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Abstract: For remote sensing object detection, fusing the optimal feature information automatically
and overcoming the sensitivity to adapt multi-scale objects remains a significant challenge for the
existing convolutional neural networks. Given this, we develop a convolutional network model with
an adaptive attention fusion mechanism (AAFM). The model is proposed based on the backbone
network of EfficientDet. Firstly, according to the characteristics of object distribution in datasets,
the stitcher is applied to make one image containing objects of various scales. Such a process can
effectively balance the proportion of multi-scale objects and handle the scale-variable properties. In
addition, inspired by channel attention, a spatial attention model is also introduced in the construction
of the adaptive attention fusion mechanism. In this mechanism, the semantic information of the
different feature maps is obtained via convolution and different pooling operations. Then, the parallel
spatial and channel attention are fused in the optimal proportions by the fusion factors to get the
further representative feature information. Finally, the Complete Intersection over Union (CIoU) loss
is used to make the bounding box better cover the ground truth. The experimental results of the
optical image dataset DIOR demonstrate that, compared with state-of-the-art detectors such as the
Single Shot multibox Detector (SSD), You Only Look Once (YOLO) v4, and EfficientDet, the proposed
module improves accuracy and has stronger robustness.

Keywords: image stitching; object detection; feature fusion; loss function

1. Introduction

Object detection determines whether an image contains one or more objects and aims
to locate the position of each object. It has been widely applied in many fields, such
as military reconnaissance and surveillance [1], traffic scene perception [2], and disaster
response and recovery [3]. In recent years, the rapid development of high-resolution
remote sensing satellites has greatly facilitated the research on remote sensing image object
detection. Limited by data and hardware conditions, traditional methods often focus on
the extraction and description of handcrafted features. For example, Dalal et al. [4] used the
locally normalized histogram of gradient orientations features in a dense overlapping grid
to perform human detection. Aytekin et al. [5] conducted airport runway detection using
texture features; Weber and Lefevre [6] proposed a multivariate hit-or-miss operator for
morphological template matching in multivalued images with an application in coastline
extracting. Although these methods achieved considerable performance in certain scenarios,
they always have disadvantages, namely complex feature design, weak migration, and
a cumbersome manual design [7]; moreover, they often do not work well for massive
high-resolution remote sensing imagery. Further still, traditional detection methods often
require the designing of different detection schemes for different datasets because of a lack
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in learning ability. For the past few years, deep learning has achieved remarkable results in
the fields of image matching [8,9], image fusion [10], and object detection [11]. Recently,
deep-learning-based object detection methods have made a huge breakthrough. Differing
from traditional methods, which require the manual designing of feature descriptors,
deep-learning-based detectors rely on the advanced semantic information that is learned
automatically to make the abstract expression of the objects. At present, the existing object
detection models in deep learning can be generally divided into two categories: two-stage
models and one-stage models. In the former detectors, many region proposals available to
the detector must be generated by a certain method to localize and segment objects. For
example, R-CNN (Region-based Convolutional Network method) [12] generates region
proposals via Selective Search (SS) [13] and uses AlexNet as a feature extractor to extract a
fixed-length feature vector from each proposal. Then, R-CNN classifies each region with
category-specific linear support vector machines (SVMs). Unlike R-CNN, Fast R-CNN [14]
utilizes the entire image to produce a convolutional feature map. A region of interest (RoI)
pooling layer follows to extract sets of fixed-length feature maps corresponding to each
proposal. Subsequently, each feature map is fed into fully connected (FC) layers to get
bounding box positions and softmax probability of object classification. Faster R-CNN [11]
introduces a Region Proposal Network (RPN), which is trained end-to-end to generate high-
quality region proposals with a wide range of scales and aspect ratios. An RPN is a deep,
fully convolutional network that simultaneously predicts object bounds and objectness
scores at each position, which significantly improves both efficiency and accuracy. Ren
et al. [15] improve Faster-RCNN by fusing low-level features with high-level features and
then feeding them to a 1 × 1 convolutional layer. In this way, they achieve great success
in small object detection. In contrast to region-based detectors, one-stage detectors treat
the detection task as a single detection, in which convolutional neural works (CNNs)
can directly obtain the category probability and position coordinate. Classical one-stage
detectors are represented by SSD [16] and the series of YOLO [17–19]. To detect objects at
different scales, Xu et al. [20] proposed an improved YOLO-V3 based model by adopting
DenseNet and extending the detection scales of YOLO-V3, which achieved higher accuracy
and considered real-time performance simultaneously. Furthermore, anchor-free methods
have also received wide attention after the CornerNet [21] was proposed. In contrast to
prior one-stage detectors, CornerNet eliminates the requirement for designing anchor boxes.
Instead, it detects objects as paired keypoints (the top-left corner and the bottom-right
corner) and extends them to the bounding box. However, CornerNet often suffers plenty of
incorrect bounding boxes as it mainly focuses on the boundary of objects. CenterNet [22]
successfully rectifies this weakness by adding center points as an additional assessment
inside cropped regions, leading to the improvement of both recall and precision. Compared
with two-stage detectors, one-stage detectors remove the proposal generation process which
significantly improves speed but usually sacrifices accuracy. It is worth thinking about
how to build a detector achieving both great accuracy and efficiency. Accordingly, Google
proposed a weighted bi-directional feature pyramid network (BiFPN) and a customized
compound scaling method based on the one-stage detector. BiFPN allows for easy and
fast multi-scale feature fusion. Additionally, the compound scaling method can uniformly
scale the resolution, depth, and width for all backbone, feature networks, and box/class
prediction networks at the same time, which is critical when taking into account both
accuracy and efficiency [23]. By combining the EfficientNet [23] backbones with BiFPN
and compound scaling, Google developed a new module called EfficientDet [24], which
consistently achieves better accuracy with far fewer parameters and Floating Point of
Operations (FLOPs).

