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Abstract: Densely distributed Global Navigation Satellite System (GNSS) stations can invert the
terrestrial water storage anomaly (TWSA) with high precision. However, the uneven distribution
of GNSS stations greatly limits the application of TWSA inversion. The purpose of this study was
to compensate for the spatial coverage of GNSS stations by simulating the vertical deformation
in unobserved grids. First, a new deep learning weight loading inversion model (DWLIM) was
constructed by combining the long short-term memory (LSTM) algorithm, inverse distance weight,
and the crustal load model. DWLIM is beneficial for improving the inversion accuracy of TWSA
based on the GNSS vertical displacement. Second, the DWLIM-based and traditional GNSS-derived
TWSA methods were utilized to derive TWSA over mainland China. Furthermore, the TWSA results
were compared with the TWSA solutions of the Gravity Recovery and Climate Experiment (GRACE)
and Global Land Data Assimilation System (GLDAS) model. The results indicate that the maximum
Pearson’s correlation coefficient (PCC), Nash–Sutcliffe efficiency (NSE) coefficient, and root mean
square error (RMSE) equal 0.81, 0.61, and 2.18 cm, respectively. The accuracy of DWLIM was higher
than that of the traditional GNSS inversion method according to PCC, NSE, and RMSE, which were
increased by 67.11, 128.15, and 22.75%. The inversion strategy of DWLIM can effectively improve
the accuracy of TWSA inversion in regions with unevenly distributed GNSS stations. Third, this
study investigated the variation characteristics of TWSA based on DWLIM in 10 river basins over
mainland China. The analysis shows that the TWSA amplitudes of Songhua and Liaohe River basins
are significantly higher than those of the other basins. Moreover, TWSA sequences in each river basin
contain annual seasonal signals, and the wave peaks of TWSA estimates emerge between June and
July. Overall, DWLIM provides a useful measure to derive TWSA in regions where GNSS stations are
uneven or sparse.

Keywords: deep learning weight loading inversion model; TWSA; GNSS; GRACE; LSTM

1. Introduction

Terrestrial water storage (TWS) comprises all of the water stored on the crustal surface
and underground, including snow, glaciers, soil water, groundwater, runoff, and biological
water components, which is an essential part of the water cycle system [1,2]. However,
the TWS is extraordinarily limited, only accounting for 3.47% of the total global water
resources [3]. The TWS provides an essential function for industry, agriculture, and human
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life. The freshwater resources of China account for only 6% of the total global water
resources [4]. The Chinese per capita freshwater resource is only 2100 cubic meters, which
is a quarter of the world’s per capita value [5,6]. Moreover, TWS suffers from uneven
interannual distribution, apparent conflicts between water supply and demand, and low
utilization of water resources [7]. In recent years, a series of natural disasters have occurred
frequently, for example, droughts, floods, and soil erosion [8,9]. This phenomenon seriously
affects human life and the economic development of society. Thus, it has become an urgent
issue to scientifically and effectively manage regional water resources in China [10].

The optimization of hydrological models and advancements in observation techniques
have allowed us to accurately monitor the redistribution of TWS at different spatiotemporal
scales [11]. Hydrological models are mathematical models of TWS processes, which are
widely used in climate change studies and human exploration of global water resources [12].
Unfortunately, hydrological models typically simplify the complex hydrological cycle [13].
Not all hydrological components are included in hydrological models, which results in a
tendency to underestimate climate and human-induced changes in the terrestrial water
cycle [14]. For example, the Noah model in the Global Land Data Assimilation System
(GLDAS) only includes soil moisture, snow water equivalent, and total canopy storage
components at 0–2 m depth [15]. The influences of other components are ignored in hydro-
logical models, such as surface water, deep groundwater, and anthropogenic factors [16].
It is essential to find an alternative method for monitoring TWS on a large spatial scale.
Correspondingly, the redistribution of substantial water mass will cause changes in the
gravity field of the surrounding regions. It is possible to invert the terrestrial water storage
anomaly (TWSA) based on gravity anomaly data [17]. Gravity Recovery and Climate
Experiment (GRACE) satellites were launched by the National Aeronautics and Space Ad-
ministration (NASA) in March 2002, which provided an unprecedented method to detect
TWSA on a large scale [18]. This observation tool can accurately measure the gravity field
and continuously monitor changes in surface mass [19]. In recent years, many researchers
have studied the redistribution of the water mass in typical regions based on GRACE,
such as the Amazon basin [20], Greenland [21], the North China Plain [22], and Southwest
China [23]. However, the orbit radius of GRACE satellites leads to inversion results with a
coarser spatiotemporal resolution [24]. Specifically, the temporal resolution is on a monthly
scale, and the spatial resolution is about 300–400 km under the harmonic degree of 60–90,
which dramatically limits the TWSA inversion in small-scale regions using GRACE [25].
The aging of GRACE satellite elements led to its retirement in 2017 and the launch of its
next gravity satellites, namely, GRACE Follow-On (GRACE-FO), in 2018 [7]. There is a gap
of nearly one year between the GRACE and GRACE-FO satellites [2]. Hence, it is essential
to find an alternative method to continuously monitor TWSA.

