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Abstract: Drought is an extremely dangerous natural hazard that causes water crises, crop yield
reduction, and ecosystem fires. Researchers have developed many drought indices based on ground-
based climate data and various remote sensing data. Ground-based drought indices are more
accurate but limited in coverage; while the remote sensing drought indices cover larger areas but
have poor accuracy. Applying data-driven models to fuse multi-source remote sensing data for
reproducing composite drought index may help fill this gap and better monitor drought in terms of
spatial resolution. Machine learning methods can effectively analyze the hierarchical and non-linear
relationships between the independent and dependent variables, resulting in better performance
compared with traditional linear regression models. In this study, seven drought impact factors from
the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor, Global Precipitation
Measurement Mission (GPM), and Global Land Data Assimilation System (GLDAS) were used to
reproduce the standard precipitation evapotranspiration index (SPEI) for Shandong province, China,
from 2002 to 2020. Three machine learning methods, namely bias-corrected random forest (BRF),
extreme gradient boosting (XGBoost), and support vector machines (SVM) were applied as regression
models. Then, the best model was used to construct the spatial distribution of SPEI. The results
show that the BRF outperforms XGBoost and SVM in SPEI estimation. The BRF model can effectively
monitor drought conditions in areas without ground observation data. The BRF model provides
comprehensive drought information by producing a spatial distribution of SPEI, which provides
reliability for the BRF model to be applied in drought monitoring.

Keywords: drought; machine learning; SPEI; integration; remote sensing; Shandong province

1. Introduction

Drought is an extremely hazardous natural disaster, which has serious impacts on
the natural environment, human production, and life [1–4]. Drought is a natural disaster
caused by insufficient precipitation and subsequent hydrological imbalance [5], which
can occur under all climatic situations and is extremely harmful [6,7]. Drought can lead
to crop failure, causing serious food security problems and economic losses [8,9]; reduce
water sources such as lakes and rivers, directly affecting water distribution and energy
supply [10]; and also increase plant mortality, cause ecosystem fires, and weaken the ability
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of vegetation to absorb carbon [11–13], thus affecting the land carbon storage and storage
potential. Due to frequent global climate change, the frequency and intensity of droughts
are more variable, making them difficult to predict [14]. Depending on the nature and
mechanisms by which droughts affect ecosystems, they can be classified as meteorological,
agricultural, hydrological, and socioeconomic droughts, which are interrelated [15,16].
For example, a prolonged meteorological drought can reduce available water resources
at the surface, leading to hydrological drought, which in turn can lead to soil moisture
shortages, resulting in agricultural drought [17]. Socioeconomic drought is caused by
an imbalance between water supply and demand, which is due to a combination of the
three other drought classifications. In recent years, drought has increasingly affected
the major summer maize and winter wheat planting areas in North China [18]. After
June 2002, Shandong province experienced high temperatures and little rainfall and was
basically under drought condition [19]. The drought-affected area of the whole province
reached 47.75 square kilometers [20]. From the winter of 2010 to the spring of 2011, an
extreme drought occurred in the main winter wheat-producing areas, affecting 112 square
kilometers of farmland. In 2017, the high temperature continued in Yantai, Qingdao, in
Shandong province; the reservoirs dried up and the farmland almost lost its harvest [21,22].
With the increasing frequency and severity of drought, ecological stability, agricultural
production, and human life in Shandong province have been seriously affected.

To understand the process and impact of drought, we should identify the characteris-
tics such as intensity, duration, and spatial extent [10]. The main problem in monitoring
and analyzing drought is the use of appropriate indicators. Drought indices are mainly
calculated using single [23] or combined [24] drought-affected variables to convey various
drought characteristics. Thus, researchers have developed more than 160 drought indices,
each with advantages and limitations that should be considered. Drought indices are
calculated in two categories: drought indices based on meteorological observations and
drought indices based on remotely sensed observations [25]. Ground-based drought indices
are calculated based on ground-measured meteorological variables, such as precipitation
and temperature [26], which allow accurate monitoring of drought conditions around
climate stations. Among them, the standard precipitation evapotranspiration index (SPEI)
considers both precipitation and temperature in its calculation, while the calculation of
the standard precipitation index (SPI) considers only precipitation [7,24]. Thus, SPEI can
accurately assess drought under different climatic conditions and time scales. SPEI, which
has been widely adopted by researchers, can be calculated at different time scales represent-
ing different drought categories [27,28]. However, these indices are calculated based on
site data, which cannot depict the spatial distribution of drought [29]. Although advanced
spatial interpolation techniques may help to assess drought conditions in observation-
scarce regions, drought monitoring in interpolated areas is not accurate because of the
complex topography of the interpolated areas and the uncertainty of the interpolation
algorithm [30].

Remote sensing data can provide continuous data in time and space, which is more
helpful to understand the spatial distribution of drought conditions than ground-based
observations [31,32]. Researchers used the remote sensing data from various sensors to
calculate remote sensing drought indices, which effectively monitored meteorological
drought and agricultural drought [33,34]. The most widely used vegetation indexes for
drought monitoring include the normalized difference vegetation index (NDVI) and the
enhanced vegetation index (EVI) [35–37]. With the development of remote sensing products,
drought indexes based on precipitation, temperature, evapotranspiration, and soil moisture
data have also been developed, such as the soil moisture condition index (SMCI) and the
precipitation condition index (PCI) [34,38]. Therefore, the remote sensing drought indices
can capture the detailed spatial characteristics of drought [39]. However, the recording time
of remote sensing observation data is relatively short, so they cannot fully substitute for
ground-based drought indices. In addition, the quality of remote sensing data is influenced
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by the quality of the retrieval algorithm and atmospheric conditions [2]. Thus, the reliability
and precision of these indices are still problematic [40].

To better monitor drought, researchers have tried using various models for drought
monitoring. Historical forecasting research has revolved around the use of stochastic
models, such as the autoregressive integrated moving average model (ARIMA), which can
understand seasonality and lags in time series [41,42]. However, the essence of drought
is nonlinear, so subsequent studies have used three models, which are the physical [43],
data-driven [44], and hybrid models [45]. Recently, research has increasingly focused on
the use of data-driven models, which have been shown to improve prediction results
compared with physically-based models [46,47]. Artificial neural networks (ANN) have
been one of the most widely used data-driven models in the past, and have proven to
be an effective tool for making predictions in the short and long term [48–51]. However,
non-stationarity in drought estimation cannot be handled due to the presence of lags in
the time series data [40]. Considering the above limitations, interest in the use of machine
learning approaches has been increasing. In addition, more advanced machine learning
methods have been developed and widely recognized, and some of them have been applied
to drought research [25,29]. Machine learning has the characteristics of non-linearity, high
estimation accuracy, and high generalization ability, which can effectively handle large
amounts of data [52,53]. With the accumulation of long time series remote sensing data,
machine learning has become a major method used to monitor droughts. Reproducing the
ground-based drought index by fusing multi-source remote sensing data through machine
learning models expands the spatial scale of the site index to monitor drought and can
provide a methodological reference for assessing the spatial distribution of drought [25,29].

Random forest (RF) is a representative bagging integrated learning algorithm. The
RF estimation is based on the mean value of each tree result in the forest [54], which can
avoid unreasonable prediction results. However, due to the nature of averaging, RF may
lead to bias when dealing with extreme observations [55]. Through bias correction, bias-
corrected random forest (BRF) has better results than traditional RF models in estimating
extreme values. XGBoost [56] is an ensemble learning algorithm based on boosting. It is
improved based on gradient-augmented trees and is an efficient implementation of the
gradient boosting decision tree (GBDT). Contrary to RF, the results obtained by boosting
are a weighted accumulation of all estimations and are very sensitive to anomalies. Support
vector machine (SVM) is the closest machine learning method to deep learning. Nonlinear
SVM is equivalent to a two-layer neural network. If multiple kernel functions are added
to nonlinear SVM, a multi-layer neural network can be simulated. Due to its powerful
classification and regression capabilities, SVM is widely used in remote sensing and image
classification. These three machine learning algorithms were used for this study.

