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Abstract: Anomaly anticipation in traffic scenarios is one of the primary challenges in action recogni-
tion. It is believed that greater accuracy can be obtained by the use of semantic details and motion
information along with the input frames. Most state-of-the art models extract semantic details and
pre-defined optical flow from RGB frames and combine them using deep neural networks. Many
previous models failed to extract motion information from pre-processed optical flow. Our study
shows that optical flow provides better detection of objects in video streaming, which is an essential
feature in further accident prediction. Additional to this issue, we propose a model that utilizes the
recurrent neural network which instantaneously propagates predictive coding errors across layers
and time steps. By assessing over time the representations from the pre-trained action recognition
model from a given video, the use of pre-processed optical flows as input is redundant. Based
on the final predictive score, we show the effectiveness of our proposed model on three different
types of anomaly classes as Speeding Vehicle, Vehicle Accident, and Close Merging Vehicle from the
state-of-the-art KITTI, D2City and HTA datasets.

Keywords: anomaly anticipation; optical flow; feature extraction; Predictive Network

1. Introduction

Anything that is radically different from normal behavior may be considered as anoma-
lous, such as appearance of cars on footpaths, an abrupt dispersal of people in a crowd, a
person unexpectedly slipping when walking, careless driving, or bypassing signals at a
traffic junction. The availability of public video datasets significantly improved the research
outcomes for video processing and anomaly detection [1]. Anomaly detection systems
are usually trained by learning the expected behavior of the traffic environments. Anoma-
lies are typically categorized as point anomalies, contextual anomalies, and collective
anomalies [2–4].

Development towards driverless vehicles has drawn increasing attention and made
significant progress in the past last decade [5,6]. While this advancement provides conve-
nience to people and addresses the emerging needs from industry, it also raises concerns
with traffic accidents. As a result, there is a need for further advances towards accident
prediction using the time and frame components of video clips. Given this objective, our
work seeks to demonstrate the power of PredNet (Predictive Network) [7] for accident
anticipation in HTA (Highway Traffic Anomaly), KITTI (Karlsruhe Institute of Technol-
ogy and Toyota Technological Institute) and D2city (Didi Dashcam City) [8–10] datasets.
Specifically, these datasets consist of dashcam videos captured from vehicles driving in
several traffic scenarios. Videos contained in datasets show that not only is the camera
moving, but other vehicles and background features are also varying. The datasets consist
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of three classes of anomalies: speeding vehicle, vehicle accident and close merging vehicle.
However, labelled data is expensive and time-consuming to get. Furthermore, the recent
crowdsourced data sets are of questionable quality. Unsupervised learning is therefore a
promising direction.

Motion and the temporal component of the videos play a significant role in traffic
anomaly anticipation as compared to systems working only on still images. Video predic-
tion is one of the possible ways of learning from unlabeled data [11–13]. For this reason,
most current advanced models extract the optical flow from contiguous video frames, and
then use LSTM (Long Short-Term Memory networks), RNN (Recurrent Neural Networks)
or feedforward networks to ingest sequences [14–20]. Regarding pre-processed optical
flow, it is observed that it provides no motion information for models. Instead, it produces
more semantic information, since optical flows can be perceived as object masks. Two
observations in the experiment described in [21], demonstrate that: (1) In appearance, the
opical flow is invariant and permits models to recognize the action without assessing object
color. (2) Small object motions and the bordering accuracy of optical flow are closely corre-
lated with the performance of action recognition. In this paper, we examine and extend
the Predictive Coding Network (a deep neural network architecture), designed on the
principles of PredNet [7]. It appears that in order to accurately predict how a visual world
will change over time, the model needs to learn about the object structure and possible
transformations that an object might undergo [7].

In this work, the aim is to analyze the architecture of neural networks for directly
collecting the motion data from video frames. The model can also learn to focus on regions
that change between consequent frames, which is more sample efficient, as it enables the
model to learn from far fewer data samples. PredNet trains the model at the pixel level to
predict the next frame of a video. Thus, we design a new combined model involving CNN
(Convolutional Neural Networks) and PredNet. CNN processes the RGB (Red Blue Green)
frames, while PredNet takes the features from CNN and predicts anomaly in later features.