The redistribution of water masses will cause the subtle deformation of the surround-
ing crust [26,27]. It is then possible to invert TWSA by continuously monitoring crustal
deformation [28–30]. Crustal deformation can be continuously measured by Global Navi-
gation Satellite System (GNSS) stations. Moreover, there are many advantages with regard
to GNSS observations, such as high accuracy and all-weather and real-time measure-
ments [31]. Currently, the GNSS is constantly utilized to derive TWSA in distinct regions
around the world, such as California [32,33], the western United States [34,35], southwest
China [3,12], and mainland China [8]. In regions with dense GNSS stations, TWSA can
be effectively derived using GNSS vertical arrays. GNSS can observe the deformation of
the crust caused by TWSA. Correspondingly, the vertical displacement can be utilized to
invert the near real-time TWSA in these regions [36]. This inversion strategy has great
potential for detecting hydrological signals, which can be employed to establish warning
systems for extreme hydrometeorological hazards [37]. In addition, the Crustal Movement
Observation Network of China (CMONOC) was established about 10 years ago, which
makes it possible to obtain the crustal deformation over mainland China [38,39]. The GNSS
datasets provided by CMONOC have been widely utilized to analyze crustal deformation
and surface loading [22,40,41]. However, the distribution of GNSS stations is uneven due
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to harsh geo-climatic conditions, which dramatically limits the application of GNSS for
TWSA inversion [3]. Developing methods to accurately derive TWSA based on sparse
GNSS arrays has become a research hotspot.

Unlike previous studies, this study proposes a new deep learning weight loading
inversion model (DWLIM) by combining the long short-term memory (LSTM) algorithm,
inverse distance weight method, and crustal loading model. Moreover, TWSA was derived
for mainland China from 2011 to 2020 using DWLIM, GRACE, and GLDAS. The TWSA
results were calculated based on DWLIM, and its variation characteristics were investigated
in 10 river basins within China. The organization of this study is as follows: Section 2
describes the materials and methods in this study, and Section 3 presents the TWSA results
based on DWLIM, including the inversion of TWSA and validation of DWLIM. Section 4
discusses the variation characteristics of TWSA in the river basins, and this section also
analyzes the difference among the TWSA results. Finally, the primary findings of this study
are summarized in Section 5.

2. Materials and Methods
2.1. Materials
2.1.1. GNSS Datasets

This study utilized GNSS vertical deformation sequences provided by CMONOC, and
the distribution of the GNSS stations is shown in Figure 1b. The period of each station
is not consistent due to the difference in the station establishment time, and the periods
of GNSS arrays are shown in Figure 1a. The study period was chosen as 2011–2020 to
ensure the completeness of vertical deformation sequences. There were 263 original GNSS
stations after removing 6 stations with large period differences, which are shown by the red
shadow in Figure 1a. The GNSS observation sequences were calculated using observation,
navigation, precision ephemeris, and table files. Furthermore, the daily coordinate solution
file was obtained based on GAMIT/GLOBK 10.4, and its specific solution strategy is shown
in Table 1 [42]. The GNSS vertical sequences were preprocessed by removing observed
outliers that were three times larger than the standard error and system sequence errors
caused by earthquakes or antenna replacement.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 20 
 

 

ago, which makes it possible to obtain the crustal deformation over mainland China 

[38,39]. The GNSS datasets provided by CMONOC have been widely utilized to analyze 

crustal deformation and surface loading [22,40,41]. However, the distribution of GNSS 

stations is uneven due to harsh geo-climatic conditions, which dramatically limits the ap-

plication of GNSS for TWSA inversion [3]. Developing methods to accurately derive 

TWSA based on sparse GNSS arrays has become a research hotspot. 

Unlike previous studies, this study proposes a new deep learning weight loading 

inversion model (DWLIM) by combining the long short-term memory (LSTM) algorithm, 

inverse distance weight method, and crustal loading model. Moreover, TWSA was de-

rived for mainland China from 2011 to 2020 using DWLIM, GRACE, and GLDAS. The 

TWSA results were calculated based on DWLIM, and its variation characteristics were 

investigated in 10 river basins within China. The organization of this study is as follows: 

Section 2 describes the materials and methods in this study, and Section 3 presents the 

TWSA results based on DWLIM, including the inversion of TWSA and validation of 

DWLIM. Section 4 discusses the variation characteristics of TWSA in the river basins, and 

this section also analyzes the difference among the TWSA results. Finally, the primary 

findings of this study are summarized in Section 5. 