Drought is related to meteorological conditions, soil moisture, surface temperature,
and vegetation greenness. Therefore, this study used precipitation, soil moisture, surface
temperature, and vegetation index as independent variables of the machine learning
algorithm based on the elements that lead to the occurrence of drought. The SPEI calculated
from the meteorological station observation data was used as the dependent variable. The
primary aim of this research is to evaluate the performance of three machine learning
approaches: BRF, XGBoost, and SVM to estimate SPEI based on these drought factors in the
Shandong province of China. The best model was used to depict the spatial distribution
map of SPEI in typical drought years to simulate drought conditions over the study area
from 2002–2020.

2. Materials and Methods
2.1. Study Area

The study area is Shandong province (34◦22′E–38◦23′E, 114◦09′N–122◦43′N) in north-
ern China, which covers an area of about 157,900 km2 and contains a water area of 2100 km2.
The overall geomorphic types include mountains, hills, platforms, basins, plains, lakes,
and other types. In terms of climate, Shandong province belongs to a temperate monsoon
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climate. The average annual precipitation is generally 554~1048 mm. The precipitation
changes greatly in time and space, and decreases from southeast to north [57]. The main
cause of drought in Shandong is the lack of precipitation, and drought occurs very easily
in spring and winter [58]. Winter wheat and summer maize are the primary crops in the
agricultural production areas of Shandong province [59]. Drought has a great impact on
the growth of these two crops. Figure 1 shows the survey of the study area. It uses the IGBP
land type classification standard in MCD12Q1 data to classify the land use types of Shan-
dong into forest, shrublands and savannas, grasslands, croplands, permanent wetlands,
urban and built-up lands, permanent snow and ice, barren areas, and water bodies.
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Figure 1. Location and land cover types of the study area in Shandong province.

2.2. Data
2.2.1. MODIS Data

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a medium-resolution
imaging spectrometer on board the Terra and Aqua satellites, and is a key instrument in the
U.S. Earth Observing System (EOS) program for observing global biological and physical
processes [60]. The MODIS provides valuable information by detecting electromagnetic
energy in a wide spectral range to study the Earth’s ecological, meteorological, and hy-
drological conditions. The MODIS products used during the 2002–2020 research period
were downloaded from NASA’s official website (http://reverb.echo.nasa.gov, accessed
on 12 February 2021), including land cover type product MCD12Q1, vegetation index
product MOD13A3, and land surface temperature product MOD11A2. MCD12Q1 is a land
cover type product which has a temporal resolution of years and a spatial resolution of
500 m; MOD13A1 is the surface vegetation index product synthesized by 1 month values,
with a spatial resolution of 1 km. NDVI and EVI data were used. MOD11A2 is a surface
temperature product which has a temporal resolution of 8 days and a spatial resolution of

http://reverb.echo.nasa.gov
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1 km (Table 1). Surface temperature products are synthesized into monthly values by the
mean synthesis method [61]. All data were resampled to 500 m spatial resolution.

Table 1. Remote sensing data used in this study.

Data Temporal
Resolution

Spatial
Resolution Time Span Source

Precipitation 1-month 0.1◦ 2001~2020 GPM
NDVI 1-month 1 km 2002~2020 MODIS
EVI 1-month 1 km 2002~2020 MODIS
LST 8-day 1 km 2002~2020 MODIS

Soil moisture 1-month 0.25◦ 2002~2020 GLDAS
Evapotranspiration 1-month 0.25◦ 2002~2020 GLDAS

Potential evapotranspiration 1-month 0.25◦ 2002~2020 GLDAS

2.2.2. GPM Data

The Global Precipitation Measurement Mission (GPM) is an international project led by
NASA and JAXA. It is an international network of satellites providing the next generation
of global rain and snow observations. GPM builds on the Tropical Precipitation Measuring
Mission (TRMM) by deploying a core satellite carrying an advanced radar/radiometer
system to measure precipitation from space [62]. The GPM IMERG precipitation dataset
has temporal resolution of one month and spatial resolution of 0.1◦, which can be retrieved
through NASA (https://search.earthdata.nasa.gov/, accessed on 17 February 2021). To
assess the drought-lagged response of precipitation, we calculated the means of one-month
and three-month time scales, and the results were resampled to 500 m spatial resolution.

2.2.3. GLDAS Data

Evapotranspiration, potential evapotranspiration, and soil moisture data are stemmed
from GLDAS 2.1 (Global Land Data Assistance System Version 2.1) datasets, and their
temporal and spatial resolutions are monthly and 0.25◦ × 0.25◦, respectively (https://
ldas.gsfc.nasa.gov/gldas, accessed on 3 March 2021). GLDAS is a system combining
satellite measurement and ground measurement. It applies advanced and complex surface
modeling and data assimilation methods to conduct various continuous estimates of surface
state and flux (such as soil moisture, soil temperature, heat flux, and evaporation). Monthly
soil moisture, potential evapotranspiration, and evapotranspiration were obtained with a
spatial resolution of 0.25◦ × 0.25◦ using the GLDAS-2.1 dataset, and were resampled to
500 m spatial resolution.

2.2.4. Observation Data

This study used the meteorological data observed by the stations of China Meteoro-
logical Data Network (http://data.cma.cn/, accessed on 10 March 2021), including the
monthly precipitation, average temperature, and other data of Shandong meteorological
stations from 2001 to 2020. Among them, there are 23 meteorological stations, and their
spatial distribution is shown in Figure 1.

2.3. Method
2.3.1. Modeling Methodology

All procedures for agricultural drought assessment based on remote sensing data and
model simulation data in this study are illustrated by the framework in Figure 2. Using
the remote sensing drought factors calculated from multi-sensor remote sensing data, we
utilized bias-corrected random forest (BRF), extreme gradient boosting (XGBoost), and sup-
port vector machines (SVM) to estimate SPEI to analyze the drought in Shandong province.

https://search.earthdata.nasa.gov/
https://ldas.gsfc.nasa.gov/gldas
https://ldas.gsfc.nasa.gov/gldas
http://data.cma.cn/
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Figure 2. Workflow of this study.

Firstly, ground-based drought index SPEI is calculated from the meteorological station
data (precipitation and temperature) of Shandong province as the dependent variable of our
model input. Secondly, the obtained remote sensing data are converted into images with
500 m spatial resolution employing projection coordinate conversion, resampling, band op-
eration, and clipping through MRT, ArcGIS, and python, and through maximum/minimum
values. Then, aiming at Shandong province, three adaptive machine learning approaches,
namely, XGBoost, BRF, and SVM, are established to estimate agricultural drought by using
remote sensing drought factors, and the best model is determined by model performance
and stability evaluation in Shandong province. According to the best model, the relative
importance of each influencing factor was obtained and compared with the Pearson cor-
relation coefficient of each influencing factor with SPEI. Subsequently, the best drought
monitoring model is used to create the drought spatial distribution map of Shandong
province, and the SPEI spatial distribution map estimated by the model is used to analyze
the drought situation of Shandong province.
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2.3.2. Standardized Precipitation Evapotranspiration Index

The standardized precipitation evapotranspiration index (SPEI) has received extensive
attention in the field of drought analysis [24]. An extension of the widely used SPI, SPEI
considers both precipitation and temperature, which are used to calculate evapotranspira-
tion information [63]. Therefore, unlike SPI, SPEI captures the main impact of temperature
rise on water requirement.

The shorter time scale SPEIs are appropriate to monitor meteorological and agricultural
drought [64], such as the one-month time scale SPEI (SPEI-1) can monitor meteorological
drought, the three-month and six-month time scale SPEIs can monitor vegetation, agri-
cultural droughts, and soil moisture dynamics [65]; while the longer time scale SPEIs are
appropriate to monitor hydrological droughts [27,28]. In this study, three-month time scale
of SPEI was selected.