Anomaly and accident prediction using optical flow often require a high processing
time. Our obtained results show that even without optical flow, it is possible to achieve
productive results in comparison to cutting-edge models that involve pre-computing the
optical flow fields from video frames. According to our hypothesis, extracting motion
information directly from the video frames for action recognition without optical flow
is effective, since for PredNet, the bottom-up and top-down deep recurrent connections
resemble the way optical flow is generated, yet they are more informative since these
pixel movements are captured in the (PredNet) recurrent process. Our model proposed
(FWPredNet) which is a combination of CNN model GoogleNet [22] with swish [23]
and PredNet [7], to perform action recognition tasks without directly using optical flow.
PredNet inputs the features extracted from CNN and predicts the features in the next time
step. Then, concatenated features from CNN and PredNet are fed to the action prediction
classifier and draw results based on the prediction score.

In our reported method, the model achieves competitive results compared to other
state-of-the-art models without pre-computed optical flow from video frames as an input.
Technical immersion of this work can be summarized as:

• We combine unsupervised video prediction i.e., PredNet and supervised action classi-
fication. Our novel idea is to predict future frames based on features extracted using
CNN with their labels.

• The model just uses video frames as input and does not require pre-processed optical
flows. This approach predicts and propagates error at the feature level, rather than at
the pixel level.

In the subsequent sections of the paper, we present the following structures. Section 2
focuses on related work that outlines the associated research to determine the current
advanced methods. Further, Section 3 introduces a proposed new framework for accident
anticipation. The implementation details and experimental evaluation of the proposed
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framework are presented in Section 4. The conclusion and future work section summarizes
findings and sums up future directions.

2. Related Work

Here, we briefly discuss some of the approaches, distinguishing before and after
deep neural networks models were introduced in the domain of anomaly and accident
predictions. A vehicle tracking algorithm has been proposed, which is based on spatio-
temporal Markov random fields, for detection of traffic accidents at intersections [24]. The
model can track individual vehicles robustly, without getting affected by occlusion and
clutter effects, which are main characteristics at most busy intersections. Similarly, spot
sensors were used as a principle for incident detection systems [25]; however, their scope
tends to be rather trivial for anomaly detection systems.

Vision-based systems are widely used in a variety of applications, primarily because of
their superior event recognition capabilities. It would be simple to extract information from
vision-based systems about traffic jams, traffic violations, accidents, and other relevant
topics. Static CCTV cameras are used to detect vehicles on a highway in [26]. To detect
traffic violations at intersections, Lai et al. [27] also proposed a method which is deployed
on the roads of Hong Kong so that they are able to detect moving vehicles when the traffic
light is red. Features aggregation was proposed by Fatima et al. [28] along with DSA,
in contrast with the interaction between agents. A distributed algorithm was proposed
based on anomaly detection for predicting and classifying traffic abnormalities in a variety
of traffic scenes [29]. Using image processing technology, Ikeda et al. [30] were able to
detect abnormal traffic incidents automatically. In their study, they noted several types
of traffic anomalies, where their method is capable of detection including slow-moving
vehicles, stopped vehicles, fallen objects, and vehicles attempting to change lanes abruptly.
Michalopoulos et al. in [31] performed an auto-scope video-based prediction system to
track incidents. In their work, a method was proposed to track accidents up to 2 miles
distant. An accident detection algorithm was proposed that utilizes the features of moving
vehicles to automatically detect and record the picture of an accident scene before the
accident occurred and afterwards [32].

2.1. Video Prediction Learning

The learning can roughly be characterized into three groups: supervised, semi-
supervised, or unsupervised [5,21–24]. The learning of normal behavior is not only crucial
for the identification of abnormality but also for numerous applications. Wei et al. in [33]
used Faster R-CNN to detect vehicles and introduced an unsupervised anomaly detection
system based on background modelling. Liu et al. [34] proposed a region-aware deep
model which extracted discriminative local features from a series of local regions of a
vehicle. A generative adversarial network-based approach was introduced using normal
data to detect the anomalies in images [35]. It is reported that certain algorithms used
multiple camera systems employing a system of video sensors to identify stationary ve-
hicles. A method combining vision-based tracking with Intersection over Union would
allow for an actual multi-object tracking technique that could be scaled to detect traffic
anomalies [36]. In [37], a machine learning technique was stated to analyze traffic behaviors
and detect the location of collision prone vehicles with high precision. Similarly, Yun et al.
in [38] applied motion interaction interface to analyze abnormal behavior to detect traffic
accidents. Finn et al. [12] by predicting a distribution over pixel motion from previous
frames and conditioning on a robot’s future actions produced a model of pixel-level motion.
Srivastava et al. [39] showed that unsupervised prediction of future sequences of high-level
representations of frames improved video classification results. Villegas et al. [40] analyzed
both raw frames and their high-level representations, which are the frames' corresponding
human poses, to predict the future frames.