2. Materials and Methods 

2.1. Materials 

2.1.1. GNSS Datasets 

This study utilized GNSS vertical deformation sequences provided by CMONOC, 

and the distribution of the GNSS stations is shown in Figure 1b. The period of each station 

is not consistent due to the difference in the station establishment time, and the periods of 

GNSS arrays are shown in Figure 1a. The study period was chosen as 2011–2020 to ensure 

the completeness of vertical deformation sequences. There were 263 original GNSS sta-

tions after removing 6 stations with large period differences, which are shown by the red 

shadow in Figure 1a. The GNSS observation sequences were calculated using observation, 

navigation, precision ephemeris, and table files. Furthermore, the daily coordinate solu-

tion file was obtained based on GAMIT/GLOBK 10.4, and its specific solution strategy is 

shown in Table 1 [42]. The GNSS vertical sequences were preprocessed by removing ob-

served outliers that were three times larger than the standard error and system sequence 

errors caused by earthquakes or antenna replacement. 

 

Figure 1. Distribution of continuous observation stations over mainland China. (a) The period of
each GNSS station. (b) The distribution map of GNSS stations.



Remote Sens. 2022, 14, 535 4 of 18

Table 1. Table of GNSS data resolution strategies based on GAMIT/GLOBK.

Parameters Value Parameters Value

Reference frame ITRF 2008 Flat difference Weighted least-squares
estimation + Kalman filtering

Height cut-off angle 10◦ Ionosphere LC portfolio observations

A priori troposphere 0.5 m Earth rotation parameters Polar shift, UT1

Mapping functions HGMF, DGMF Inertial coordinate system J2000.0

Tidal correction IERS 2003 Model; Polar Tide
Correction; FES 2004 Sea Tide Model Precession of the equinoxes IAU 1976

Satellite phase center IGS ANTEX Model Chapter movement IAU 1980

2.1.2. GRACE Datasets

The primary mission of GRACE satellites is to monitor spatiotemporal variations in
the Earth’s gravity field on a global scale. Specifically, the gravity field anomaly is not
only related to the Earth’s rotation but also affected by geophysical phenomena, such as
earthquakes, glacial equilibrium adjustments, and oceanic and hydrological changes [29,43].
The gravity variations in GRACE inversions are generally attributed to the large-scale
hydrological migration in mainland China. To verify the reliability of DWLIM, this study
employed GRACE Mascon (GRACE-M) to compare its results with the DWLIM outcomes.
However, the difference in solution strategies causes considerable uncertainty in the single
GRACE-M solution. This study utilized the GRACE-M products obtained from 2011 to
2020 provided by the Center for Space Research (CSR) and the Jet Propulsion Laboratory
(JPL) of NASA. The TWSA datasets in mainland China were extracted from the boundary
files, and the mean value of the two products was considered the final GRACE-M result.
Moreover, we did not add additional smoothing, empirical destriping, filtering, or a scaling
factor. To compare DWLIM and GLDAS, the mean datasets of GRACE-M were corrected
by first-order terms.

∆TWSAGRACE-M =
∆MasconCSR + ∆MasconJPL

2
(1)

2.1.3. Auxiliary Datasets

GLDAS V2.2 is an evolution of the earlier Catchment Land Surface Model (CLSM)
with 24 variables, including temperature and TWSA. The spatial coverage of daily GLDAS
ranges from 60◦ S to 90◦ N in latitude and 180◦ W to 180◦ E in longitude [44]. For the
construction and validation of DWLIM, this study used the temperature variables from the
GLDAS V2.2 model as the input data for LSTM regression. The TWSA variables from the
GLDAS V2.2 model can be regarded as validation data for DWLIM-derived outcomes. In
addition, surface pressure sequences from ERA 5 datasets were provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF). The spatial resolution of ERA
5 is 0.1◦ × 0.1◦ with global spatial coverage, and the period of time is from 2000 to the
present [45].

2.2. Methods
2.2.1. LSTM Algorithm

LSTM is an improved recursive neural network (RNN) model proposed by Hochreter et al.
in 1997 [46]. The LSTM model is trained by constructing memory storage units and using a
temporal backpropagation algorithm. This algorithm can solve the problem of gradient
disappearance in RNN, and it has no long-term dependence. The standard LSTM model
mainly consists of the following: each step t with its corresponding input sequence X: x1,
x2, . . . , xt, the input gate it, the forget gate ft, and the output gate ot. The memory unit ct
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can control the memory and forget the data through different gates, and it is calculated as
follows [46].

ft = σ(W f xt + U f ht) (2)

ot = σ(Woxt + Uoht) (3)

c̃t = tanh(Wcxt + Ucht) (4)

The memory unit cj
t of the j LSTM with unit time t can be expressed as follows [46].

cj
t = ij

t × c̃t + f j
t × cj

t−1 (5)

When the memory cell is updated, the current hidden layer hj
t can be calculated [46].

hj
t = oj

t × tanh(cj
t) (6)

where W denotes the weight matrix of the input process; U denotes the state transfer
weight matrix, which is an S-shaped function; tanh denotes the hyperbolic tangent function;
σ denotes the sigmoid function; ht denotes the hidden state vector of the output; and
c̃t denotes the new matrix after updating. The three types of gates jointly control the
information entering and leaving the memory cell. The input gate regulates the new
information entering the memory cell. The forget gate controls how much information is
kept in the memory cell, and the output gate defines how much information can be output.
The gate structure of LSTM causes the information in the time series to form a balanced
long- and short-term dependence for multiple regression purposes.