Although the emergence of EfficientDet consistently achieves both higher accuracy
and better efficiency, some limitations still exist in object detection. The mainly considered
points are as follows: 1© A remote sensing dataset is always a collection of multi-scale
objects. Due to the significant difference in the number of different categories and the fact
that some small objects always have the characteristic of clustering distribution, even if the
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number of small objects is huge, the image containing small objects usually only accounts
for a small number; 2© for existing CNN-based one-stage detectors, pixel-by-pixel addition
or multiplication and dimensional splicing are always adopted when aggregating features
at different layers or combining low-level image features with high-level context. It is
obvious that such methods miss realizing the optimal feature fusion; 3© in the bounding box
regression, while the Smooth L1 loss is widely adopted, it is not tailored to the evaluation
metric, i.e., Intersection over Union (IoU). Nevertheless, the most popular metric IoU loss
does not reflect whether the predicted box and ground truth are in the vicinity of or far
from each other [25], and it would not provide any optimization for non-overlapping cases.

To address the problems mentioned above, we develop a convolutional network model
with an adaptive attention fusion mechanism (AAFM). Firstly, the stitcher [26] strategy
is applied to improve the unbalanced distribution of multi-scale objects to optimize the
detection performance, especially of small objects. Then, an AAFM module is proposed
based on the EfficientDet backbone, which uses convolution and different pooling methods
to extract the feature representations of different layers. The parallel spatial and channel
attention models are fused in optimal proportions by the learnable fusion factors to obtain
further targeted feature information. Finally, the CIoU loss [27] is used to address the
weakness of IoU with faster convergence and better regression performance.

Our main contributions in this work are:

(1) We propose an adaptive attention fusion mechanism. AAFM is constructed by chan-
nel attention and the introduced spatial attention, combining in a parallel manner.
Specifically, the learnable fusion factors are adopted in AAFM for fusing features
adaptively both intra-module and inter-module. AAFM can be widely incorporated
into the existing detectors to boost the representation power.

(2) We design an AAFM-Enhanced EfficientDet network of object detection, which
employs several advanced techniques, including the stitcher scheme, the AAFM-
integrated architecture, and the CIoU loss. These techniques are applied together to
improve the accuracy and robustness of the network.

2. Related Work

In this section, we provide a brief review of the work closely related to our one-
stage AAFM-Enhanced network architecture, including the studies on the one-stage object
detection network and the attention mechanism.

2.1. One-Stage Object Detection Network of Remote Sensing Imagery

At the first stage of object detection, much effort has been made for accuracy improve-
ment so that the detectors can meet the application requirements in various scenarios.
Nowadays, more and more attention has been paid to the speed of detection for the real-
time requirement. One-stage detectors remove the step of proposal generation, which
significantly contributes to speed improvement.