The proposed method for assisting people in everyday work was implemented by a
real robotic framework in [41], and the trajectories of the vehicle were used to predict the
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intent for lane shift or rotation. Another approach used multiple cameras based sensory-
fusion to explore future frame prediction using GPS and vehicle dynamics [42]. However,
several strategies presume that the valuable details often arrive before the action at a fixed
timeframe. Furthermore, there are two exclusions that applied HMM and RNN input-
output to design and model the temporal order of prompts [39]. Some illustrations are
demonstrated in the following Figure 1.
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Figure 1. Snapshots of certain specialized strategies for identifying anomalies in a summarized
manner. The images are taken from [43]. (a) Motion Interaction Field (MIF) [38] accident detection.
(b) The topic-based model anomaly detection [44]. A car that has crossed the stop line appears on
top of the row, a middle row is a hybrid, and a vehicle taking an odd turn is on the bottom of the
row. (c) Multi-instance learning (MIL) anomaly detection in the real-time example [45]. The use of an
anomaly ranking determines the detection of anomalies. (d) A vehicle on a walkway is identified
with the STAN method [46]: as the top row is generator anomaly visualization, and the lower row
represents the discriminator’s anomaly visualization [47].

2.1.1. Predictive Coding in Anomaly and Accident Prediction

Lotter et al. [7] described the PredNet, a network that learns to predict future frames by
making local predictions with each layer and forwarding deviations from those predictions
to the following network layers. The authors affirm that the PredNet learns internal
representations of the objects and is capable of capturing important features. Their work
served as a starting point for a number of different researchers. For example, the AFA-
PredNet was developed, incorporating motor action as an additional signal that modulates
the top-down generative process through an attention mechanism [48]. Fur-thermore,
another method proposed a hierarchical artificial predictor using different timescales of
prediction for different levels of hierarchical coding, which are defined by the neurons’
temporal parameters [49]. Wen et al. [50] extended this model by creating a bidirectional,
dynamic neural network with local recurrent processing, which referred to a predictive
coding network. To efficiently retrieve cues, the presented work adopts the advanced
techniques for extracting moving items in effective ways [50] and represents it by learned
deep features as an observation in our FWPredNet model. Finally, we equate the anomaly
and accident anticipation data collection with three separates large dashcam video datasets.

2.2. Related Datasets

Dashcam videos or cameras’ videos on vehicles were gathered to review a variety of
localization and recognition challenges, such as analysis based on semantic perception of
urban scenes, the Daimler Urban Segmentation [51], Leuven [52], and CamVid [53]. In ad-
dition, three large-scale datasets have been compiled recently in our current work; HTA [8],
KITTI [9], and D2city [10] can also be taken as examples which are highly reputed datasets
used to analyze video tasks such as object detection, multi-object tracking, monitoring,
semantic segmentation and visual odometry for the detection of road/lane objects, etc. The
videos are often taken by vehicles with the same equipment (no collision/accidents) under
normal driving conditions. Most of the datasets used for anomalous action recognition
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consist of videos taken in rural areas and roads around middle-sized towns. A broad
dashcam dataset [54] was published to test semantic segmentation. The photographs were
captured in 50 different cities. Among them, 5k frames and 30k frames are labelled with
detailed and with coarse semantic marks [55]. While the data collection includes diversified
findings, most frames are still taken and captured in a typical driving environment.

2.3. Motivation

Anomaly anticipation in surveillance video is defined as the detection of rare events
that do not conform to events happening in normal situations. We base our study on the
following critical requirements for a successful video anomaly detector:

• Extract important features from the video sequence.
• Decode features map and calculate the final prediction score by IOU function for

anomaly and accident prediction.

3. Materials and Methods

In this section we briefly explain our FWPredNet architecture for anomaly anticipation,
classification module and future frame prediction.

3.1. PredNet Architecture

Figure 2 depicts the PredNet architecture [7]. The network structure is created on
weighted hierarchical layers. Each of the network’s components try to create local predic-
tions about their inputs. Next, this prediction and the difference from the actual input is
transferred up the hierarchy towards the subsequent layer. Here, the information transfers
in three ways across the network: (1) Error signal flows from the bottom to top as indicated
by the red arrows on the right side of Figure 2. (2) A green arrow on the left indicates that
the prediction signal flows from top down. (3) There is a constant flow of local error signals
and prediction estimation signals within individual layers. In each layer, there are four
units, an input convolution unit (Ai), a recurrent representation unit (Ri), a prediction unit
(Ahati), and an error computation unit (Ei), as indicated in Figure 2.