The original sequences were decomposed into n feature signals based on MEEMD
due to the few input sequences in this study. The decomposition process is described as
follows [47].

F = IMF1 + IMF2 + . . . + IMFn + noiw (7)

where F denotes the original feature sequence, IMF1–IMFn denote the n modal components
obtained by decomposing the original sequence, and noiw denotes the Gaussian white noise
added by MEEMD to be decomposed in the decomposition process.

The geophysical parameters show similar characteristics over a small-scale region.
There is a homologous amplitude of crustal deformation where the grid is adjacent to the
GNSS station. Therefore, the distance between the grid and GNSS station is considered
by using the algorithm of inverse distance weight. The application of inverse distance
weight contains three steps. Firstly, the figure center of the grid is regarded as the location
coordinates for calculating the distance. Secondly, the distance between the simulated grid
and the control GNSS stations is calculated. Finally, we assign the weight to each simulated
sequence based on the algorithm of inverse distance weight. The simulated formula is
as follows.

Dg =
n

∑
j=1

1
dj

n
∑

i=1

1
di

(
Netj

LSTM(IMF1, IMF2, . . . , IMFm)
)

(8)

where Dg denotes the simulated crustal deformation in the unobserved grid by DWLIM; dj

represents the distance between the center of the grid and the control station;
n
∑

i=1

1
di

denotes

the reciprocal sum of the distances between the grid and each control station; n denotes the
number of the control GNSS stations; IMF1–IMFm denote the m modal feature components
obtained by MEEMD; and Netjth

LSTM denotes the j LSTM regression network. Thus, the
simulated crustal vertical deformation of each grid is regressed n times and weighted
according to the inverse distance weight.
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2.2.2. The Crustal Load-Deformation Model

The upper part of the continental crust can be considered an elastic layer; it will
cause the elastic response of the surface to settle or rebound when the mass of the Earth’s
surface changes. This deformation is also called crustal load-deformation. Crustal load-
deformation occurs not only in the vertical direction but also in the horizontal direction.
Crustal load-deformation is more sensitive in the vertical direction than that in the horizon-
tal direction. The relationship between crustal loading and crustal load-deformation can be
established by the Green function [48], which is calculated as follows.

Ugreen = 2π
∞
∑

n=0
hn × [Pn−1(cos θ)− Pn+1(cos θ)]× GR

g(2n+1) × Pn(cos θ), (n > 0)

Ugreen = 2π
∞
∑

n=0
hn × (1 + cos θ)× GR

g(2n+1) × Pn(cos θ), (n = 0)
(9)

where θ denotes the angular radius from the center of the disk; Pn denotes the Legen-
dre polynomials; G denotes Newton universal gravitational constant, which is equal to
6.67 × 10−11 N ×m2/kg2; R denotes the radius of the Earth; hn denotes the loading Love
number; and g denotes the acceleration of gravity.

DWLIM utilizes hydrological deformation as the input data, and it combines the
crustal loading inversion model to obtain the TWSA in the study region. In the crustal
loading model, the obtained solutions are regularized using a curvature smoothing algo-
rithm, and the solutions are added as constraints in the solution matrix. In other words, the
least-squares problem is minimized to estimate the daily terrestrial water storage variability
for each segment of time studied [49].

((Ugreenx− d)/σ)2 + β2(L(x))2 → min (10)

where Ugreen denotes the coefficient matrix of the Green function obtained by Equation (9);
σ denotes the standard deviation of the hydrological load-deformation sequence; d denotes
the hydrological load-deformation time series, including the simulated Ugrid and UGNSS; L
denotes the Laplace operator; and β denotes the smoothing factor.

2.2.3. Construction of DWLIM

Broadly speaking, the hydrology and atmosphere on the surface exert stress on the
continental crust. At the same time, the crust will produce corresponding elastic deforma-
tion when the stress is less than the elasticity of the crustal rocks [50,51]. Fortunately, GNSS
can accurately observe crustal deformation with submillimeter accuracy [52]. In recent
years, the crustal load-deformation model has been employed to invert the local TWSA in
regions where GNSS stations are densely distributed [53–55]. However, the distribution
of GNSS stations is uneven worldwide due to the influence of geographic conditions [12].
Sparsely distributed GNSS arrays cannot be used to accurately invert TWSA because of
the limitation of the disk expansion radius. Therefore, it is one of the keys for accurately
deriving TWSA to accurately simulate surface load-deformation in the unobserved regions.
In this study, DWLIM was constructed by combining LSTM, the inverse distance weighting
method, and the crustal load model. The specific process of DWLIM can be divided into
the following five steps.

