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Abstract: Synthetic aperture radar (SAR) is susceptible to radio frequency interference (RFI), which
becomes especially commonplace in the increasingly complex electromagnetic environments. RFI
severely detracts from SAR imaging quality, which hinders image interpretation. Therefore, some
RFI mitigation algorithms have been introduced based on the partial features of RFI, but the RFI
reconstruction models in these algorithms are rough and can be improved further. This paper
proposes two algorithms for accurately modeling the structural properties of RFI and target echo
signal (TES). Firstly, an RFI mitigation algorithm joining the low-rank characteristic and dual-sparsity
property (LRDS) is proposed. In this algorithm, RFI is treated as a low-rank and sparse matrix, and
the sparse matrix assumption is made for TES in the time–frequency (TF) domain. Compared with
the traditional low-rank and sparse models, it can achieve better RFI mitigation performance with
less signal loss and accelerated algorithm convergence. Secondly, the other RFI mitigation algorithm,
named as TFC-LRS, is proposed to further reduce the signal loss. The TF constraint concept, in
lieu of the special sparsity, is introduced in this algorithm to describe the structural distribution
of RFI because of its aggregation characteristic in the TF spectrogram. Finally, the effectiveness,
superiority, and robustness of the proposed algorithms are verified by RFI mitigation experiments on
the simulated and measured SAR datasets.

Keywords: synthetic aperture radar; radio frequency interference; interference mitigation; low-rank
approximation; sparse recovery

1. Introduction

In the last few decades, a more complex electromagnetic environment has been formed
due to the increasing number of electromagnetic devices, leading to more mutual influence
among electromagnetic signals [1,2]. The signals from other electromagnetic devices
detracting from the target echo signal (TES) are defined as radio frequency interference
(RFI), which can be divided into narrowband interference (NBI) and wideband interference
(WBI) by the band ratio of interference to signal (usually set as 1%) [3]. Synthetic aperture
radar (SAR) has a wide application in various fields, such as remote sensing, reconnaissance,
surveillance, and situational awareness. However, it is particularly susceptible to RFI due
to the large bandwidth of the transmitted signal [4,5]. Generally, RFI has a stronger power
than TES, and its presence can significantly reduce the signal-to-noise ratio (SNR) of the
SAR echo, and even lead to receiver saturation. Meanwhile, RFI generates inaccuracies
in the estimation of critical Doppler features, such as the centroid and modulation rates,
resulting in blurry SAR images [6–8]. Therefore, substantial efforts should be dedicated to
the research of RFI detection and mitigation for preserving the precious SAR data.
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1.1. Previous Work of RFI Detection

Because of the time-varying property of RFI, it is rarely presented in every snapshot of
SAR data. Thus, RFI detection plays the important role of providing a priori information
for RFI mitigation approaches to avoid the signal loss of RFI-free echo. In recent years, a
series of interference detection methods have been proposed based on the divergences of
amplitude or statistical distribution between RFI-free and RFI-contaminated echoes [9–13].
However, the existing interference detection methods are mostly designed for NBI in
the time or frequency domain [9–11], so their performance for WBI will be significantly
worse due to the coupled features with TES. In addition, another strategy was introduced
to transform the WBI detection into several NBI detection problems of instantaneous
spectrums [12]; this strategy does not utilize the intrinsic property of WBI directly and may
be inefficient for practical implementation. Therefore, there is an urgent need to investigate
more robust RFI (including NBI and WBI) detection methods to effectively provide a priori
information for RFI mitigation procedures.