ConvLSTM [56] is used to create the representation unit (Ri), that estimates the input
for the next time step and is then fed in the prediction unit (Ahati), which consists of a
convolution layer that produces the prediction. Using error units (Ei), it can calculate the
difference between a prediction and the input. To add even more nonlinearity, it divides
them into positive and negative error populations. This error is subsequently passed onto
the next layer as an input parameter. A copy of the error signal (red arrow) and the up
sampled input (green arrow) from the representation unit of the higher-level are received
by the representation unit, and they are used in conjunction with its recurrent memory to
make predictions.

3.2. Prosposed Method

Inspired by [57], we use a pre-trained CNN model [22] to extract the features at frame
level, and then a proposed version of PredNet [7], i.e., FWPredNet is used to predict
the feature representation of the next video frame. Our idea is to condition the future
frame predictions on predicted action class labels. The following section describes the
functionality of the proposed FWPredNet architecture.
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3.2.1. Semantic Feature Extraction

Our proposed work considers the same network as GoogleNet [22]. However, we
arranged the layers according to our needs by settling convolution with a stride size of
two by adding seven pooling layers. The inception module was reduced to six layers. The
datasets (HTA, KITTI, D2city) consisting of video images have different resolutions. In
order to unify the training procedure, all images were resized to [224, 224], and fed in the
classifier as an input. The original size of an image is shown as one eighth in resulting maps
as [2048 × 3 × 3]. This helps us to detect even small objects with a fine-grained detection
while maintaining a low computational load. For detection and recognition, we use the
feature maps as the basis.

To address the aforementioned situations, we utilize the novel “Swish” activation
function which was proposed in [23]. Suggested from the studies of Google Brain, where
κ-input multiplies by sigmoid function, this is a reasonably simple feature (Swish activation
function is demonstrated in Figure 3).
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The mathematical definition [23] of ‘Swish’ is presented by using (1):

f (x) = x× sigmoid(x) (1)

Shown above is the Swish function which is graphically smooth; it doesn’t abruptly
change its course, like RELU close to κ = 0. In contrast, it falls smoothly from 0 to less than
0, and soon thereafter rises. This information also indicates the non-monotonic nature of
the function. Similarly, like RELU, this function does not persist as stable or unidirectional.
Conforming to the experimental study performed in [23], the Swish function seems to
operate in more complex data sets than RELU on deeper models. It performs with the same
computational effectiveness, but better than RELU.

3.2.2. FW-PredNet Architecture

The basis of the theory of predictive coding is that the brain endlessly generates top-
down predictions from bottom-up input. The representation at a higher level predicts the
representation at its lower level. A difference between the predicted and actual represen-
tation causes an error in prediction. This error propagates to the higher levels to update
their representations in order to attain an improved prediction. The process is repeated
throughout the hierarchy until the prediction error reduces, or until bottom-up processes
no longer transmit any “new” information (or unpredicted information) for updating
hidden representations. Therefore, predictive coding is a computational mechanism by
which the model recursively updates its internal representation of the visual input towards
convergence.

The input to PredNet [7] is pixel-level image data and the authors utilized a four-
layer architecture. Instead, we use the feature extracted from top layer of CNN which
contains semantic information necessary for performing anomaly detection. In contrast
to recognition in still images, motion and temporal aspects of videos play a significant
role in action recognition. Accordingly, the majority of presently available state-of-the-art
models use video pre-processing to acquire optical flow fields between contiguous video
frames and models that can consume video sequences. Hence, rather than propagating
errors at pixel level, we predict the error at feature level. Moreover, in order to make the
prediction more robust, we engage classification unit (C) that is attached to the top of the
representation layer. This unit consists of an encoder section and decoder section. The
compilation of FWPredNet includes four core components which can be seen in Figure 4,
in which, R, Â, A, E and C units denote representation unit, prediction, input, error and
classification unit, respectively.

As referred to by Wen et al. [50], in FWPrednet the higher-level representation Rt
l

where l is denoted as layer and t is denoted as time step predicts its low-level representation
Ât

l−1 via linear weighting Wl,l−1 where the weights of layer l− 1, to layer l, are denoted as
W. The prediction error El−1 is the difference between Ât

l−1 and Rt
l .