(1) Step I: The study region is divided into 1◦ × 1◦ grids, and the grids are divided into
two situations; specifically, the grids contain or do not contain GNSS stations. This
algorithm will proceed to step II if the grid has GNSS stations. Moreover, the grid will
be defined as an unobserved grid if it does not contain GNSS stations, and the vertical
deformation will be simulated in step III.

(2) Step II: The GNSS coordinate solution will be calculated by using observation, pre-
cision ephemeris, navigation, and table files based on GAMIT software [42]. The
daily coordinates are calculated by the GLOBK software based on baseline data files
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(h-files), and series outliers and step terms that are three times larger than the standard
deviation are removed.

(3) Step III: The surface temperature sequence (ST) and atmosphere pressure sequence
(SAP) are normalized on the grid scale. Furthermore, the normalized results are
decomposed using the modified ensemble empirical mode decomposition (MEEMD)
method to obtain 2 n feature sequences, including n ST and n SAP feature sequences.
In the unobserved grid, the GNSS vertical deformation sequences are employed as
the target sequences, and the 2 n feature sequences are utilized as the input sequences.
Then, the LSTM regression method and the inverse distance weight method are
employed to simulate the vertical displacement.

(4) Step IV: The corrected sequences of atmospheric (NTAL) and non-tidal ocean loading
(NTOL) are employed to obtain the hydrologic deformation in all the grids, including
the GNSS grids and unobserved grids [56].

(5) Step V: The TWSA results are obtained by combining the Green function and the
inversion of the crustal load model with all hydrologic deformation. The flow chart of
this study is shown in Figure 2.
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2.3. Evaluation Index

In this study, the root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), and
Pearson’s correlation coefficient (PCC) were utilized to evaluate the accuracy of DWLIM
results [57–59], as follows.

RMSE =

√
1
n

n

∑
i=1

(Yi − Xi)
2 (11)

NSE = 1− ∑n
i=1(Yi − Xi)

2

∑n
i=1
(
Xi − X

)2 (12)

PCC =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi −Y

)2
(13)

where Y and X denote accurate and simulated data, respectively, and Y and X represent the
mean value of data. The RMSE can be employed to evaluate the deviation of the inversion
results from the actual values. The smaller the value of RMSE, the better the simulation
accuracy. The NSE is mainly used to evaluate the performance of the hydrological model,
and its value is not larger than 1. The larger the value, the better the hydrological model.
When NSE is close to 0, it indicates that the effect of the hydrological model agrees with the
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average of observed values. The PCC is mainly employed to describe the linear correlation
between two sequences. The PCC value is between −1 and 1. If the PCC value is closer to 1,
the inversion result is more reliable.

3. Results
3.1. Inversion of TWSA Using DWLIM
3.1.1. Validation of Simulated Crustal Deformation

Seventy-five GNSS sites were selected in grids where the PCC values between the
atmospheric pressure or temperature sequence and the GNSS sequence were greater than
0.5. The 75 GNSS sites were used as control sequences for the regression of LSTM, and
263 GNSS vertical sequences were employed for the validation of regression. It was re-
gressed 74 times when the grid contained control GNSS stations, and it was regressed
75 times when the grid did not contain control GNSS stations. The inverse distance weight
was employed to assign weights for 74 or 75 simulations. Furthermore, the GNSS vertical
sequences were utilized as the true data to verify the accuracy of regression. The simulated
results were contrasted with the GNSS vertical sequence according to the RMSE and PCC.
The evaluation results are shown in Figure 3.
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Figure 3. The verification outcomes of simulated crustal deformation. (a) The RMSE between the
simulation and in situ measurement; (b) the PCC between the derived sequence and true data; (c) the
Taylor figure of the simulated results; (d) the mean simulated sequences in mainland China.

It can be seen from Figure 3 that most of the station sequences have RMSE values
within 5 mm. The variability of the observation quality among GNSS sequences may lead
to large RMSE values for some stations. The statistics of the evaluation index indicate that
68.63% of the RMSE values are within 6 mm. The PCC index was used to evaluate the
consistency between the simulated sequences and the in situ measurements; the largest
PCC value reaches 0.87, and its mean value is 0.53. Figure 3d shows the mean sequences
of simulated results and the true data in China. The features of the annual amplitude are
included in the simulated outcomes, and the mean simulated sequence is smoother than
the GNSS vertical sequence.
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3.1.2. Simulation of Hydrological Load-Deformation

(1) Simulation of crustal deformation

In this study, the surface temperature and atmospheric pressure were utilized as the
input data for the LSTM algorithm, and the models were established by using the 75 control
GNSS vertical sequences. Furthermore, the MEEMD method was employed to decompose
the surface temperature and atmospheric pressure sequences into 10 model components,
IMF1–IMF10, respectively. The decomposition of the input sequences is shown in Figure 4,
and the G456 grid is shown as an example.
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Figure 4. The result of normalization and decomposition in the unobserved grids, showing G456 as
an example. (a) The result of the temperature sequence; (b) the result of the atmospheric sequence.