The calculation steps of SPEI-3 are as follows [24]:

(1) Calculation of monthly potential evapotranspiration using Thornthwaite method:

PET = 16K
(

10T
I

)m
(1)

In Equation (1), K is the correction factor based on latitude, T is the monthly average
temperature, I is the total heating index, and m is a constant.

I = ∑12
i=1

(
T
5

)1.514
(2)

m = 6.75× 10−7 I3 − 7.71× 10−5 I2 + 1.792× 10−2 I + 0.49 (3)

(2) Calculate the difference between precipitation and potential evapotranspiration for
each month.

Di = Pi − PETi (4)

In Equation (4), Pi is the monthly precipitation, PETi is the monthly potential evap-
otranspiration, and i denotes the month. The establishment of climate water balance
accumulation at different time scale sequences is as follows:

Dk
n = ∑k−1

i=0 (Pn−i − PETn−i) (5)

In Equation (5), k is the time scale and takes the value of 3, and n is the number of
calculations.

(3) To normalize Di, first, a Log-logistic probability density function is used to build the
data series:

f (x) =
β

α
(

x− y
α

)
β−1

[1 + (
x− y

ε
)]
−2

(6)

In Equation (6), α is the scale parameter and β is the shape parameter, which are
the origin parameters obtained by the linear moment method, and then the cumulative
probability of the Di density function is:

F(x) = [1 + (
α

x− y
)

β
]
−1

(7)

(4) Under normal normalization of the cumulative probability density function, the
probability of exceeding a certain Di value is P = 1− F(X) and the probability of
weighted moments are ω =

√
−2ln(P).
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When P ≤ 0.5,

SPEI = ω− C0 + C1ω + C2ω2

1 + d1ω + d2ω2 + d2ω3 (8)

When P > 0.5,

SPEI =
C0 + C1ω + C2ω2

1 + d1ω + d2ω2 + d2ω3 (9)

In Equations (8) and (9), C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788,
d2 = 0.189269, and d3 = 0.001308.

The monthly temperature and precipitation data from the selected weather stations
were used to calculate the ground-based standard precipitation evapotranspiration index
(SPEI). According to the internationally recognized criteria for classifying drought levels,
SPEI is divided into five levels (Table 2).

Table 2. SPEI-3 classification criteria for grading drought.

Grade Drought Condition SPEI

I No drought −0.5 < SPEI
II Light drought −1.0 < SPEI ≤ −0.5
III Moderate drought −1.5 < SPEI ≤ −1.0
IV Severe drought −2.0 < SPEI ≤ −1.5
V Extreme drought SPEI ≤ −2.0

2.3.3. Establishment of Drought Prediction Indicators

This study calculated the soil moisture condition index (SMCI) and precipitation
condition index (PCI) derived from soil moisture and precipitation data, which are closely
related to agricultural drought. PCI can directly respond to precipitation anomalies [66];
while SMCI can quantitatively portray the degree of wet and dry soil anomalies [67].
Temperature condition index (TCI) is calculated from MODIS LST data, which focuses on
the stress of high temperature on vegetation growth, and higher values of TCI indicate more
severe drought conditions [68]. Evapotranspiration represents the intensity of transpiration
of plants, and the smaller the evapotranspiration, the more severe the drought [69]. The
calculation formulas are shown in Table 3.

Table 3. Normalization formula for calculating seven types of impact factors for each grid.

Drought Index Formula Reference

PCI (GPMi −GPMmin)/(GPMmax −GPMmin) [26]
SMCI (SMi − SMmin)/(SMmax − SMmin) [70]
TCI (LSTmax − LSTi)/(LSTmax − LSTmin) [71]
VCI (NDVIi −NDVImin)/(NDVImax −NDVImin) [71]

Scaled EVI (EVIi − EVImin)/(EVImax − EVImin) [71]
Scaled ET (ETi − ETmin)/(ETmax − ETmin) [33]

Scaled PET (PETi − EVImin)/(PETmax − PETmin) [33]
Note: i represents the month; max and min represent the maximum and minimum values of the corresponding
grid of the impact factor from 2002 to 2020.

2.4. Machine Learning Approaches
2.4.1. Bias-Corrected Random Forest

Random Forest (RF) is an integrated learning algorithm that constructs multiple
decision trees into a random forest by random sampling and integration methods [72]. RF
first generates a number of independent trees using the sample set generated by bootstrap.
With a large enough training sample, about 37% of the training data will be retained and
used for subsequent out-of-bag validation [54]. For each tree in the forest, RF determines
its outcome by constructing a random subset of the training set through the bootstrap
method. The result of RF approaches is the means of each tree. Therefore, RF can decrease
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the variance and obtain more precise prediction results compared with common tree-based
algorithms. However, when predicting extreme observations, it may lead to bias [55].
When the observations are small, the predictions of RF tend to overestimate; while when
the observations are large, the predictions of RF tend to underestimate. In this study, we
applied bias correction methods to estimate and correct for RF bias in the regression [73].
The details of this bias-correction approach is as follows:

(1) Firstly, build the RF model by training dataset Ytrain = RF (Xtrain), where Xtrain and
Ytrain represent the independent and dependent variables, respectively.

(2) Calculate the estimated value and residual, rtrain = Ytrain − Ypredict, where rtrain repre-
sents the residual and Ypredict represents the estimated value.

(3) Taking the residuals obtained in step (2) to be the dependent variable and training
dataset in step (1) to be the independent variable, fit the random forest model, rtrain
= rfres (Xtrain, Ytrain). This step is used to estimate the residual of the test dataset.

(4) Calculate the estimated value Ytest from the RF model obtained in step (1) and the
test dataset Xtest, Ytest = RF (Xtest).

(5) Calculate the estimated residual using the rfres model in step (3), the estimated value
in step 4, and the independent variables in the test dataset, rtest = rfres (Xtest, Ytest).

(6) The estimated residual rtest is added to the estimated value Ytest for deviation correc-
tion, Ybias-correction = Ytest + rtest.

2.4.2. XGBoost

XGBoost is an extreme gradient lifting tree [56]. It efficiently realizes the gradient
boosting decision tree (GDBT) algorithm disease and makes many improvements in algo-
rithm and engineering. Compared with the traditional GBDT algorithm, XGBoost uses a
random forest-like strategy for data adoption [74]. In addition, XGBoost adds a rule term
to control the complexity of the model, which can only improve the generalization ability
of the model and prevent over-fitting [75]. The details of XGBoost approach is as follows.

(1) To grow a tree, constantly add new trees and continuously split features. Each time a
tree is added, a new function is learned f(x) to fit the residual of the last estimation. The
optimal model is constructed by minimizing the loss function: obj(t) = ∑n

i=1 l(yi, ŷi) +
Ω(f(t)) + Constant.

(2) XGBoost needs to estimate the result of a sample after it has been trained to obtain k
trees. Actually, according to the characteristics of this sample, the sample will fall on
one corresponding leaf node per tree, and each leaf node corresponds to a score.

Finally, XGBoost will add up the results corresponding to each tree, and it will obtain
the estimate of the sample, ŷ(k)i = ∑K

k γkhk(xi), where K is the sum of trees, k represents the
kth tree, γk is the weight of this tree, and hk represents the estimation of this tree.

2.4.3. Support Vector Machine

Support vector machine (SVM) is one of the most widely used algorithms in machine
learning. Derived from statistical learning theory, SVM algorithms are strong learners with
classification and regression algorithms [76]. The purpose of SVM is to determine one or
more hyperplanes to divide the samples. The segmentation principle is to maximize the
interval, which is finally transformed into a convex quadratic programming problem [77].
SVM is the closest machine learning method to deep learning. Nonlinear SVM is equivalent
to a two-layer neural network. If multiple kernel functions are added to nonlinear SVM, a
multi-layer neural network can be simulated [78]. In this study, we implement the support
vector regression model through Python’s Scikit-learn machine learning library.