In remote sensing image analysis and application, one-stage detectors have attracted
much attention over the last few years. YOLO divides an image into multiple grid cells as
the basic unit for classification and regression. It is characterized by simple design, high
speed, and strong generalization ability. Liu et al. [28] developed a YOLOv3-based detector
by making several optimizations at early layers to enlarge receptive fields. They obtained a
distinct performance improvement in small object detection for unmanned aerial vehicle
images. Ju et al. [29] redesigned the backbone of YOLOv3 to find suitable scales for small
vehicle detection in aerial images. SSD combines the regression idea of YOLO with the
Anchor mechanism in Faster-RCNN. Wang et al. [30] proposed a spatial enhanced SSD for
multiclass object detection. They added an oriented-gradients features map and a context
module to enhance the feature representation. The proposed method can detect multi-class
objects at a higher accuracy. Retina-Net [31] addresses the serious class imbalance between
foreground and background. Faina et al. [32] employed Retina-Net architecture for crop
detection and managed to obtain an effective yield estimator.
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The keypoint-based method is a novel path which does not require a large number
of parameters about anchors. Typical representatives are CornerNet and CenterNet. He
et al. [33] managed to find the approximate locations and rough sizes of the sunspot groups
on the solar full images based on Cornnet-Saccade. Liu et al. [34] and Lin et al. [35] achieved
high accuracy with a real-time detection speed based on CenterNet.

Some novel models are also emerging. Qin et al. [36] proposed a Specially Optimized
One-stage Network (SOON). SOON emphasizes extraction and understanding of the
combination of feature and semantic information about small objects. The method had a
reasonably good performance on densely arranged small object detection in large-scale
remote sensing images.

In this work, we make optimizations on the structure of EfficientDet, which is a
well-known one-stage detector achieving both high accuracy and efficiency.

2.2. Attention Mechanism

The attention mechanism is inspired by the human vision, which tends to selectively
focus on parts of information. It sets high weights to highlight the important part and
ignores irrelevant parts with low weights; at the same time, the weights can be adjusted in
different situations. Therefore, the attention mechanism allows the processing of important
information precisely and efficiently with scalability and strong robustness. It was initially
used in natural language processing [37], and has later been widely applied in image
recognition [38] and speech recognition [39].

In deep learning, attention mechanisms have been widely used in conjunction with
the existing neural network models to assign different weights to the different parts of
the model by which more critical feature representations can be obtained to optimize the
model. Spatial Transformer Networks [40] allow the neural networks to actively spatially
transform feature maps to extract critical spatial information. Squeeze-and-Excitation
Networks (SENet) [41] compute the channel-wise attention by a global average pooling
operation, which focuses on the importance of different channels. The Convolutional Block
Attention Module (CBAM) [42] is the combination of those two ideas in the mixed domain.
It exploits both the spatial and channel-wise attention to determine ‘what’ and ‘where’, a
focus which further boosts the representation power of CNNs. In contrast to the methods
mentioned above, which are dedicated to developing more complicated attention modules
for performance improvement, efficient channel attention networks (ECANet) [43] are a
lightweight block. In ECANet, a local cross-channel interaction strategy and a method
to adaptively select the kernel size of the convolution are proposed, leading to a clear
performance gain while significantly decreasing model complexity. Inspired by CBAM, in
this paper we integrate a spatial attention model within the existing channel attention model
in the backbone feature extraction network. When guided with an attention mechanism,
the deep learning-based remote sensing object detection can pay more attention to the
objects and suppress image noise to better handle small objects and complex background
properties of remote sensing imagery.