The IMF1 components in Figure 4a,b are the normalized original surface temperature
and atmospheric pressure sequences, respectively. IMF2–IMF10 are the decomposed feature
sequences from high to low frequencies. Specifically, the decomposed results reflect the
trend and seasonal and residual terms of the series. In the LSTM regression method, the
10 IMF components were used as the input sequences, and the GNSS vertical deformation
sequence was used as output data. Furthermore, the inverse distance weight was used
to assign weights to the 75 simulated vertical displacements. The vertical simulated
deformation was obtained in the unobserved grids. The distribution between the unknown
grids and GNSS stations is shown in Figure 5a, and the simulated results of the unknown
grid are shown in Figure 5b–d. The G464, G740, and G456 grids are shown as examples.
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It can be seen from Figure 5a that the GNSS stations (blue points) are unevenly dis-
tributed, which cannot achieve the overall coverage of the crust over mainland China.
Hence, the simulation of vertical deformation in unknown grids (yellow points) is essential.
Figure 5b–d presents the simulated outcomes of vertical crustal deformation in unobserved
grids using 20 IMF feature components for LSTM regression [60]. The results show that the
period term and annual amplitude of the vertical crustal deformation can be well simu-
lated according to this strategy, which provides a reasonable data basis for the inversion
of TWSA.

(2) Correction of all deformation sequences

This study used the NTAL and NTOL models as correction data to extract the crustal
deformation caused by hydrological loading. The two corrected sequences were added to
the crustal load-deformation time series in mainland China, including the GNSS vertical
deformation and simulated results in the unobserved grids. Furthermore, the annual
amplitudes of NATL and NOTL were calculated from 2011 to 2020, as shown in Figure 6a,b,
respectively. To evaluate the performance of the correction as a whole, the mean sequence of
the vertical deformation and hydrologic displacement was obtained, as shown in Figure 6c.
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Figure 6. The corrected performance using NTAL and NTOL. (a) The annual amplitude distribution
of atmospheric crustal deformation; (b) the annual amplitude distribution of non-ocean crustal
deformation; (c) the mean sequences of the corrected results.

Figure 6 indicates that the mean values of the amplitude of the load-deformation of
NATL and NOTL are equal to 3.62 and 0.22 mm, respectively. The raised region of the
NTAL annual amplitude is mainly located in northern and eastern China, with a maximum
of 5.5 mm. However, the maximum annual amplitude of NTOL is only 1.5 mm, and it is
mainly distributed in the eastern coastal regions of China. It can be seen from Figure 6c
that there are smaller variations in the amplitude and phase of the corrected sequence. The
corrections of NTAL and NTOL provide accurate hydrological load-deformation sequences
for DWLIM inversion of TWSA.

3.1.3. Inversion of TWSA Based on DWLIM

The Green function matrix of the point loadings was calculated, and the spatial
resolution of the inversion outcomes is 0.25◦ × 0.25◦. The expansion boundary range and
β equal 2◦ and 0.01, respectively. Hydrologic displacement sequences were used as the
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input data for Equations (9) and (10) to calculate the daily TWSA in mainland China. To
verify the accuracy of the DWLIM results, first-order term correction was applied to the
inversion results in this study, including TWSA results of DWLIM, GRACE, and GLDAS.
The calculated annual amplitudes and mean sequence of the TWSA results are shown in
Figure 7a,b.
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Figure 7. The derived TWSA results based on DWLIM in China. (a) The distribution of TWSA annual
amplitude in China; (b) the mean time series of TWSA in mainland China.

It can be seen from Figure 7 that the annual characteristics and amplitudes of TWSA
sequences based on DWLIM can be effectively inverted. The raised regions of the annual
amplitudes can be calculated using DWLIM, which are located in Yunnan Province, south-
ern Tibet region, and southern North China Plain. Furthermore, this result is consistent
with the inversion conclusions of previous studies [8]. To verify the accuracy of DWLIM,
the outcomes of this study were compared with the inverted TWSA from the GRACE,
GLDAS, and the traditional GNSS-derived method.

3.2. Validation of DWLIM
3.2.1. Spatial Verification of TWSA Results

In order to compare the accuracy of TWSA based on DWLIM, this study obtained
TWSA using the traditional GNSS TWSA inversion method (TRAGNSS), GRACE-M datasets,
and the GLDAS hydrological model. The detailed information of these outcomes is summa-
rized in Table 2. Additionally, the annual amplitudes of these TWSA results were calculated,
and the results are shown in Figure 8.

Table 2. Statistical parameters of DWLIM, traditional GNSS TWSA inversion results, GRACE,
and GLDAS.