2.5. Accuracy Evaluation

In this study, we enhance the machine learning approaches’ performance by iden-
tifying the parameters that affect the models’ stability through trial-and-error methods,
and determine the optimal parameters for each model through cross validation. Then,
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BRF, XGBoost, and SVM are calibrated and validated with 80% and 20% of the dataset,
respectively. The dataset is randomly sampled and divided into a training set and a test set.
This step is performed 100 times to evaluate the stability of each model.

The determination coefficient (R2) and mean square error (RMSE) are used to evaluate
the performance of the model:

R2 = (
∑n

i=1(Oi −
−
O)(Pi −

−
P)√

∑n
i=1(Oi −

−
O)

√
∑n

i=1(Pi −
−
P)

)

2

(10)

RMSE =

√
∑n

i=1(Oi − Pi)
2

n
(11)

where n is the number of samples, Oi and Pi are observed and estimated values, respectively,

and
−
O and

−
P are the mean values of the observed and estimated values. Generally, the

larger R2 and the smaller RMSE, the better the performance of the model is considered.
In addition, we performed station retention cross validation for each meteorological sta-
tion to identify the stability of each model in the estimation of continuous time series of
drought conditions.

3. Results
3.1. Model Accuracy Comparison

This study trained BRF, XGBoost, and SVM models, respectively, using the selected
influencing variables and observed SPEI-3 values. After determining the best parameters
of each model by cross validation (Table 4), we compared the simulation accuracy of these
algorithms, respectively. The results show that the BRF model simulates the SPEI-3 values
better, and the simulated values of SPEI-3 for each site month by month from 2002 to 2020
are very close to the observed values (see Figure 3). In both training and test sets, the
determination coefficient (R2) of BRF for SPEI-3 fitting are 0.96 and 0.94, and the root mean
square error (RMSE) are 0.19 and 0.22. Compared with past studies, the bias-corrected
approach significantly improves the accuracy of random forests [79]. BRF explains more
than 90% of the SPEI variation with less prediction error. SVM and XGBoost models have
similar performance, with R2 of 0.72 and 0.74, and RMSE of 0.51 and 0.49, respectively.

Table 4. The detailed list of parameters with their values used for BRF, XGBoost, and SVM.

Model Parameters

BRF

RF1: criterion = ‘mse’, n_estimators
= 800, max_depth = 5,

min_samples_leaf = 4, max_features
= ‘auto’, random_state = 0,

bootstrap = True

RF2: criterion = ‘mse’, n_estimators
= 1000, max_depth = 5,

min_samples_leaf = 4, max_features
= ‘auto’, random_state = 0,

bootstrap = True

XGBoost
n_estimators = 100, learning_rate = 0.04, max_depth = 5, gamma = 0.5,

consample_bytree = 1, consample_bylevel = 1, subsample = 0.52, booster =
‘gbtree’, objective = ‘reg:squarederror’, reg_alpha = 0.7, reg_lambda = 0

SVM kernel = ‘rbf’, gamma = 0.85, C = 50, tol = 0.01, cache_size = 5000, degree =
3, coef0 = 2.5
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Figure 3. Scatterplot of model predictions vs. observations. (a,c,e) is the performance of BRF, SVM,
and XGBoost on the training set. (b,d,f) is the performance of BRF, SVM, and XGBoost on the test set.
“**” represents the significance level of the experiment is greater than 0.99.

3.2. Model Stability Evaluation

Randomly selected data sets were divided into calibration datasets and validation
datasets. This step is performed 100 times to evaluate the stability of each model. The
performance evaluation criteria (R2 and RMSE) of the three models running 100 times are
shown in Figure 4. Overall, based on these two validation measurements, the performance
of the BRF model outperforms XGBoost and SVM, and the performance is satisfied. The
BRF model explains more than 92% of the SPEI changes, and the estimation error is
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small (RMSE < 0.25). In comparison, the SVM and XGBoost models have similar and
lower performance.
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Figure 4. Boxplots of model performance measurements ((a). coefficient of determination and (b).
root mean squared error) for prediction of SPEI.

To further evaluate the stability of the model, we conducted “leave-one-station-out”
cross validation on the selected 23 meteorological stations. In this study, the meteorological
stations in Heze, Huimin, Laiyang, and Yiyuan were selected for “leave-one-station-out”
cross validation, which are located in the eastern, western, southern, and northern parts
of Shandong, respectively. Figure 5 shows that the BRF model performs better for off-site
cross validation, and the drought conditions simulated for the four stations are generally
consistent with SPEI-3 calculated based on observed data. The SVM and XGBoost per-
formed worse than the BRF model, and the simulated drought conditions at the four sites
differed significantly from the SPEI-3 calculated based on the observed data.
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Figure 5. Comparation among SPEI−3 calculated from observations and forecasted by BRF, XGBoost,
and SVM approaches at four stations in Shandong province, China.

3.3. Analyzing the Relative Importance of Drought-Influencing Factors Using the BRF Model

The BRF model can produce a measure of relative importance based on the impact of
each predictor on the outcome [80]. The results in Table 5 show that, Pre_3 has the highest
relative importance with 55.17%; the relative importance of Pre_1 is 8.61%, indicating
that precipitation is the most important variable affecting drought. Because we used SPEI
on a three-month time scale, SPEI-3 is related to agricultural drought [25,27]; therefore,
cumulative precipitation is more important for monitoring agricultural drought. The
relative importance of soil moisture was 10.2%, which indicated the significance of SM
in simulating agricultural drought. The relative importance of other influencing factors
was low for drought. Generally, the response of vegetation to drought is lagging, and the
impact of drought on vegetation tends to occur after a few months, so this leads to a low
relative importance of the vegetation indices NDVI and EVI.

Table 5. Relative importance of factors to drought assessment.

Impact Factors Relative Importance (%)

One-month timescale precipitation, Pre_1 8.61
Three-month timescale precipitation, Pre_3 55.17

Land surface temperature, LST 7.39
Enhanced vegetation index, EVI 3.54

Normalized difference vegetation index, NDVI 3.3
Soil moisture, SM 10.2

Evapotranspiration, ET 7.3
Potential evapotranspiration, PET 4.49

We analyzed the correlation between SPEI-3 and drought impact factors, which are
shown in Figure 6. The correlation analysis indicated that significant relationships existed
among each factor and SPEI-3, with the highest correlation of 0.762 between PRE_3 and
SPEI-3. The correlations of SM and PRE_1 with SPEI-3 were 0.55 and 0.449, respectively.
The correlation between vegetation index and SPEI-3 was low. These were consistent
with the results of our analysis of the relative importance of the factors obtained from the
BRF model.
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Figure 6. Pearson correlation coefficients of SPEI-3 with drought impact factors. The “1” and “3”
suffixes following the variable name represent the average of one-month and three-month time scales.

3.4. Simulation of Drought by Spatial Distribution of SPEI-3 in Typical Years

In this study, the average value of SPEI-3 from 23 meteorological stations during the
study period was used to obtain the change process of SPEI-3 from 2002 to 2020. It can be
seen from Figure 7 that the drought was relatively serious and lasted for a long time in
2002–2003, 2006–2007, and 2010–2011. Severe drought occurred in autumn of 2002 and 2006,
winter of 2010, and spring of 2011. Drought occurred frequently but with low intensity
from 2012 to 2019. From 2003–2004 and 2007–2008, the whole province was in the wet
period. However, the duration and intensity of drought in other periods have no obvious
laws. For the period marked by the dashed box in Figure 7, SPEI-3 shows higher drought
intensity and longer drought duration, which was selected as typical drought years.
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Using SPEI-3 spatial distribution data and station observation of SPEI-3 data to evalu-
ate the accuracy of SPEI-3 spatial distribution for drought monitoring, the drought year data
of 2002, 2006, and 2011 were selected and the results are shown in Figures 8–10. According
to the drought grade distribution of meteorological stations in Figure 8, it can be seen that
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all meteorological stations in northwestern Shandong province experienced severe drought
in February, while the rest of the meteorological stations experienced moderate and light
drought; most meteorological stations in western Shandong province experienced severe
drought in March, which is basically consistent with the SPEI drought grade distribution
map constructed by BRF. From April to June, as the rain belt moved southwest, the drought
conditions eased and the province’s meteorological stations were not in drought. Due
to the high temperature and low rainfall in Shandong during the summer of 2002, most
meteorological stations in the province, except for the eastern peninsula, experienced severe
drought from August to October, and the drought class distribution map constructed for
this experiment monitored severe drought during this period. Ren and Zhan also monitored
the drought conditions in Shandong province from February–March and August–October
2002, and the drought was more severe from August–October [19]. Drought in Shandong
during this period is related to the El Niño phenomenon and the duration of no effective
precipitation [81]. In November, the drought disappeared as the high temperature subsided
and was supplemented by effective precipitation.
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Figure 9. SPEI-3 spatial distribution simulated by the BRF model and the site’s drought distribution
in a drought year (2006).