Ât
l−1 = (Wl,l−1)

TRt
l (t) (2)

Et
l−1 = Rl−1(t)− Ât

l−1 (3)

During the feedforward process, the prediction error on layer l− 1, Et
l−1, is propagated

to upper layer l, in order to update its representation layer Rt
l ; thus, the prediction error is

reduced with the updated representation. We can minimize Et
l−1, by defining losses as the

sum of squared errors normalized by the variance of the representation σ2
l−1 as:

Et
l−1 =

1
σ2

l−1
‖Et

l−1‖
2
2

(4)
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l−1 (5)

To decrease Et
l−1, by using gradient descent, Rt

l is updated with an updating rate, αl,
given in (6):
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∂Rt
l

)
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l +
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σ2
l−1

Wl,l−1Et
l−1 (6)

If the weights of feedback connections are the transpose of those of feedforward
connections Wl,l−1 = (Wl−1,l)

T, it is possible to rewrite (6) as a feedforward operation, as
in (7):

Rt+1
l = Rt

l + αl(Wl−1,l)
TEt

l−1 (7)

This method involves forwarding the prediction error from layer l− 1 to layer l, for
updating the representation with an update rate of αl =

2αl
σ2

l−1
. During the feedback process,

the top-down prediction is used to update representations at layer l, Rt
l in order to reduce

prediction error Et
l . In a similar way to the feedforward process, gradient descent is used to

minimize error, where the gradient of Et
l with respect to Rt

l is as in (8), and Rt
l is updated

with an updating rate of βl, as in (9):

∂Et
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∂Rt
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l
∂Rt

l

)
=

(
1− 2βl

σ2
l

)
Rt

l +
2βl

σ2
l

Ât
l (9)
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Let bl =
2βl
σ2

l
and (9) is rewritten as follows:

Rt+1
l = (1− bl)R

t
l + blÂ

t
l (10)

Here, Equation (10) illustrates a feedback process where the representation at the
higher layer Rt

l+1, caused top-down prediction Ât
l+1, and impacts the lower layer represen-

tation Rt
l .

In Figure 2, we have included an additional ‘classifying unit’ which is composed of
two ConvLSTM layers that convert the input R1

2 into class probabilities shown in Figure 4.
The decoder is made up of transposed convolution layers that upsample and transform
the classes back to the image features, which are then fed back into the top down. The
classification unit makes predictions at each in-coming frame. A weighted sum of these
prediction scores is calculated and passed through the softmax function to get predicted
class probability. In the first few frames of the video, the model does not have enough
context to make any meaningful predictions and therefore the weighing over time is done
using an exponential function, as shown as Figure 5. Notice how predictions in the first
few frames are weighted low while weights for later predictions stabilize at 1.0.
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1 generates Â1
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1 as well as A1

1, A1
1 and Â1

1. After convolution A1
2 is produced by E1

1 as input for
the next layer of a same time step. As at layer two, R1

2 produces Â1
2 using convolution,

whereas E1
2 is derived via subtractions between Â1

2 as well as A1
2, A1

2 and Â1
2. This represents

the conclusion of the bottom-up process. For the time step one at layer one, based on
convolution LSTM, R1

2 and E1
2 initialize R2

2 at layer one for time step two. R2
2 with E1

1
and R1

1, output R2
1 representing the bottom-up process. This bottom-up process occurs

continuously throughout a time domain.
The encoder is composed of two ConvLSTM layers that convert the input R1

2 into class
probabilities. The decoder is made up of transposed convolution layers that upsample
and transform the classes back to the image features, which later feed back into the top-
down. The classification unit makes a prediction at each in-coming frame. A weighted
sum of these prediction scores is calculated and passed through the softmax function to
get predicted class probability. In the first few frames of the video, the model does not
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have enough context to make any meaningful predictions and therefore the weighting over
time is performed by using an exponential function, as shown as Figure 5. Notice how
predictions in the first few frames are weighted low while weights for later predictions
stabilize at 1.0.

The number of classes recognized by classification unit (C) depends on the dataset,
i.e., 2 classes for KITTI and D2City and 3 in case of HTA. These classes are interpreted
as labels for future frame prediction. The encoder-decoder first transforms the output
from representation unit R1

2 into label class probabilities where the decoder transforms the
output back to image modalities.

3.2.3. Network Training Parameters

We use standard stochastic gradient descent (SGD) to train deep networks, with
momentum set at 0.75 and weight decay at 0.001 in each case. Initial learning rate is 0.0057
andbatch size is 8. As soon as the validation loss reaches a saturation, 10x reduction of the
learning rate is applied. Our FWPredNet model is trained using the action classification
layer model for 40 epochs on the KITTI dataset. Our training or finetuning of moments
uses only 10 plus epochs due to memory and time constraints. Models are all implemented
in Pytorch using a 2080Ti.