Method Period Time Time Resolution Spatial Resolution

DWLIM 2011–2020 1 day 0.25◦ × 0.25◦

TRAGNSS 2011–2020 1 day 0.25◦ × 0.25◦

GRACE 2011–2017
2018–2020 1 month 0.5◦ × 0.5◦

GLDAS 2011–2020 1 day 0.25◦ × 0.25◦

Figure 8 indicates that the DWLIM strategy can effectively invert the raised regions of
annual amplitude in mainland China, such as southwestern Yunnan Province, southeast
China, and the Qinghai–Tibet region. Overall, the spatial amplitude results of DWLIM are
consistent with the outcomes of GRACE and GLDAS. However, the annual amplitude of
DWLIM is slightly larger than that of GRACE and GLDAS. The reason is that the influence
of crustal deformation is complex, and hydrological displacement cannot be completely
extracted using NTAL and NTOL. Specifically, the raised regions of annual amplitude
also contain northern Xinjiang and northern Heilongjiang. The spatial distribution of the
annual amplitude based on the traditional GNSS-derived TWSA method contains speckle
characteristics because of the distance limitation of the radius. Hence, the TWSA results
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based on the traditional GNSS inversion method can only infer the range around the
GNSS stations. This will lead to missed signals in regions with sparse GNSS stations when
smoothing, and it greatly limits the application of GNSS for TWSA inversion. Overall, the
limitation of the disk radius on the GNSS TWSA inversion can be mitigated by simulating
crustal deformation in the unknown grids.
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Figure 8. The spatial distribution of TWSA annual amplitude in mainland China. (a) The result
of DWLIM; (b) the result of traditional inversion method based on GNSS; (c) the result of GRACE;
(d) the result of GLDAS.

3.2.2. Temporal Verification of the TWSA Results

In order to verify the time series reliability of DWLIM, the DWLIM results were
compared with the results of the traditional GNSS TWSA inversion method, GRACE, and
GLDAS. To further analyze the relationship between DWLIM inversion results and the
results of the other data, cross-wavelet analysis was performed, as shown in Figure 9a–c,
respectively. In addition, the mean sequences of DWLIM, traditional GNSS, GRACE, and
GLDAS over mainland China are shown in Figure 9d.

It can be seen from Figure 9a–c that the TWSA results of DWLIM are consistent with
the TWSA of the traditional GNSS inversion method, GLDAS, and GRACE. In addition,
the resonance periods between the DWLIM and the other data are about one year, which
is shown by the red strip. DWLIM can effectively derive the annual and semiannual
amplitudes of the TWSA sequences, which is consistent with the GRACE and GLDAS
results (Figure 9d). However, the annual amplitude of DWLIM is slightly larger than
the other TWSA results due to the difference in the observation strategy. Moreover, the
corrected crustal deformation sequences also contain other deformation signals, resulting
in the inability to separate single hydrological load-deformation sequences. The seasonal
feature of the DWLIM results is more pronounced that of the traditional GNSS-derived
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results. To quantify the advantages of DWLIM over the traditional GNSS TWSA inversion
method, this study evaluated the inversion results using PCC, NSE, and RMSE. The results
are shown in Figure 10.
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Figure 9. The analysis and time series of TWSA results. (a) Wavelet analysis between DWLIM
and traditional GNSS TWSA inversion method; (b) wavelet analysis between DWLIM and GLDAS;
(c) wavelet analysis between DWLIM and GRACE; (d) the mean time series of the TWSA results in
mainland China.
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Figure 10. The heat figure of the evaluation index based on DWLIM. (a) The value of PCC in the
GRACE period; (b) the value of NSE in the GRACE period; (c) the value of RMSE in the GRACE
period; (d) the value of PCC in the GRACE-FO period; (e) the value of NSE in the GRACE-FO period;
(f) the value of RMSE in the GRACE-FO period.

It can be seen from Figure 10 that, based on the evaluation indexes PCC, NSE, and
RMSE, the TWSA results based on DWLIM are superior to the traditional GNSS-derived
results. For the period of the GRACE mission (2011–2017), the maximum PCC, NSE, and
RMSE indicators of DWLIM inversion results reach 0.81, 0.62, and 2.18 cm, respectively.
For the period of the GRACE-FO mission (2018–2020), the maximum PCC, NSE, and RMSE
of DWLIM inversion results reach 0.71, 0.49, and 2.4 cm. The results show that the TWSA
results of DWLIM are more consistent with the GLDAS results, which is attributed to
the monthly scale resolution of GRACE, leading to signal loss. Further statistics from the
data show that the DWLIM results improve the PCC, NSE, and RMSE by 67.11, 128.15,
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and 22.75% on average compared to the traditional GNSS inversion method, respectively.
The results further demonstrate that DWLIM can effectively derive TWSA in regions with
sparse GNSS stations. Furthermore, the TWSA of DWLIM is better than the traditional
GNSS-derived method in terms of spatial and temporal characteristics.

4. Discussion
4.1. Comparison with Precipitation over 10 River Basins

It is verified that DWLIM can effectively derive the TWSA in mainland China, and it
can detect the raised regions of the TWSA annual amplitude. The crust shows a decreasing
trend when the terrestrial water storage load increases. On the contrary, the crust shows
an upward rebound trend when the terrestrial water storage load decreases. This study
combined monthly precipitation products provided by the China Meteorological Adminis-
tration (CMA) to analyze the variation characteristics of regional TWSA in mainland China.
Furthermore, this study extracted the precipitation and TWSA of 10 river basins in China
based on boundary files. TWSA was calculated by DWLIM, and the comparison is shown
in Figure 11.

