfall forecasting models are
more often used than physically based models because of their simplicity.

This research dealt with seasonal rainfall forecasting for the Bani and Senegal basins.
The Atlantic sea surface temperature (SST), the mean sea level pressure (MSLP), the relative
humidity (RHUM), and five El Niño indices were used as explanatory variables, and
PERSIANN-CDR rainfall data were used as a dependent variable.

Lineal, polynomial, exponential, and stepwise regression models were developed to
forecast rainfall for each of the 725 pixels of the two basins. These models were built using
70% of the satellite datasets available from 1983 to 2020. The remaining 30% was used for
model validation. The strategy was to find a model that satisfied the criteria: R2adj > 0.5
and lower AIC value, as well as a model that has a lag (lead time) greater than or equal to
six months, a reasonable time for authorities to take preventive measures.

Based on the principal component analysis and cluster analysis, three SST, three
RHUM, and two MSLP homogeneous regions were defined. The study revealed that the
North Atlantic SST, a region of approximately 11.5 × 106 km2 (16◦N–40◦N y 9◦W–39◦W),
has a better teleconnection with rainfall in the two basins with a lead time of eleven months.
The Gulf of Guinea SST also has a suitable teleconnection with rainfall over the region but
with a lead time of five months. Finally, all models were built using datasets of the North
Atlantic region with a lead time of eleven months.

All four models provided suitable results in all the pixels of the Bani River basin based
on the numerical criteria; the smallest NSE value was about 0.696 with the linear model.

For the pixels of the Senegal River basin, each of the four models provided suitable
results, but up to latitude 16.5◦N approximately. None of the models was able to forecast
rainfall relatively precisely in the far north of the Senegal River basin that corresponds
to the Sahara. For this region, other predictors (such as temperature, wind speed, and
direction) or other types of models should be considered.

The results of the stepwise regression model are not very different from those of the
linear model. This means that the other explanatory variables did not contribute much to
explain the phenomenon. It is understandable because SST is the driving force of many of
these variables.

The best of the four models for rainfall forecasting in the study area was the second-
order polynomial model. For the Bani River basin, values of NSE were between 0.751 and
0.926, with a mean of about 0.867. However, for the Senegal River basin, these values were
0.133, 0.916, and 0.711, respectively. Moreover, the relative error calculated for the pixels
where the rain gauges are located was globally quite low, sometimes even close to zero.
Overall, it is easy to say that the polynomial model gives suitable rainfall forecasts.

The statistical models used in this study are easy to apply, and the satellite datasets are
accessible to users. Finally, this study aims to make a significant contribution to improving
the effectiveness of forecasts more than six months in advance, which is enough time for
agricultural planning and decision making.

Supplementary Materials: A script for forecast models can be found at https://github.com/lebalcazar/
sahel.
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Appendix A

Table A1. Monthly rainfall forecasts (mm) in the Bani and Senegal River basins.

Year Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Total

1983 - - - - - - - - - - - 0 -
1984 0 0 0 0 26.1 82.4 133.6 152 96.7 35.4 0 0 526
1985 0 0 0 0 19 78.2 127.7 140.8 92.1 34.6 0 0 492
1986 0 0 0 0 38.1 106.3 153.8 157.1 90.9 29.3 0 0 576
1987 0 0 0 0 33.5 98.8 159 135.2 82.7 36.6 0 0 546
1988 0 0 0 0 37.6 117 162.5 174.1 108.6 37.1 0 0 637
1989 0 0 0 0 40.9 101.8 174.6 162.1 107.1 37.9 0 0 624
1990 0 0 0 0 57.1 131.2 189.3 158.9 95.5 36.1 0 0 668
1991 0 0 0 0 36.9 126 182.5 194.7 117.8 48.4 11.7 0 718
1992 0 0 0 0 37.9 115.8 195.4 182.9 100.9 42 10.6 0 686
1993 0 0 0 0 33.8 98.7 170.2 160.2 89.1 30.7 10.2 0 593
1994 0 0 0 0 31.6 85.6 154.1 161 93.7 35.5 0 0 562
1995 0 0 0 0 37.2 111.6 166.7 167.6 108.4 51.9 13.3 0 657
1996 0 0 0 10.4 54.8 133.8 186.5 170.2 111.9 44.9 0 0 712
1997 0 0 0 0 29.5 91 163.9 171.1 111.7 46.6 0 0 614
1998 0 0 0 0 34.2 100.9 171.8 173.1 111.7 45.2 10.9 0 648
1999 0 0 0 0 47.5 118.8 184.1 186.6 125.5 71.4 19.1 0 753
2000 0 0 0 10.5 42.7 129.6 201.4 195.1 122.2 47.8 11.4 0 761
2001 0 0 0 0 45.2 111.8 165.4 171.3 118.1 51.3 11.3 0 674
2002 0 0 0 0 40.2 117.1 198.7 196.2 135.2 52 13 0 752
2003 0 0 0 0 34.2 92.9 160.8 165.6 110.3 48.4 13.2 0 625
2004 0 0 0 0 54.4 151.5 219.2 203.5 126.5 52.3 14.5 0 822
2005 0 0 0 0 54.7 132.6 207.5 186.1 122.3 54.5 15.3 0 773
2006 0 0 0 0 38.3 122.4 180.3 177.5 114.7 51 14.2 0 698
2007 0 0 0 0 43.6 120.9 194.4 182 121.7 59.8 14.7 0 737
2008 0 0 0 0 33.7 102.3 152.8 152.6 111.1 50.6 13.6 0 617
2009 0 0 0 0 53 129.9 188.5 190.1 116.8 45.5 10.3 0 734
2010 0 0 0 0 48.9 132.1 202.8 190.3 130.2 58.3 14.1 0 777
2011 0 0 0 0 37.6 121 184.8 179.4 124.8 57.9 12.1 0 718
2012 0 0 0 0 41.4 107.2 165.6 190.6 126.8 47.1 12.9 0 692
2013 0 0 0 0 48.1 117.6 211.2 198.3 121.3 47.8 11.7 0 756
2014 0 0 0 0 37.8 126.7 182.1 175.7 125.2 53.4 12.5 0 713
2015 0 0 0 0 41.1 126.1 190.6 200.2 134.7 60.2 13.4 0 766
2016 0 0 0 0 52.5 148.2 207.4 211.9 136.1 55.2 15.8 0 827
2017 0 0 0 11.5 52.2 121.8 187.3 183.4 123.7 58.5 16.2 0 755
2018 0 0 0 0 49.6 126.6 193 183.1 134.1 68.7 21.9 0 777
2019 0 0 0 10.1 47.6 111.9 178.9 194.1 121.2 48.6 14.2 0 727
2020 0 0 0 0 48.7 125.7 209.3 196.1 121.7 56.7 17.9 0 776