3.3. Datasets

Our proposed method of analysis is conducted on three different large-scale HTA [8],
KITTI [9], and D2city [10] dashcam videos datasets. Furthermore, Figure 6 shows the real
video examples of these state-of-the-art datasets.
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3.3.1. HTA

The collection of videos includes 1280 × 720 dashcam videos from cars recorded in
New York and the Bay Area [8]. Videos have been excluded from this subset which are
blurred or show visually degraded conditions. In brief, this dataset collection contains
traffic videos (clear, cloudy, or semi-cloudy weather conditions), minimally appearing or
blurred cars (due to large vehicles) also including traffic moving on the roads. This dataset
is not noise-free or in other words, a little bit imperfect because of the flawed nature of data
collection. For example, bumps and cracks on the road lead videos to have transient shakes.
These features make the dataset more realistic and at the same time, more challenging to
deal with anomalies. Videos lie in the standard driving conditions characterized in this
dataset as vehicles that do not disturb a dashcam movement. The training set involves
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286 regular traffic videos, an average length of 40 s and has a total count of 321,102 video
frames.

3.3.2. KITTI

This selected dataset comprises 600 video frames (having a pixel value of 375 ×
1242) [9] extracted at a minimum space distance of 20 m from the large-scale dataset of
KITTI. The reported videos are from 5 different scenarios and are in comparatively low
vehicle conditions, i.e., the road/path is often completely visible. Specific data was collected
from the KITTI website and chosen for our work (including color-stereo photos, laser scans
as Velodyne, information gathered by GPS).

3.3.3. D2city

D2city dataset [10] is a certain version, in which all videos and several scenarios of
incidents are recorded, such as a motorcycle hitting a vehicle, or a car colliding another car,
as shown in Figure 6. In addition, most videos are from different cities in Taiwan. These are
usually busy streets with several moving items or objects and complex road signs/panels
in a difficult driving vision. We noted the bounding boxes of vehicle, motorcycle, bike,
person, and the time of accident manually for each video. 58 videos out of 678 are used for
object detector training. The rest of the 620 files are randomly picked from 620 positive and
1130 negative clips, each consisting of 60 to 70 frames.

4. Experiments and Results

We evaluate the proposed approach on several datasets. In order to better understand
what each module at each layer of our designed model does, we conducted extensive visu-
alization experiments. In this section, we dedicate one paragraph to each of the evaluations
on three different datasets (HTA, KITTI, D2city), estimating the average precision (AP),
with a Figure and Table to aid in discussing the results.

One thing to mention is due to lack of dataset availability for anomaly anticipation, we
have taken publicly available datasets and repurposed them for the anomaly anticipation.
In case of HTA, we were able to classify the datasets in three different classes, i.e., Speeding
Vehicle, Close Merge, and Accident whereas, in case of KITTI and D2City, we classify the
datasets into two classes i.e., Close Merge and Accident. Some baseline methods for our
proposed method’s comparison are given. We labeled the dataset with 3 different classes
i.e., Accident, Close Merge, and Speeding Vehicle. We report top1 accuracy for abnormal
event classification. Using a CNN, a sequence of images is passed that is subsequently
encoded into feature maps. For abnormal event classification, the context feature is passed
through a spatial pooling layer along with a fully connected layer followed by a multi-way
SoftMax layer at the end. Since we are predicting frames (N + 10), the abnormal event
is triggered immediately as soon as the frame is classified as one of the labeled classes.
In this paper, we have introduced the FWPredNet framework for accident and anomaly
anticipation, and outperformed the previous state-of-the-art by a better margin on the
downstream tasks of classification accuracy on KITTI, D2city and HTA datasets.

4.1. Baseline

The baseline for our proposed method’s comparison is discussed in further
subsections.

4.1.1. CGAN

Generative models can learn to predict dense optical flow from normal motion models,
since an anomaly is described as an irregular motion [44]. For training purposes of optical
flow, ground truth is evaluated by using OpenCV optical flow implementation. GAN
can be generalized to a conditioned model (CGAN) with some additional information
on either G or D for any further details such as class labels or other methodologies [60].
By feeding y to the discriminator D and generator G, the conditioning is carried out in
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an additional input layer. Noise prior pz(z) and y is combined via generator G, in a joint
hidden representation. The framework of adversarial training offers exceptional stability in
the format of this hidden representation. x and y are presented as input to a discriminator
function in the discriminator D. The objective function for the condition is shown below
in (11):

min
G

min
D

V (D, G) = Fx∼pdata(x|y) [log D(x)] + Fz∼pz(z)[log(1− D(z|y))] (11)

In order to anticipate the optical flow between two sequential frames, the CGAN is
trained [61]. Inputs to the generator are two RGB images concatenated depth wise, and
usedto predict the optical flow. As one method for detecting abnormal motion is the usage
of difference between the predicted optical flow by the generator and the actual optical
flow of the ground truth. Using a sliding window, the difference is then averaged, and the
frame is considered anomalous if it exceeds the threshold in any of the x or y components.