3. Materials and Methods

Figure 1 shows the overall architecture of our model; the technical route is as follows:
First of all, four images selected randomly from the original dataset will be sent to the
stitcher with a fixed extent image putting out. Such an image stitching operation realizes
the data augmentation and significantly increases the proportion of small objects. Then,
a spatial attention mechanism is introduced, referring to the existing channel attention
mechanism of the EfficientDet. The two attention mechanisms are connected in parallel to
construct an AAFM, in which convolution and different pooling operations are applied to
concentrate the spatial and channel information of the feature layers. Then, the adaptive
fusion factors lead to the optimal fusion of the different features, which significantly
improves the network performance. Lastly, the CIoU loss introduces three critical geometric
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factors the overlap area, the center point distance, and the aspect ratio to further optimize
the accuracy of the bounding box regression.
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3.1. Image Stitching Method

In the CNN-based remote sensing object detection, there is an obvious performance
distinction according to scales; it tends to perform much better with large objects than
with small ones. On the one hand, this is because the down-sampling process of CNN
causes more serious information loss for small objects. On the other hand, the unbalanced
distribution of multi-scale objects impacts the results. This can be seen from Table 1: in the
remote sensing image dataset DIOR, small objects account for 68.3%, which is far more
than medium and large-scale objects. In theory, this is beneficial for the performance of
small objects. However, only 46.3% of images contain small objects; that is to say, most
objects are small while more than half of the images do not contain small objects. Such a
scale imbalance poses great challenges for model training.

Table 1. Scale distribution on DIOR.

Object Scales Small Medium Large

number account (%) 68.3 12 19.7
images included (%) 46.3 29.3 79.6

For the above problems, we introduce a data augmentation method named ‘stitcher’
(Figure 2, C, H, and W are channels, height, and width of the image respectively) to
optimize the distribution of the multi-scale objects. By stitching and scaling original images,
a stitched image is constructed. The medium and large objects are resized to smaller ones
with richer details or border information compared with the real small objects. The image
stitching generates more small objects whose original aspect ratio is preserved for retaining
properties. Additionally, no more computation is introduced, as the image size does not
change.

It can be seen from Table 2 that the proportion of small objects in the augmented
dataset reaches 96.5%, which means a significant number increase of the images that
contain small objects. In this way, the augmented dataset which integrates with the stitched
image achieves data augmentation among different scales.
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Table 2. Percentage of object scale distribution in the augmented dataset.

Object Scales Small Medium Large

number account in stitched images (%) 11.5 9.6 78.9
images included in stitched images (%) 96.5 78.5 97.2

3.2. AAFM-Enhanced EfficientDet

Considering both accuracy and efficiency, we employ EfficientDet as the baseline
network for object detection. In the backbone of EfficientDet, we find that the mobile
inverted bottleneck Convolution (MBConv) [44,45] module introduces an attention idea of
Squeeze-and-Excitation (SE) which adopts the average-pooling to automatically exploit
the importance of each channel. However, the average-pooled features are suboptimal to
the max-pooled features when inferring fine channel attention [42]. Additionally, it only
focuses on the relationship between channels, ignoring the spatial attention which is critical
to highlight the informative area. Moreover, when aggregating different features, it is worth
thinking about how we can combine them to obtain a richer representation. Accordingly,
we propose an AAFM, which adopts both channel and spatial attention and introduces
adaptive factors to realize the optimal feature fusion. To clearly illustrate how an AAFM
enhances the EfficientDet network, we will provide a brief introduction to EfficientDet at
first.

3.2.1. EfficientDet

The EfficientDet first employs the EfficientNet as the backbone network, then the
repeated BiFPN serves as the feature extraction network to make multi-scale feature fusion
of third to seventh level features (P3–P7) from EfficientNet. Finally, the fused features are
fed into the class and box prediction net for classification and bounding box prediction.
Figure 3 shows the overall architecture of EfficientDet.

The main architecture of EfficientNet (P1–P5) is built by repeated MBConv blocks,
which introduce the squeeze-and-excitation optimization. This block takes a low-dimensional
compressed representation as the input, which is expanded to high dimension by a 1 × 1
convolution. The features will be filtered with a depthwise separable convolution for spatial
information encoding. Notably, a SE block is introduced, which applies global average
pooling to squeeze the spatial information along the channel axis. Then, the aggregated
features are set to an excitation operator to fully capture channel-wise dependencies. Pro-
jected back to the low-dimensional representation by another 1 × 1 convolution, the output
features are considered as weights of each channel. Finally, the features are connected
with the original input with an inverted residual structure for channel weighting. Several
features from different levels of EfficientNet are then sent to BiFPN for feature fusion.