https://chrsdata.eng.uci.edu
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://www.ndbc.noaa.gov/
https://www.ndbc.noaa.gov/
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Table A2. Validation of the forecasts (FRC) with PERSIANN-CDR rainfall (CDR) at pixel-to-point
from the last 5 years (complement of Table 4).

Name Year CDR FRC ER Name Year CDR FRC ER

Bakel 2017 519 613 18.1 Korhogo 2017 846 996 17.7
Bakel 2018 596 639 7.2 Korhogo 2018 1043 1013 2.9
Bakel 2019 530 591 11.5 Korhogo 2019 1141 976 14.5
Bakel 2020 722 643 10.9 Korhogo 2020 935 1008 7.8
Bakel 2021 581 653 12.4 Korhogo 2021 904 1016 12.4

Bamako-Senou 2017 950 1057 11.3 Mamou 2017 1801 1734 3.7
Bamako-Senou 2018 1015 1096 8.0 Mamou 2018 1497 1764 17.8
Bamako-Senou 2019 1318 1022 22.5 Mamou 2019 1743 1698 2.6
Bamako-Senou 2020 1219 1100 9.8 Mamou 2020 1624 1753 7.9
Bamako-Senou 2021 1246 1116 10.4 Mamou 2021 1692 1765 4.3
Bamako-Ville 2017 908 1011 11.3 Matam 2017 298 354 18.8
Bamako-Ville 2018 963 1050 9.0 Matam 2018 303 370 22.1
Bamako-Ville 2019 1236 977 21.0 Matam 2019 260 340 30.8
Bamako-Ville 2020 1184 1053 11.1 Matam 2020 492 373 24.2
Bamako-Ville 2021 1150 1069 7.0 Matam 2021 425 380 10.6

Goudiry 2017 717 781 8.9 Odienne 2017 1230 1365 11.0
Goudiry 2018 730 813 11.4 Odienne 2018 1395 1397 0.1
Goudiry 2019 686 754 9.9 Odienne 2019 1668 1332 20.1
Goudiry 2020 755 817 8.2 Odienne 2020 1463 1394 4.7
Goudiry 2021 780 830 6.4 Odienne 2021 1441 1407 2.4

Kayes 2017 780 815 4.5 San 2017 742 790 6.5
Kayes 2018 794 851 7.2 San 2018 855 824 3.6
Kayes 2019 797 784 1.6 San 2019 826 761 7.9
Kayes 2020 896 857 4.4 San 2020 917 829 9.6
Kayes 2021 834 871 4.4 San 2021 722 843 16.8

Kedougou 2017 1223 1261 3.1 Siguiri 2017 1068 1282 20.0
Kedougou 2018 1112 1307 17.5 Siguiri 2018 1193 1321 10.7
Kedougou 2019 1254 1220 2.7 Siguiri 2019 1291 1245 3.6
Kedougou 2020 1220 1310 7.4 Siguiri 2020 1277 1321 3.4
Kedougou 2021 1210 1329 9.8 Siguiri 2021 1413 1337 5.4

Kiffa 2017 343 321 6.4 Sikasso 2017 988 1105 11.8
Kiffa 2018 328 336 2.4 Sikasso 2018 1252 1141 8.9
Kiffa 2019 265 309 16.6 Sikasso 2019 1168 1072 8.2
Kiffa 2020 444 339 23.6 Sikasso 2020 1172 1142 2.6
Kiffa 2021 308 345 12.0 Sikasso 2021 1123 1157 3.0
Kita 2017 1024 1138 11.1 Tidjikja 2017 103 133 29.1
Kita 2018 1116 1182 5.9 Tidjikja 2018 106 140 32.1
Kita 2019 1288 1100 14.6 Tidjikja 2019 74 128 73.0
Kita 2020 1352 1186 12.3 Tidjikja 2020 182 141 22.5
Kita 2021 1219 1204 1.2 Tidjikja 2021 60 143 138.3
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