Figure 11. The comparison of precipitation and TWSA over 10 basins in mainland China. (a) Yangtze
River basin; (b) Southeast River basin; (c) Haihe River basin; (d) Huaihe River basin; (e) Yellow River
basin; (f) Liaohe River basin; (g) Songhua River basin; (h) Northwest River basin; (i) Southwest River
basin; (j) Pearl River basin.

Figure 11 indicates that the annual amplitude of TWSA is generally positively corre-
lated with the annual amplitude of precipitation. The mean precipitation sequences in the
Songhua and Liaohe River basins are significantly higher than the others. Correspondingly,
the amplitudes of TWSA results are also significantly higher than those in the other basins.
The phase relationship between TWSA and precipitation in mainland China shows good
consistency. This further indicates the reliability of TWSA in phase for DWLIM inversion
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in mainland China. However, the sequences of TWSA based on DWLIM and precipitation
contain delays on the scale of months due to the time needed for the elastic deformation
of TWSA. The results of TWSA and precipitation are consistent with previous studies [8].
The seasonal items of TWSA outcomes are more regular than previous TWSA results.
Furthermore, the amplitude performance of TWSA and precipitation can also be used to
evaluate the arid situation over the river basins. At the same time, it can also be seen that
there is high-frequency noise in the time series of TWSA sequences, which also affects the
inversion or prediction of TWSA. It is mainly caused by systematic noise from ionospheric,
tropospheric, clock error, and multipath effects during GNSS observations [52,61]. There-
fore, we will also focus on the noise classification and removal of GNSS vertical sequences
to provide cleaner sequences for TWSA inversion in future research.

4.2. Discussion of the Difference between Products

In this study, we utilized DWLIM, GRACE, GLDAS, and the traditional GNSS method
to calculate TWSA over mainland China. We compared these TWSA outcomes from the
perspectives of spatial amplitude (Figure 8) and time series (Figure 9). It can be seen from
Figure 8 that DWLIM is consistent with GRACE and GLDAS over most regions. However,
there are also some differences between DWLIM and other products over certain regions,
such as Beijing. The reasons for this can be summarized as follows. First, there are only two
available GNSS stations (BJFS and BJSH) over Beijing. Second, vertical crustal deformation
in the entirety of the North China Plain is complex and has been greatly influenced by
human activity, which can cause inaccuracies in the simulated deformation. Third, the
GNSS inversion result is also a little higher than the other products because the load-
deformation contains other components. Therefore, there may be some differences between
the results of DWLIM and GRACE and GLDAS in some regions. Furthermore, it can be
seen from Figure 8a,b that DWLIM can effectively suppress the speckle effect caused by
uneven distribution of GNSS stations. In future research, we will focus on extracting cleaner
crustal hydrological load-deformation to increase the accuracy of the inversion results.

5. Conclusions

The main research results can be summarized in the following three points.

(1) To increase the derived accuracy for TWSA, DWLIM was constructed by combining
LSTM, inverse distance weight, and the crustal load-deformation model. First, the
study region was divided into 1◦ × 1◦ grids, and then we determined whether the
grid contained GNSS stations. Second, this study selected the surface temperature and
atmospheric pressure as input data, and the GNSS vertical sequences were utilized
as the output data. Each unobserved grid was simulated 263 times, and the inverse
distance weight was used to calculate the weighted sequence. Third, the NTAL and
NTOL models were employed to correct vertical deformation over all of the grids to
obtain the hydrologic distribution. Finally, all of the corrected sequences were used as
the input data for the crustal load model to derive TWSA in mainland China.

(2) To verify the accuracy of DWLIM, the TWSA results of DWLIM were compared with
the traditional GNSS TWSA inversion, GRACE, and GLDAS results. The results
indicate that the annual amplitude distribution of DWLIM is smoother than the
traditional GNSS inversion results. The strategy of DWLIM greatly suppresses the
effect of a small disk expansion radius. The maximum PCC, NSE, and RMSE of
DWLIM results compared with GRACE and GLDAS are equal to 0.81, 0.62, and 2.18
cm, respectively, which are improved by 67.11, 128.15, and 22.75% compared with
the traditional GNSS-derived TWSA method, respectively. Overall, the DWLIM can
effectively invert the TWSA in regions with an uneven distribution of GNSS stations.

(3) This study employed precipitation data to analyze the relationship between TWSA
and rainfall. We inverted TWSA based on DWLIM in 10 river basins of mainland
China. The results indicate that TWSA is positively correlated with precipitation. The
annual amplitudes of precipitation and TWSA in the Songhua River basin and the
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Liaohe River basin are significantly higher than those in other basins. Furthermore,
the wave peaks of precipitation are in good agreement with the peaks of TWSA, which
are located in June or July. This result further verifies the reliability of the DWLIM
inversion results in terms of phase.
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