BiFPN makes several optimizations on PANet (Path Aggregation Network) to fuse
more high-level features in a simplified bi-directional network. Moreover, each input is
added with an additional weight so that the network can learn the contribution of features
at different resolution scales. By integrating both bidirectional cross-scale connections and
the weighted feature fusion, the final BiFPN allows efficient multi-scale feature fusion.
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In consideration of both accuracy and efficiency, a compound scaling method is
proposed. The width, depth, and image resolution are jointly scaled up by the introduced
coefficient Φ, by which how much resources are used can be computed.

3.2.2. AAFM

In the backbone of EfficientDet, MBConv adds a channel attention mechanism of SE
block which explicits channel-wise information via global average pooling, ignoring the
max-pooled features and the spatial attention. Given this, we suggest using max-pooling
for gathering features about distinctive objects as well. As the essence of the attention
mechanism is to selectively focus on the contribution of specific features by redistributing
the original features and weaken the effect of features that provide little attribution at the
same time [46], we suggest letting the network learn which information to emphasize or
suppress along the channel and spatial dimensions, respectively.

Inspired by the CBAM, a lightweight and effective attention module, we have designed
an AAFM as an alternative to SE in the MBConv block of EffcicentDet backbone (Figure 4).
The AAFM is composed of channel and spatial attention modules (Figure 5). In both
modules, the max-pooled features and average-pooled features are adopted simultaneously
for aggregating channel and spatial information. Moreover, a 1 × 1 convolution is added in
the spatial attention module as compensation for learning ability when aggregating spatial
information via pooling operations. Different from the form in which CBAM combines
the two attention mechanisms in sequential, the AAFM combines two modules in parallel,
which is proved to be the most effective manner. Specifically, the learnable adaptive
fusion factors are introduced to adaptively fuse the feature information in the optimal
proportion both inside the attention mechanism (W1, W2; P1, P2, P3) and between the
attention mechanism (m1, m2).

The entire AAFM module is composed of the channel attention (A) and the spatial
attention (B). The model A focuses on semantic information about what is useful for object
detection, and the model B is designed to exploit the inter-spatial relationship of features to
tell where the informative part is. The overall process is as Equation (1).

Fout = FA·m1 + FB·m2 (1)

where Fout is the output feature map, FA; FB is the output feature of module A, B, and
m1 and m2 are the adaptive fusion factors. In this paper, all of the learning factors are
normalized.
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For the channel attention model A, the first step is to perform max-pooling and
average-pooling, respectively, for the input feature map (Fin, where W, D, C are width,
depth, and channels of the input feature map, respectively) to keep the textural features
and the overall digital features. The channel attention weights are obtained via a non-
linear mapping operation in which the features are aggregated. The non-linear mapping
operation adopts the fully connected convolution to share the network parameters. Then,
the normalized channel attention weights are multiplied channel by channel with the
original input. Finally, we use the adaptive fusion factors W1 and W2 to aggregate the
information from the max-pooling and average-pooling operations by an element-wise
summation. The channel attention is computed as:

FA = Fc(MaxPool(Fin))·Fin·W1 + Fc(AvgPool(Fin))·Fin·W2 (2)
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where FA is the output feature of the module A, Fin is the input feature, Fc is the fully
connected operation applying a non-linear mapping, and W1 and W2 are adaptive fusion
factors. MaxPool(Fin)εRC×1×1 and AvgPool(Fin)εR1×1×C.

For the spatial attention B, in addition to pooling, we add a 1 × 1 convolution layer to
the input. Such an operation not only reduces the channel dimension but also encodes the
representative information at each pixel over a channel, which compensates for the insuffi-
ciency of the fixed pooling method. Then, the three feature layers are concatenated by the
element-wise summation with the learnable fusion factors (i.e., P1, P2, P3). Considering that
the convolution with a larger kernel size has a wider receptive field, the concatenated layer
is convolved by a 7 × 7 convolution kernel to produce the spatial attention weights. In this
process, the context information is incorporated to further boost the feature discrimination.
Finally, the normalized spatial attention weights multiply with the original input channel
by channel to obtain a representative output feature. The spatial attention is computed as:

FB = f 7×7
(

MaxPool(Fin)·P1 + AvgPool(Fin)·P2 + f 1×1(Fin)·P3

)
·Fin (3)

where FB is the output feature of module B, f i×i represents a convolution operation with
the filter size of i × i, and P1, P2, P3 are the learnable fusion factors. After the pooling and
convolution operation, FBεRH×W×1.