1.2. Previous Work on RFI Mitigation

RFI mitigation plays an increasingly important role in SAR systems, as it can effectively
alleviate the impact of RFI on SAR image quality and improve the precision of SAR image
interpretation. Furthermore, some RFI mitigation algorithms have been exploited in the
SAR platforms, such as Sentinel, to promote the ability of information acquisition. Over the
past few decades, there has been an intensive development of RFI mitigation algorithms,
which can be summarized into two categories: data-driven algorithms and model-driven
algorithms. These are depicted visually in Figure 1.
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(1) Data-Driven RFI Mitigation Algorithms

Data-driven RFI mitigation algorithms typically explore the difference between the
TES and the RFI, and design a reasonable filter to eliminate the RFI in the time, frequency, or
time–frequency (TF) domain. These methodologies mainly include notch filtering [14–17],
subspace projection [9,10,12,18,19], and deep learning [13,20]. Notch filtering is simple and
easily implemented but has a potential signal loss problem, which may reduce the quality
of SAR imaging. The subspace projection strategy is performed via the statistical character-
istics with less signal loss. For example, Zhou et al. utilized the energy difference between
NBI and TES to form an NBI mitigation algorithm based on Eigen-subspace projection [9].
However, the performance of subspace projection algorithms may be compromised by RFI
if its statistical characteristics vary greatly over time. For the RFI mitigation algorithms
based on deep learning [13,20,21], the outcome is restricted by the quantity and quality of
available training samples.

(2) Model-Driven RFI Mitigation Algorithms

Unlike the data-driven algorithms, model-driven RFI mitigation algorithms generally
seek to develop mathematical representations of RFI, and they apply model analysis for
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detecting and eliminating RFI. One typical strategy of this category utilizes multi-parameter
mathematical models to characterize RFI and estimates the model parameters through
the observed data to reconstruct RFI [22–25]. For example, Guo et al. made use of the
statistical distribution of RFI and TES and reconstructed the RFI based on the maximum
a posteriori estimation. However, the performance of these methods depends heavily
on the completeness and accuracy of the mathematical model. Moreover, the process of
multi-parameter estimation requires extensive computational resources.

In view of the difficulty of exact estimation in multi-parameter mathematical models,
another strategy of the model-driven RFI mitigation algorithms is introduced by virtue of
low-rank matrix approximation and canonical constraints. This strategy utilizes the hypoth-
esis of the low-rank and sparse properties for different components in the SAR data [26–35],
and is realized by the different ordering norms in some representation domains. It signifi-
cantly reduces the difficulty and complexity of parameter estimation compared with the
multi-parameter mathematical model. In light of the sparse property of RFI in the frequency
domain, Nguyen et al. introduced sparse recovery algorithms to reconstruct RFI [26]. In
addition, inspired by the low-rank characteristic for RFI and the sparsity property for TES,
the robust principal component analysis method was exploited to separate the RFI and
TES [11,29–33]. For example, Su et al. combined the low-rank characteristics of NBI in the
TF domain with the sparse hypothesis of the TES, and achieved NBI suppression based on
the go decomposition (GoDec) algorithm [11]. This strategy of model-driven RFI mitigation
algorithms is based on the structural characterization of RFI and TES, and its performance
heavily depends on the model’s accuracy.

1.3. Related Problems

As discussed above, the data-driven RFI mitigation algorithms may have the prob-
lems of signal loss and instability, and the deep learning strategy lacks interpretability
compared to the other RFI mitigation approaches. Therefore, more attention has been
paid to model-driven RFI mitigation algorithms. However, the existing model-driven RFI
mitigation algorithms may suffer from the inaccuracy of the RFI reconstruction model,
which only utilizes the partial characteristics of RFI and TES [29–33]. Additionally, they
may be limited by the slow convergence speed, resulting in unsuitability for practical
implementation. Thus, the objective of this study is to exploit the novel model-driven
RFI mitigation algorithms to improve the accuracy of the RFI reconstruction model and
accelerate the convergence speed of the alternative iteration.