From Figure 9, it can be seen that in January 2006, most meteorological stations in the
province were in light drought and some meteorological stations in the northwest were
in moderate drought. In February, the meteorological stations in the eastern peninsula
and the southeast coast were in no drought or light drought, while some meteorological
stations in the western part of Shandong were in moderate as well as severe drought. In
March, the drought conditions in the central and northwest intensified, and meteorological
stations in the region detected moderate and severe drought. In April, with the increase
in precipitation, the drought conditions in the central part were relieved, but the mete-
orological stations in the northwest were still in severe drought. With the arrival of the
rainy season, the drought in Shandong province eased. Severe and extreme drought was
detected at most meteorological stations in Shandong province in November and moderate
drought was detected at some meteorological stations. In addition, it can be seen from
Figure 10 that all meteorological stations in Shandong province were in severe and extreme
drought in January 2011, except for some meteorological stations in the eastern peninsula,
which was caused by the low precipitation from December 2010 to January 2011. The
drought conditions monitored at each meteorological station are generally consistent with
the SPEI drought class distribution map. Yao et al. also monitored the overall drought
period in Shandong province from February–March and November 2006, and December
2010–January 2011 [82]. Overall, the SPEI-3 spatial distribution map simulated by the BRF
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model can more accurately monitor the drought conditions in Shandong province and is
generally consistent with the drought periods identified by historical drought studies.
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4. Discussion

Data-driven models have proven to be effective in previous drought monitoring [29,40].
This study, based on machine learning with multi-source remote sensing drought factors
fitting SPEI, also obtained effective drought monitoring results. In particular, the BRF model
is better than the SVM and XGBoost models in reproducing ground SPEI (Figures 4 and 5),
which is quantified by large R2 and small prediction error RMSE. However, the result of
Alizadeh and Nikoo showed that the MLP model significantly improved the SPI prediction
in Iran compared with other machine learning models, which is inconsistent with the results
of this research [40]. This may be the result of differences in study area, data sources, and
model and model parameters, as well as input and output settings. This study determined
the best parameters of each model through cross validation. However, in different regions,
the performance of the model was not invariable when dealing with data from different
sources. In this study, the excellent performance of the BRF model may be due to its
reduced sensitivity to over fitting and handling the possible hierarchical and nonlinear
relationship between SPEI and various remote sensing drought factors. Furthermore, the
bias correction random forest [73] outperforms the original random forest [29].
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In addition, the relative importance of each drought factor was obtained according
to the BRF model (Table 5), and precipitation on a three-month time scale (GPM-P3) had
the highest relative importance of 55.17%. The relative importance of precipitation on a
one-month time scale (GPM-P1) is 8.61%. Consistent with Yang, precipitation is the most
significant factor affecting drought [83]. In addition, the relative importance of GPM-P3 is
much higher than that of GPM-P1 because the SPEI chose a three-month time scale, indicat-
ing that GPM-P3 has the greatest impact on agricultural drought. Feng also demonstrated
that the precipitation of a three-month time scale has the greatest impact on agricultural
drought, and its relative importance exceeds 0.55 in the two clusters [25]. Soil moisture
(SM), with a relative importance of 10.2%, plays an important role in simulating SPEI-
3 [84,85]. The results were generally consistent with the Pearson correlation coefficients
of each drought factor with SPEI-3 (Figure 6). GPM-P3 has the highest correlation with
SPEI-3 at 0.762. The correlation coefficient between SM and SPEI-3 is 0.55. In addition, the
correlation between SM and GPM-P3 (0.609) was higher than that with GPM-P1 (0.526),
indicating that soil moisture was more influenced by cumulative precipitation.

In this study, we accurately predicted SPEI-3 in unmeasured areas based on the BRF
model and remote sensing data. Firstly, we used the BRF model to simulate SPEI-3 in
unmeasured areas, rather than taking the relative importance obtained after model training
as the weight to build a comprehensive drought index. Constructing a composite drought
index based on relative importance as weights often allows monitoring drought. However,
due to the different study areas, the drought classification of the composite drought index
does not follow the unique criteria. The effect of drought monitoring is different from the
actual distribution of the ground drought index.

5. Conclusions

In this study, three machine learning methods (BRF, SVM, and XGBoost) and various
drought impact factors were used to estimate SPEI-3 in Shandong, China. Taking the
monthly dataset based on surface climate data as a reference, the performance of SPEI
predicted by the model was evaluated. The BRF model successfully generated the spatial
distribution map of SPEI-3. Therefore, the method in this study can also be used in other
areas with limited observation data and covered by remote sensing satellites, providing
spatial distribution of drought severity. Due to the complex causes of drought, altitude and
vegetation cover type also have an impact on drought. These factors need to be considered
in future studies to increase the precision of the models for more accurate monitoring
of drought conditions. In addition, the BRF model also has some limitations, such as
the tendency to underestimate the severity of drought when predicting extreme drought.
Future research should consider better machine learning models and other drought-causing
factors to improve the performance of the models in assessing extreme droughts.

Author Contributions: Y.Z., data curation, investigation, software, code, writing—original draft; J.Z.,
conceptualization, funding acquisition, supervision; writing—review; Y.B., software, visualization,
writing—review; S.Z., code, visualization, writing—review; S.Y., visualization, writing—review;
M.H., A.M.S. and L.N., writing—review. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was jointly supported by the National Natural Science Foundation of China (No.
41871253, No. 42071425), the CAS Strategic Priority Research Program (No. XDA19030402), Shandong
Natural Science Foundation of China (No. ZR2017ZB0422, No. ZR2020QE281), and “Taishan Scholar”
Project of Shandong Province (No. TSXZ201712).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2022, 14, 6398 19 of 21

References
1. Ali, S.; Tong, D.M.; Xu, Z.T.; Henchiri, M.; Wilson, K.; Shi, S.Q.; Zhang, J.H. Characterization of Drought Monitoring Events

through Modis-and Trmm-Based Dsi and Tvdi over South Asia During 2001–2017. Environ. Sci. Pollut. Res. 2019, 26, 33568–33581.
[CrossRef] [PubMed]

2. Quiring, S.M.; Papakryiakou, T.N. An Evaluation of Agricultural Drought Indices for the Canadian Prairies. Agric. For. Meteorol.
2003, 118, 49–62. [CrossRef]

3. Wei, W.; Pang, S.F.; Wang, X.F.; Zhou, L.; Xie, B.B.; Zhou, J.J.; Li, C.H. Temperature Vegetation Precipitation Dryness Index
(Tvpdi)-Based Dryness-Wetness Monitoring in China. Remote Sens. Environ. 2020, 248, 111957. [CrossRef]

4. Yao, N.; Li, Y.; Lei, T.J.; Peng, L.L. Drought Evolution, Severity and Trends in Mainland China over 1961–2013. Sci. Total Environ.
2018, 616, 73–89. [CrossRef]

5. Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global Warming and Changes in
Drought. Nat. Clim. Change 2014, 4, 17. [CrossRef]

6. Dai, A.G. Erratum: Drought under Global Warming: A Review. Wiley Interdiscip. Rev.-Clim. Chang. 2012, 3, 617. [CrossRef]
7. Vicente-Serrano, S.M.; Quiring, S.M.; Pena-Gallardo, M.; Yuan, S.S.; Dominguez-Castro, F. A Review of Environmental Droughts:

Increased Risk under Global Warming? Earth-Sci. Rev. 2020, 201, 102953. [CrossRef]
8. Daryanto, S.; Wang, L.X.; Jacinthe, P.A. Global Synthesis of Drought Effects on Food Legume Production. PLoS ONE 2015,

10, e0127401. [CrossRef]
9. Daryanto, S.; Wang, L.X.; Jacinthe, P.A. Global Synthesis of Drought Effects on Maize and Wheat Production. PLoS ONE 2016,

11, e0156362. [CrossRef]
10. Loon, V.; Anne, F. Hydrological Drought Explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [CrossRef]
11. Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; Mcdowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears,

D.D.; Hogg, E.H.; et al. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change
Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [CrossRef]

12. Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogee, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al.
Europe-Wide Reduction in Primary Productivity Caused by the Heat and Drought in 2003. Nature 2005, 437, 529–533. [CrossRef]
[PubMed]

13. Zhao, M.S.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 through 2009.
Science 2010, 329, 940–943. [CrossRef]

14. Aadhar, S.; Mishra, V. High-Resolution near Real-Time Drought Monitoring in South Asia. Sci. Data 2017, 4, 170145. [CrossRef]
[PubMed]

15. He, B.; Wu, J.J.; Lu, A.F.; Cui, X.F.; Zhou, L.; Liu, M.; Zhao, L. Quantitative Assessment and Spatial Characteristic Analysis of
Agricultural Drought Risk in China. Nat. Hazards 2013, 66, 155–166. [CrossRef]

16. Mottaleb, K.A.; Gumma, M.K.; Mishra, A.K.; Mohanty, S. Quantifying Production Losses Due to Drought and Submergence of
Rainfed Rice at the Household Level Using Remotely Sensed Modis Data. Agric. Syst. 2015, 137, 227–235. [CrossRef]

17. Prodhan, F.A.; Zhang, J.H.; Yao, F.M.; Shi, L.M.; Sharma, T.P.P.; Zhang, D.; Cao, D.; Zheng, M.X.; Ahmed, N.; Mohana, H.P. Deep
Learning for Monitoring Agricultural Drought in South Asia Using Remote Sensing Data. Remote Sens. 2021, 13, 1715. [CrossRef]

18. Yang, X.; Li, D. Temporal and Spatial Evolution Characteristics of Strong Drought Events in North and Northeast China. Arid
Land Geogr. 2019, 42, 810–821.

19. Ren, J.; Zhang, T. Evolution Characteristics of Drought and Flood in Shandong Province in Recent 45years Based on Standardized
Precipitation Index. Res. Soil Water Conserv. 2021, 28, 149.

20. Zhang, J.; Mu, Q.Z.; Huang, J.X. Assessing the Remotely Sensed Drought Severity Index for Agricultural Drought Monitoring
and Impact Analysis in North China. Ecol. Indic. 2016, 63, 296–309. [CrossRef]

21. Yan, H.; Wan, Y.; Yan, X.; Xie, Y. A Study of the Temporal and Spatial Features of Dryness & Wetness Last 500-Year Period in
China. J. Yunnan Univ. (Nat. Sci.) 2004, 26, 139–143.

22. Zhang, Y.; Wang, C.; Zhang, J. Analysis of the Spatial and Temporal Characteristics of Drought in the North China Plain Based on
Standardized Precipitation Evapotranspiration Index. Acta Ecol. Sin. 2015, 35, 7097–7107.

23. Mckee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the
8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184.

24. Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standard-
ized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [CrossRef]

25. Feng, P.Y.; Wang, B.; Liu, D.L.; Yu, Q. Machine Learning-Based Integration of Remotely-Sensed Drought Factors Can Improve the
Estimation of Agricultural Drought in South-Eastern Australia. Agric. Syst. 2019, 173, 303–316. [CrossRef]

26. Rhee, J.; Im, J.; Carbone, G.J. Monitoring Agricultural Drought for Arid and Humid Regions Using Multi-Sensor Remote Sensing
Data. Remote Sens. Environ. 2010, 114, 2875–2887. [CrossRef]

27. Liu, Q.; Zhang, J.H.; Zhang, H.R.; Yao, F.M.; Bai, Y.; Zhang, S.; Meng, X.L.; Liu, Q. Evaluating the Performance of Eight Drought
Indices for Capturing Soil Moisture Dynamics in Various Vegetation Regions over China. Sci. Total Environ. 2021, 789, 147803.
[CrossRef]

http://doi.org/10.1007/s11356-019-06500-4
http://www.ncbi.nlm.nih.gov/pubmed/31583522
http://doi.org/10.1016/S0168-1923(03)00072-8
http://doi.org/10.1016/j.rse.2020.111957
http://doi.org/10.1016/j.scitotenv.2017.10.327
http://doi.org/10.1038/nclimate2067
http://doi.org/10.1002/wcc.190
http://doi.org/10.1016/j.earscirev.2019.102953
http://doi.org/10.1371/journal.pone.0127401
http://doi.org/10.1371/journal.pone.0156362
http://doi.org/10.1002/wat2.1085
http://doi.org/10.1016/j.foreco.2009.09.001
http://doi.org/10.1038/nature03972
http://www.ncbi.nlm.nih.gov/pubmed/16177786
http://doi.org/10.1126/science.1192666
http://doi.org/10.1038/sdata.2017.145
http://www.ncbi.nlm.nih.gov/pubmed/28972569
http://doi.org/10.1007/s11069-012-0398-8
http://doi.org/10.1016/j.agsy.2014.08.014
http://doi.org/10.3390/rs13091715
http://doi.org/10.1016/j.ecolind.2015.11.062
http://doi.org/10.1175/2009JCLI2909.1
http://doi.org/10.1016/j.agsy.2019.03.015
http://doi.org/10.1016/j.rse.2010.07.005
http://doi.org/10.1016/j.scitotenv.2021.147803


Remote Sens. 2022, 14, 6398 20 of 21

28. Yao, N.; Li, Y.; Liu, Q.Z.; Zhang, S.Y.; Chen, X.G.; Ji, Y.D.; Liu, F.G.; Pulatov, A.; Feng, P.Y. Response of Wheat and Maize
Growth-Yields to Meteorological and Agricultural Droughts Based on Standardized Precipitation Evapotranspiration Indexes
and Soil Moisture Deficit Indexes. Agric. Water Manag. 2022, 266, 107566. [CrossRef]

29. Park, S.; Im, J.; Jang, E.; Rhee, J. Drought Assessment and Monitoring through Blending of Multi-Sensor Indices Using Machine
Learning Approaches for Different Climate Regions. Agric. For. Meteorol. 2016, 216, 157–169. [CrossRef]

30. Swain, S.; Wardlow, B.D.; Narumalani, S.; Tadesse, T.; Callahan, K. Assessment of Vegetation Response to Drought in Nebraska
Using Terra-Modis Land Surface Temperature and Normalized Difference Vegetation Index. Giscience Remote Sens. 2011, 48,
432–455. [CrossRef]

31. Ali, S.; Henchiri, M.; Yao, F.M.; Zhang, J.H. Analysis of Vegetation Dynamics, Drought in Relation with Climate over South Asia
from 1990 to 2011. Environ. Sci. Pollut. Res. 2019, 26, 11470–11481. [CrossRef]

32. Shi, S.Q.; Yao, F.M.; Zhang, J.H.; Yang, S.S. Evaluation of Temperature Vegetation Dryness Index on Drought Monitoring over
Eurasia. IEEE Access 2020, 8, 30050–30059. [CrossRef]