It is worth noting that the AAFM module does not change the size of the input feature,
therefore it can be a good alternative to the channel attention mechanism in MBConv
without any change of the network.

3.3. CIoU Loss

IoU is the most popular evaluation metric in bounding box regression. However, it
cannot work in non-overlapping cases. The Generalized Intersection over Union (GIoU)
loss can address this weakness by adding a penalty term of the smallest convex box,
covering both the predicted box and the ground truth and maintaining the property of
scale-invariant at the same time [25]. However, the GIoU loss tends to maximize the overlap
area of bounding boxes; as shown in Figure 6a, the GIoU loss will totally degrade to the
IoU loss when the ground truth encloses the predicted box. Given this, we adopt the
CIoU loss. The CIoU loss introduces three important geometric factors: the center point
distance, the overlap area, and the aspect ratio (Figure 6b), where c is the diagonal length
of the smallest enclosing box covering the predicted box and the ground truth and d is
the distance between the centers of two bounding boxes. The loss function can be defined
as Equations (4)–(6). The full consideration of the position relationship between the two
boxes makes the CIoU loss more robust for the cases with occlusions and leads to faster
convergence and better regression performance.

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αv (4)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(5)

α =
v

(1− IoU) + v
(6)

where, b and bgt denote the center points of the predicted box and the ground truth,
respectively, ρ(·) is the Euclidean distance, c is the diagonal length of the minimum enclosing
boxes covering the two boxes, h; w is the width and height of the box, v is a measurement
to the aspect ratio, and α is a positive trade-off parameter.
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4. Dataset

The DIOR dataset consists of 23,463 images with 192,472 object instances from
20 categories such as airports, dams, ships, bridges. etc. The size of each image is
800 × 800 pixels, with a 0.5–30 m spatial resolution. The main reasons for choosing it
for object detection are as follows: (1) DIOR is characterized by multi-category, multi-image,
and multiple-instance. (2) Both the spatial resolution of the images and the object scales are
variable. (3) As the images are collected in different imaging conditions, weather, seasons,
and from different sensors, the samples are rich and diverse enough. (4) The high intra-class
diversity and the low inter-class difference increase the difficulty of detection, making the
training model more versatile. Figure 7 shows some samples of each category in DIOR.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 7. Data samples in DIOR. 

Since the stitcher is applied in the experiment, both the number of images and the 
instances of each category increase. A comparison of the number of objects in the original 
dataset and the stitched dataset is shown in Figure 8. In the following experiments, there 
are 18,462 training images and 7001 validation images separated by a ratio of 2:8, while 
the validation set does not contain the stitched images. 

 

 
Figure 8. Comparison of the instance objects number. 
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Since the stitcher is applied in the experiment, both the number of images and the
instances of each category increase. A comparison of the number of objects in the original
dataset and the stitched dataset is shown in Figure 8. In the following experiments, there
are 18,462 training images and 7001 validation images separated by a ratio of 2:8, while the
validation set does not contain the stitched images.
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5. Results and Analysis

All the above experiments are implemented on Ubuntu 9.3.0-17ubuntu1~20.04 system,
Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz CPU, Tesla P40 graphics cards, and 24 G
video memory. The overall configuration is relatively high. The experimental software is
configured with PyTorch, cuda11.0, and cuDNN v8.0.5.

The Average recall Precision (AP) and mean Average Precision (mAP) are adopted
as the evaluation criteria. The main indicator AP refers to the average recall rate of the
detection in the range of 0 to 1, computed according to the area under the precision-recall
curve. The precision P (Equation (7)) and the recall R (Equation (8)) are defined as:

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

where TP, FP and FN are the numbers of true positive cases, false positive cases and false
negative cases, respectively.

A detection map will be considered to be a TP when the IoU exceeds the given
threshold (e.g., 0.5). The IoU is the overlap ratio between the predicted box and the ground
truth, defined as:

IoU =
area(A) ∩ area(B)
area(A) ∪ area(B)

(9)

where A and B are the ground truth and the predicted box.
In the training stage, there is a total of 26,463 images of 800 × 800 pixels after data

augmentation. The Stochastic Gradient Descent (SGD) optimizer is used in training. The
weight decay and momentum are set to 0.0004 and 0.9, and the initial learning rate is 0.0005.
In each iteration, 16 images selected from the training set are input into the network for
training. Training stops as the loss function converges.