4.1.2. FlowNet

FlowNet [62] compared two architectures: FlowNet Simple and FlowNetCorr; both
architectures are end-to-end approaches to learning. The system initially generates two
images distinctly and then merges them in a correlation layer together and learns the higher
representation. Additionally, multiplicative patch contrasts between two maps of functions
are used with the correlation layer. More precisely, two multi-channel maps of m1 and
m2 have the number of channels, height, and width as c, h and w. The correlation of two
patches mentioned in the first map based on a1 and the second map a2 is then described
as (12):

C(A1, A2) = ∑
o∈[−k,k]×[−k,k]

m1(a1 + o), m2(a2 + o) (12)

There are two trends described in the method [63] on neural network design for
event cameras through recurrent (spiking) variants of EV-FlowNet and FireNet. In this
study, authors propose a novel approach to event-based optical flow estimation using
self-supervised learning (SSL), which stresses the ability of networks to integrate temporal
data from successive slices of events. In the training pipeline, the self-supervised loss
function was reformulated to improve its convexity.

4.2. Model Analysis

We design our experiments to analyze each part of our model as follows:

• The last layer of CNN pre-trained on ImageNet is fine-tuned on HTA.
• The last layer of CNN pre-trained on KITTI is fine-tuned on HTA.
• Fix the weights of CNN pre-trained on ImageNet dataset and train the PredNet on

HTA.
• Fix the weights of CNN pre-trained on KITTI dataset and train the PredNet on HTA.

Experiments 1 and 2 are to examine the performance of CNN with different pre-trained
weights and without temporal features. Experiment 3 and 4 are to exhibit how effective
PredNet is with two pre-trained CNN models, respectively. Here, we present the results
of our analysis for the HTA dataset. Using CNN pretrained on the KITTI dataset yields
higher accuracy than using a model pre-trained in imageNet dataset, after fine-tuning the
classification layer on HTA. The accuracy of the first result is 5.71% while other is 56.2%.
This indicates the usage of features of the pre-trained model for object classification is not a
good representation for traffic anomaly classification. If we add PredNet on both scenarios
and train the PredNet from scratch on HTA, there is a significant boost in accuracy for
both pre-trained CNN, with a 13% increase for the ImageNeT pre-trained CNN and more
than 4% increase for the KITTI pre-trained one. This indicates that our proposed variation
in FWPredNet is able to capture additional information from generated video sequences.
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Table 1 provides the classification accuracy for experimental results analysis of our model
as follows.

Table 1. Experiment result analysis of our FWPredNet on the HTA. CNN has two versions—pre-
trained on ImageNet or KITTI. FWPredNet is trained on HTA dataset.

Model Structure
Pretrained On FineTune/Training Accuracy

CNN FWPredNet CNN FWPredNet

CNN ImageNet Classification Layer 5.71%

CNN KITTI Classification Layer 56.2%

CNN + PredNet ImageNet Fixed weights From scratch 18.44%

CNN + PredNet KITTI Subset of KITTI Fixed weights From scratch 60.3%

4.2.1. Evaluation on HTA

Here, we discuss our model’s results compared with other baselines on the HTA
dataset as described in Figure 7. We note that our model outperforms most of the cutting-
edge approaches by a great margin, namely CGAN [60], FlowNet [62], and PredNet [7], by
taking RGB frames only as an input. In addition to the RGB-frames, a two-stream model
based on the convolution neural network explicitly contains optical flow which is used as
the system input. Their model reaches a significantly higher rate of accuracy than that of
our model, having only RGB frame inputs as in Table 2.
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4.2.2. Evaluation on KITTI

We also conduct results on KITTI as an anomaly and anticipation results can be seen
in Figure 8. In Table 3, a comparison of our system with state-of-the-art schemes is reported
showing the identical results as extracted on the KITTI dataset. Our model only uses RGB
frames as input and achieved 0.578 and 0.724 in Accident and Close Merge, respectively.
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Table 3. Shows the resulted comparison between CGAN, Flownet, Prednet our FWPredNet model
for KITTI datasets.