33. Wu, D.; Qu, J.J.; Hao, X.J. Agricultural Drought Monitoring Using Modis-Based Drought Indices over the USA Corn Belt. Int. J.
Remote Sens. 2015, 36, 5403–5425. [CrossRef]

34. Souza, A.; Neto, A.R.; Rossato, L.; Alvala, R.C.S.; Souza, L.L. Use of Smos L3 Soil Moisture Data: Validation and Drought
Assessment for Pernambuco State, Northeast Brazil. Remote Sens. 2018, 10, 1314. [CrossRef]

35. Bai, Y.; Gao, J.; Zhang, B. Monitoring of Crops Growth Based on Ndvi and Evi. Trans. Chin. Soc. Agric. Mach. 2019, 50, 153–161.
36. Gu, Y.X.; Brown, J.F.; Verdin, J.P.; Wardlow, B. A Five-Year Analysis of Modis Ndvi and Ndwi for Grassland Drought Assessment

over the Central Great Plains of the United States. Geophys. Res. Lett. 2007, 34. [CrossRef]
37. Lei, Q.; Zhang, X.; Wang, X.; He, X.; Shang, C. Responses of Vegetation Index to Meteorological Drought in Dongting Lake Basin

Based on Modis-Evi and Ci. Resour. Environ. Yangtze Basin 2019, 28, 981–993.
38. Wang, K.Y.; Li, T.J.; Wei, J.H. Exploring Drought Conditions in the Three River Headwaters Region from 2002 to 2011 Using

Multiple Drought Indices. Water 2019, 11, 190. [CrossRef]
39. Liu, H.; Liu, R.; Liu, S. Review of Drought Monitoring by Remote Sensing. J. Geo-Inf. Sci. 2012, 14, 232–239. [CrossRef]
40. Alizadeh, M.R.; Nikoo, M.R. A Fusion-Based Methodology for Meteorological Drought Estimation Using Remote Sensing Data.

Remote Sens. Environ. 2018, 211, 229–247. [CrossRef]
41. Han, P.; Wang, P.X.; Zhang, S.Y.; Zhu, D.H. Drought Forecasting Based on the Remote Sensing Data Using Arima Models. Math.

Comput. Model. 2010, 51, 1398–1403. [CrossRef]
42. Mishra, A.K.; Singh, V.P. Drought Modeling—A Review. J. Hydrol. 2011, 403, 157–175. [CrossRef]
43. Wanders, N.; Wood, E.F. Improved Sub-Seasonal Meteorological Forecast Skill Using Weighted Multi-Model Ensemble Simulations.

Environ. Res. Lett. 2016, 11, 094007. [CrossRef]
44. Morid, S.; Smakhtin, V.; Bagherzadeh, K. Drought Forecasting Using Artificial Neural Networks and Time Series of Drought

Indices. Int. J. Climatol. 2007, 27, 2103–2111. [CrossRef]
45. Wang, Q.J.; Schepen, A.; Robertson, D.E. Merging Seasonal Rainfall Forecasts from Multiple Statistical Models through Bayesian

Model Averaging. J. Clim. 2012, 25, 5524–5537. [CrossRef]
46. Abbot, J.; Marohasy, J. Input Selection and Optimisation for Monthly Rainfall Forecasting in Queensland, Australia, Using

Artificial Neural Networks. Atmos. Res. 2014, 138, 166–178. [CrossRef]
47. Hao, Z.C.; Singh, V.P.; Xia, Y.L. Seasonal Drought Prediction: Advances, Challenges, and Future Prospects. Rev. Geophys. 2018, 56,

108–141. [CrossRef]
48. Barua, S.; Ng, A.W.M.; Perera, B.J.C. Artificial Neural Network-Based Drought Forecasting Using a Nonlinear Aggregated

Drought Index. J. Hydrol. Eng. 2012, 17, 1408–1413. [CrossRef]
49. Dikshit, A.; Pradhan, B.; Alamri, A.M. Temporal Hydrological Drought Index Forecasting for New South Wales, Australia Using

Machine Learning Approaches. Atmosphere 2020, 11, 585. [CrossRef]
50. Khan, N.; Sachindra, D.A.; Shahid, S.; Ahmed, K.; Shiru, M.S.; Nawaz, N. Prediction of Droughts over Pakistan Using Machine

Learning Algorithms. Adv. Water Resour. 2020, 139, 103562. [CrossRef]
51. Mishra, A.K.; Desai, V.R. Drought Forecasting Using Feed-Forward Recursive Neural Network. Ecol. Model. 2006, 198, 127–138.

[CrossRef]
52. Belayneh, A.; Adamowski, J.; Khalil, B.; Ozga-Zielinski, B. Long-Term Spi Drought Forecasting in the Awash River Basin in

Ethiopia Using Wavelet Neural Network and Wavelet Support Vector Regression Models. J. Hydrol. 2014, 508, 418–429. [CrossRef]
53. Guzman, S.M.; Paz, J.O.; Tagert, M.L.M.; Mercer, A.E.; Pote, J.W. An Integrated Svr and Crop Model to Estimate the Impacts of

Irrigation on Daily Groundwater Levels. Agric. Syst. 2018, 159, 248–259. [CrossRef]
54. Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology.

Ecology 2007, 88, 2783–2792. [CrossRef]
55. Song, J. Bias Corrections for Random Forest in Regression Using Residual Rotation. J. Korean Stat. Soc. 2015, 44, 321–326.

[CrossRef]
56. Chen, T.Q.; Guestrin, C.; Assoc Comp, M. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 13–17 August 2016.

http://doi.org/10.1016/j.agwat.2022.107566
http://doi.org/10.1016/j.agrformet.2015.10.011
http://doi.org/10.2747/1548-1603.48.3.432
http://doi.org/10.1007/s11356-019-04512-8
http://doi.org/10.1109/ACCESS.2020.2972271
http://doi.org/10.1080/01431161.2015.1093190
http://doi.org/10.3390/rs10081314
http://doi.org/10.1029/2006GL029127
http://doi.org/10.3390/w11020190
http://doi.org/10.3724/SP.J.1047.2012.00232
http://doi.org/10.1016/j.rse.2018.04.001
http://doi.org/10.1016/j.mcm.2009.10.031
http://doi.org/10.1016/j.jhydrol.2011.03.049
http://doi.org/10.1088/1748-9326/11/9/094007
http://doi.org/10.1002/joc.1498
http://doi.org/10.1175/JCLI-D-11-00386.1
http://doi.org/10.1016/j.atmosres.2013.11.002
http://doi.org/10.1002/2016RG000549
http://doi.org/10.1061/(ASCE)HE.1943-5584.0000574
http://doi.org/10.3390/atmos11060585
http://doi.org/10.1016/j.advwatres.2020.103562
http://doi.org/10.1016/j.ecolmodel.2006.04.017
http://doi.org/10.1016/j.jhydrol.2013.10.052
http://doi.org/10.1016/j.agsy.2017.01.017
http://doi.org/10.1890/07-0539.1
http://doi.org/10.1016/j.jkss.2015.01.003


Remote Sens. 2022, 14, 6398 21 of 21

57. Chen, Y.; Niu, J.Q.; Chen, G.Q.; Wang, J.; Cao, S.L.; Publishing, I.O.P. Precipitation Sequence Analysis of Representative Stations in
Shandong Province from 1956 to 2016. In Proceedings of the 6th International Conference on Energy Materials and Environment
Engineering (ICEMEE), Zhangjiajie, China, 24–26 April 2020.

58. Li, H.; Wang, W. Climate Characteristics of Seasonal Drought for Crops Growth in Shandong. J. Arid Land Resour. Environ. 2015,
29, 191–196.

59. Li, F.; Yang, X. Changes and Driving Force of Grain Production in Shandong Province During 1999–2014. Acta Agric. Zhejiangensis
2016, 28, 535–542.