In order to evaluate the performance of our model, we compare it with previous
state-of-art models, including SSD, YOLOv4, and EfficientDet. Since the stitcher is an image
preprocessing operation, all of the four models have adopted it for data augmentation to
ensure a fair comparison.

Table 3 lists the details of the accuracy comparison. It can be seen that the AP of the
proposed model is slightly lower compared with YOLOv4 for the chimney. This may be
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due to YOLOv4 adopting Self-Adversarial Training and Multi-input weighted residual
connections that benefit the performance of this category. Besides, compared with all
detectors, we achieve better performance in terms of not only AP metric but also mAP.

Table 3. Accuracy comparison of different algorithms.

Class SSD YOLOv4 EfficientDet Our Model

airplane 0.668 0.682 0.688 0.716
airport 0.687 0.702 0.742 0.751

baseball field 0.704 0.759 0.803 0.826
basketball court 0.763 0.806 0.778 0.81

bridge 0.334 0.414 0.403 0.459
chimney 0.668 0.713 0.683 0.704

dam 0.565 0.603 0.643 0.69
Expressway-Service area 0.648 0.776 0.816 0.832
Expressway-toll station 0.574 0.663 0.671 0.682

golf field 0.662 0.755 0.775 0.784
ground track field 0.675 0.755 0.795 0.808

harbor 0.395 0.472 0.468 0.483
overpass 0.495 0.56 0.576 0.598

ship 0.697 0.734 0.746 0.768
stadium 0.66 0.696 0.807 0.81

storage tank 0.496 0.561 0.532 0.566
tennis court 0.771 0.833 0.84 0.856
train station 0.538 0.583 0.579 0.605

vehicle 0.375 0.443 0.43 0.456
windmill 0.674 0.757 0.759 0.765

mAP 0.602 0.673 0.677 0.698
Note: The best AP of each category is in red font.

In Figure 9, several typical objects (aircraft, vehicles, storage tanks) are selected to
make a visual display of the detection results of the proposed method. The yellow and
red donate misdetection and false detection, and the green and blue rectangles are the
ground truth and the detection box, respectively. Due to the proposed AAFM, which
can extract richer and more targeted features, as well as the CIoU loss achieving superior
box regression results, our model can efficiently tackle multi-scale object recognition and
location, with the predicted box closer to the ground truth, while misdetection and false
detection mostly occur in small scales and fuzzy boundaries.

To evaluate the effectiveness of the stitcher, we carry out a comparative experiment
between the original DIOR dataset and the augmented dataset in four models. The results
are shown in Table 4. We also compare the accuracy between different scales in our model
based on two datasets. The test results are shown in Table 5. As Table 4 shows, the stitcher
can certainly improve the accuracy of all four models. For the SSD model with lower
accuracy, the mAP improvement is more obvious. As for YOLOv4, since it has already
applied a similar data augmentation operation, the accuracy is only slightly improved. In
addition, it can be clearly found from Table 5 that there is a consistent mAP improvement
among all scales of the augmented dataset. This is mainly due to the stitcher, which balances
the distribution of multi-scale objects. Moreover, the image augmentation has expanded
the sample size, so that the proposed model has higher robustness.
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Table 4. Accuracy comparison of different datasets.

Algorithm Original Dataset Augmented Dataset mAP Improvement

SSD 0.58 0.602 2.20%
YOLOv4 0.667 0.673 0.60%

EfficientDet 0.663 0.677 1.40%
Our method 0.687 0.698 1.10%

Table 5. Accuracy results at different scales of our model.

Scales Small (mAP) Medium (mAP) Large (mAP)

original dataset 0.478 0.707 0.824
augmented dataset 0.483 0.716 0.841

improvement 0.50% 0.90% 1.70%

AAFM plays an important role in the feature extraction of the entire network. It
continuously optimizes the output representation of the spatial and the channel attention
through the learnable weights, which is ultimately conducive to accuracy improvement. To
confirm the effectiveness of AAFM, we made extensive ablation studies. Table 6 gives the
experimental results with various attention approaches, and Figure 9 shows the feature
maps that present the effect of these attention methods directly.
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Table 6. Results of different attention methods.