ACTION CGAN FlowNet PredNet FWPredNet

Accident 0.439 0.541 0.38 0.578

Close Merge 0.526 0.685 0.45 0.724

4.2.3. Evaluation on D2city

Compared to other models, our model performs better in both accident prediction
and close merge detection on D2City detection, as shown in Figure 9. Our architecture
uses optical flow as an input to the two-stream model. The model can achieve significantly
higher accuracy than other models’ results as shown in Table 4 below.

Table 4. Comparison between CGAN, Flownet, PredNet and our FWPredNet model for D2city
dataset.

Action CGAN FlowNet PredNet FWPredNet

Accident 0.439 0.541 0.38 0.718

Close Merge 0.526 0.685 0.47 0.704
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5. Discussion

We implemented a model that is informally named as FWPredNet which outputs not
only classification results, but also conditions future predictions on its previously labelled
class labels. For all the experiments above, we report the top1 accuracy for supervised
learning for action classification on KITTI, HTA and D2City in the rightmost column. The
training and testing splits of KITTI, HTA, and D2City are presented. Tables 2–4 present
top1 accuracy for action classification on the KITTI, HTA and D2City datasets.

Furthermore, we evaluated vanilla PredNet and compared it to our proposed model.
Compared with traditional models, our model performs better in both Accident and Close
Merge classes but struggles with the speeding vehicles because the learning ability of the
model is sensitive to the continuity of the motion. Our model outperforms Flownet by
32.96%, with 7.4% in accident detection and marginally outperforms Flownet by 3.03% in
HTA due to the type of the dataset and the learning ability of our model, which is sensitive
to the continuity of the motion. Several of the presented techniques for extracting moving
items are adopted in order to retrieve cues efficiently [50] and then represent these features
as observations in our FWPredNet model by learning deep features. As compared with
previous studies, Villegas et al. [40] predicted the future using both raw frames and their
high-level representations, which is the frame’s corresponding human pose. However, this
only works with static backgrounds and requires labelled pose information. Moreover,
Vondrick et al. [13] extended this work and continued the tradition of encoding images at a
higher level than pixels. In order to anticipate objects and actions, they used recognition
algorithms on the predicted representation. In contrast, the PredNet [7] model that we
extended and informally named as FWPredNet, learns directly from the pixel space and
works with videos that have dynamic backgrounds and real-world settings. Moreover, this
model is a type of neuroscientific framework that can learn features at different hierarchical
levels without being specifically tuned to do so.

Parameter comparison of baseline (CGAN, FlowNet and PredNet) with our proposed
FWPredNet is shown in Table 5. below. The vanilla Prednet model is approximately
3.9 M parameters less than the FWPrednet model, but it performs significantly better in
every class and dataset. It is a compromise we have to strike to extract better results from
Prednet’s classification performance. Hence, we adopted a kind of trade-off for “accuracy
over computational cost” which will be interesting to explore for better classification
performance in future work.
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Table 5. Parameter comparison for computational cost for FWPredNet with our baseline.

Model Training VRAM
(GB)

Model
Parameters (in

Millions)
Batch Size

Resolution:224

PredNet [7] 3.8 7.2 8

CGAN [60] 10.1 45 4

FlowNet [62] 9.5 39 4

FW-PredNet 5.3 11.1 8

6. Conclusions and Future Work

• In this paper, we have introduced the FWPredNet framework for accident and anomaly
anticipation, and outperformed the previous state-of-the-art by a better margin on the
downstream tasks of classification accuracy on KITTI, D2city and HTA datasets.

• It can be deduced that our proposed variation in FWPredNet is able to capture addi-
tional information from generated video sequences while we train the PredNet from
scratch on the given dataset.

• We evaluated vanilla PredNet [7] then compared it to our FWPredNet model. Com-
pared with traditional models (CGAN, Flownet, PredNet), FWPredNet performs better
in both Accident and Close Merge classes. One limitation of the test performance is
that it struggles with speeding vehicles because the learning ability of the model is
sensitive to the continuity of motion but still achieves better results compared with
the rest of the three methods.

• Finally, on the engineering front, the current implementation of the FWPredNet takes
very long time to train, and work can be done towards more efficient usage of GPUs.
The computational cost of FWPredNet is 3.9M more than the vanilla PredNet but
we accepted it as trade-off for “accuracy over computational cost”. A successor to
FWPredNet can be designed, which does not have the aforementioned limitations and
is faster in implementation of the proposed model.
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