60. Han, H.Z.; Bai, J.J.; Yan, J.W.; Yang, H.Y.; Ma, G. A Combined Drought Monitoring Index Based on Multi-Sensor Remote Sensing
Data and Machine Learning. Geocarto Int. 2021, 36, 1161–1177. [CrossRef]

61. Shen, R.P.; Huang, A.Q.; Li, B.L.; Guo, J. Construction of a Drought Monitoring Model Using Deep Learning Based on Multi-Source
Remote Sensing Data. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 48–57. [CrossRef]

62. Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; Garcia-Ortega, E.; Machado, L.A.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J.;
et al. Global Precipitation Measurement: Methods, Datasets and Applications. Atmos. Res. 2012, 104, 70–97. [CrossRef]

63. Zhao, J.; Yan, D.H.; Yang, Z.Y.; Hu, Y.; Weng, B.S.; Gong, B.Y. Improvement and Adaptability Evaluation of Standardized
Precipitation Evapotranspiration Index. Acta Phys. Sin. 2015, 64, 049202. [CrossRef]

64. Almeida-Naunay, A.F.; Villeta, M.; Quemada, M.; Tarquis, A.M. Assessment of Drought Indexes on Different Time Scales: A Case
in Semiarid Mediterranean Grasslands. Remote Sens. 2022, 14, 565. [CrossRef]

65. Wen, J.; Zhang, X.; Wang, Y.; Wang, W. Effects of Drought in Multi-Time Scale on Wheat Crop in Eastern Agricultural Region of
Qinghai Province. J. Irrig. Drain. 2016, 35, 92–97.

66. Javed, T.; Zhang, J.H.; Bhattarai, N.; Sha, Z.; Rashid, S.; Yun, B.; Ahmad, S.; Henchiri, M.; Kamran, M. Drought Characterization
across Agricultural Regions of China Using Standardized Precipitation and Vegetation Water Supply Indices. J. Clean. Prod. 2021,
313, 127866. [CrossRef]

67. Zhang, J.H.; Zhou, Z.M.; Yao, F.M.; Yang, L.M.; Hao, C. Validating the Modified Perpendicular Drought Index in the North China
Region Using in Situ Soil Moisture Measurement. IEEE Geosci. Remote Sens. Lett. 2015, 12, 542–546. [CrossRef]

68. Wu, L. Classification of Drought Grades Based on Temperature Vegetation Drought Index Using the Modis Data. Res. Soil Water
Conserv. 2017, 24, 130–135.

69. Wang, Y.P.; Wang, S.; Zhao, W.W.; Liu, Y.X. The Increasing Contribution of Potential Evapotranspiration to Severe Droughts in the
Yellow River Basin. J. Hydrol. 2022, 605, 127310. [CrossRef]

70. Seiler, R.A.; Kogan, F.; Sullivan, J. Avhrr-Based Vegetation and Temperature Condition Indices for Drought Detection in Argentina.
Adv. Space Res. 1998, 21, 481–484. [CrossRef]

71. Kogan, F.N. Application of Vegetation Index and Brightness Temperature for Drought Detection. Adv. Space Res. 1995, 15, 91–100.
[CrossRef]

72. Ishwaran, H.; Malley, J.D. Synthetic Learning Machines. Biodata Min. 2014, 7, 28. [CrossRef]
73. Zhang, G.Y.; Lu, Y. Bias-Corrected Random Forests in Regression. J. Appl. Stat. 2012, 39, 151–160. [CrossRef]
74. Li, H.; Zhu, Y. Xgboost Algorithm Optimization Based on Gradient Distribution Harmonized Strategy. J. Comput. Appl. 2020, 40,

1633–1637.
75. Chen, J.X.; Zhao, F.; Sun, Y.G.; Yin, Y.L. Improved Xgboost Model Based on Genetic Algorithm. Int. J. Comput. Appl. Technol. 2020,

62, 240–245. [CrossRef]
76. Corinna, C.; Vladimir, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297.
77. Haitao, L.I.; Haiyan, G.U.; Bing, Z.; Lianru, G. Research on Hyperspectral Remote Sensing Image Classification Based on Mnf and

Svm. Remote Sens. Inf. 2007, 5, 12–15.
78. Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. Isprs J. Photogramm. Remote Sens. 2011,

66, 247–259. [CrossRef]
79. Shen, R.; Guo, J.; Zhang, J.; Li, L. Construction of a Drought Monitoring Model Using the Random Forest Based Remote Sensing.

J. Geo-Inf. Sci. 2017, 19, 125–133.
80. Were, K.; Bui, D.T.; Dick, O.B.; Singh, B.R. A Comparative Assessment of Support Vector Regression, Artificial Neural Networks,

and Random Forests for Predicting and Mapping Soil Organic Carbon Stocks across an Afromontane Landscape. Ecol. Indic. 2015,
52, 394–403. [CrossRef]

81. Xu, Z.; Han, M. Spatio-Temporal Distribution Characteristics of Drought in Shandong Province and It Relationship with Enso.
Chin. J. Eco-Agric. 2018, 26, 1236–1248.

82. Yao, T.; Zhao, Q.; Li, X.Y.; Shen, Z.T.; Ran, P.Y.; Wu, W. Spatiotemporal Variations of Multi-Scale Drought in Shandong Province
from 1961 to 2017. Water Supply 2021, 21, 525–541. [CrossRef]

83. Yang, M.X.; Mou, Y.L.; Meng, Y.R.; Liu, S.; Peng, C.H.; Zhou, X.L. Modeling the Effects of Precipitation and Temperature Patterns
on Agricultural Drought in China from 1949 to 2015. Sci. Total Environ. 2020, 711, 135139. [CrossRef]

84. Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating Soil
Moisture-Climate Interactions in a Changing Climate: A Review. Earth-Sci. Rev. 2010, 99, 125–161. [CrossRef]

85. Sims, A.P.; Niyogi, D.D.S.; Raman, S. Adopting Drought Indices for Estimating Soil Moisture: A North Carolina Case Study.
Geophys. Res. Lett. 2002, 29, 24-1–24-4. [CrossRef]

http://doi.org/10.1080/10106049.2019.1633423
http://doi.org/10.1016/j.jag.2019.03.006
http://doi.org/10.1016/j.atmosres.2011.10.021
http://doi.org/10.7498/aps.64.049202
http://doi.org/10.3390/rs14030565
http://doi.org/10.1016/j.jclepro.2021.127866
http://doi.org/10.1109/LGRS.2014.2349957
http://doi.org/10.1016/j.jhydrol.2021.127310
http://doi.org/10.1016/S0273-1177(97)00884-3
http://doi.org/10.1016/0273-1177(95)00079-T
http://doi.org/10.1186/s13040-014-0028-y
http://doi.org/10.1080/02664763.2011.578621
http://doi.org/10.1504/IJCAT.2020.106571
http://doi.org/10.1016/j.isprsjprs.2010.11.001
http://doi.org/10.1016/j.ecolind.2014.12.028
http://doi.org/10.2166/ws.2020.332
http://doi.org/10.1016/j.scitotenv.2019.135139
http://doi.org/10.1016/j.earscirev.2010.02.004
http://doi.org/10.1029/2001GL013343

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	MODIS Data 
	GPM Data 
	GLDAS Data 
	Observation Data 

	Method 
	Modeling Methodology 
	Standardized Precipitation Evapotranspiration Index 
	Establishment of Drought Prediction Indicators 

	Machine Learning Approaches 
	Bias-Corrected Random Forest 
	XGBoost 
	Support Vector Machine 

	Accuracy Evaluation 

	Results 
	Model Accuracy Comparison 
	Model Stability Evaluation 
	Analyzing the Relative Importance of Drought-Influencing Factors Using the BRF Model 
	Simulation of Drought by Spatial Distribution of SPEI-3 in Typical Years 

	Discussion 
	Conclusions 
	References