Fusion Methods Accuracy (mAP)

module A
the channel attention

MaxPool + AvgPool 68.34
W1·MaxPool + W2·AvgPool 68.97

module B
the spatial attention

MaxPool + AvgPool 68.1
MaxPool + AvgPool + conv1 × 1 68.3

P1·MaxPool + P2·AvgPool + P3·conv1 × 1 + (k = 3) 68.45
P1·MaxPool + P2·AvgPool + P3·conv1 × 1 + (k = 7) 68.62

module A + module B
module A + module B (in parallel) 69.25

m1·module A + m2·module B (in sequential) 69.67
m1·module A + m2·module B (in parallel) 69.83

Note: MaxPoolAvgPool, k are max pooling, average-poolingand kernel size respectively.

As Table 6 shows, using learnable factors to fuse features after pooling and convolution
can produce better accuracy for both channel attention and spatial attention. Moreover, the
mAP in parallel connection is increased by 0.86 and 1.21 percent compared with putting
each model, respectively. It is confirmed that exploiting two attention models in parallel
greatly improves the representation performance of networks. In addition, we can observe
that the module B achieves higher accuracy when adding a 1 × 1 convolution layer for
learnable weighted channel pooling. Additionally, the better accuracy with a larger kernel
size indicates that a larger receptive field is needed to decide where to focus on. The
visualization of the third feature map (Figure 10c) demonstrates that the performance of the
channel attention model is significantly better than the spatial attention model (Figure 10b).
Thus, we use the spatial attention model as an auxiliary to make the target representation
more distinguishable (Figure 10e). Moreover, the parallel fusion strategy with the adaptive
factors obtains the best mAP of 69.83%. These results show that the spatial attention
model and the channel attention model can be optimally connected in parallel through the
adaptive fusion factors, thereby achieving the best network performance in the end.
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The CIoU loss comprehensively considers the three important geometric factors in
bounding box regression: the normalized center point distance, the overlap area, and the
aspect ratio. The mAP value has been improved (Figure 11) when using the CIoU loss
instead of the Smooth L1 in all different object detectors. It is noteworthy that our model
outperforms EfficientDet on accuracy with slightly higher FLOPs (Figure 12). In general,
however, the accuracy improvement can compensate for the speed insufficiency. Moreover,
it can be intuitively seen from Figure 13 that the predicted box is closer to the ground truth
when using the CIoU loss. That is to say, the position of the ground objects is located more
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precisely. In addition, from the ship detection corresponding to the red arrow, it can be
found that the CIoU loss can better handle the high overlap cases.
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6. Conclusions

In this paper, we propose an AAFM-enhanced one-stage model for object detection.
The proposed model employs various techniques, including the stitcher, AAFM, and CIoU.
Firstly, we adopt the stitcher, a feedback-driven data provider for training sets, to handle the
difficulty caused by multi-scale objects and small objects. Four images selected randomly
from DIOR are combined and scaled into a fixed size image for data augmentation and
multi-scale proportion balance. Then, we innovatively build AAFM for the network. In this
module, the parallel channels and spatial attention model realize the optimal feature fusion
by the learnable fusion factors. Finally, the CIoU loss is used to optimize the detection
performance of the predicted box, making it precisely cover the ground truth. A series of
experiments are performed to make a quantitative comparison of accuracy and efficiency
with SSD, YOLOv4, and EfficientDet, where we respectively carried out quantitative
evaluation or qualitative effectiveness comparisons of the stitcher, AAFM, and CIoU loss.
The results demonstrate that each part greatly contributes to performance improvement.
Based on those optimizations, our model significantly achieves higher accuracy compared
with the other models. Moreover, we reduce the rate of misdetection with the predicted
box covering the ground truth more precisely. Since the stitcher increases the complexity of
data preprocessing and the AAFM module adds a few learning parameters, we found that
the proposed method increases the computational load. In the future, we plan to further



Remote Sens. 2022, 14, 516 17 of 18

optimize the network model to reduce the training time as well as improve the detection
accuracy.
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