1.4. Contributions

In this paper, a novel RFI detection algorithm based on TF skewness is proposed at first.
It utilizes a statistical difference between the RFI-free SAR echo and the RFI-contaminated
echo, namely that the RFI-free SAR echo follows a Gaussian-like distribution while the
RFI-contaminated echo deviates significantly from a Gaussian distribution. Then, the RFI
detection can be modeled as a binary hypothesis and achieved adaptively with the help of
the Neyman–Pearson criterion. Based on the structural analysis of spectrograms, the first
new model combining the low-rank and double sparse (LRDS) properties is proposed to
improve the model accuracy and degrade the signal recovery error. The LRDS algorithm
introduces both the low-rank and sparse property for an RFI matrix as restricted constraints
in the RFI reconstruction model, under the sparse assumption for TES in the TF domain.
Meanwhile, the alternative direction iteration strategy is exploited to optimize the complex
multivariable reconstruction model. It can obtain a better RFI mitigation performance and
converge faster due to the more accurate RFI mitigation model. However, the sparsity
constrains the overall structural characteristic of the RFI matrix and needs an appropriate
sparsity parameter, which is always tuned manually. Hence, the other TF constraint, the
joint low-rank and sparsity (TFC-LRS) algorithm, is proposed to ameliorate this deficiency.
The TF constraint concept is introduced to update the sparse representation in virtue of the
aggregation property of RFI in the TF domain. As a result, there is no need to manually
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tune the sparsity parameter of RFI, which is replaced by the TF constraint matrix that is
determined adaptively by the Neyman–Pearson criterion. Finally, the well-focused SAR
image is obtained by incorporating conventional SAR imaging methods for the recovered
SAR data. Meanwhile, RFI mitigation experiments on both simulated and measured
datasets verify the effectiveness, superiority, and robustness of the proposed algorithms.

According to the above discussion, the main contributions of this paper can be sum-
marized as follows:

(1) An adaptive RFI detection method based on TF skewness is proposed. Aiming to
solving the poor robustness of the existing RFI detection methods, this paper intro-
duces TF skewness to measure the non-Gaussianity of the echo in the TF domain. It
also achieves adaptive statistical detection of RFI with the Neyman–Pearson criterion,
which is suitable for detecting both NBI and WBI.

(2) The LRDS algorithm is proposed to improve the accuracy of the RFI mitigation model
and accelerate its convergence speed. Based on the TF analysis of the measured data,
this paper introduces the low-rank and sparsity characteristics for RFI. Meanwhile, a
more accurate RFI reconstruction model is proposed, which restrains the sparsity and
low-rank property of RFI and the sparsity of TES simultaneously. The LRDS algorithm
promotes the accuracy of the RFI reconstruction model with less signal recovery error
and significantly reduces the iteration number to find the optimal solution.

(3) The TFC-LRS algorithm is formulated to specify the sparsity of RFI. By virtue of the
aggregation property of RFI in the TF domain, the TF constraint concept is introduced
to replace the sparsity of RFI. Compared with LRDS, TFC-LRS improves the model
accuracy of RFI reconstruction and reduces the signal loss further without slowing
down the convergence speed.

The remainder of this paper is organized as follows. Section 2 presents the flowchart
of the proposed RFI mitigation algorithms incorporating the SAR imaging procedure. In
addition, it explains the statistical detection of RFI in the TF spectrograms via skewness and
establishes the RFI reconstruction model based on the TF structural analysis. In Section 3,
it formulates the LRDS and TFC-LRS algorithms to minimize the reconstruction error
iteratively. Then, Section 4 offers the computational complexity analysis of the proposed
algorithms and presents quantitative evaluation metrics. Meanwhile, RFI mitigation exper-
iments conducted on simulated and measured SAR datasets are demonstrated in Section 5.
At last, the discussion and conclusion are presented in Sections 6 and 7, respectively.

Notations and abbreviations: Throughout this paper, the matrices are denoted by
boldface capital letters, e.g., A, vectors are denoted by boldface lowercase letters, e.g., a,
and scalars are denoted by the lowercase letters and the Greek characters, e.g., a and α.
Additionally, there are some abbreviations to simplify the academic terminology, which are
listed in Table 1.

Table 1. Comparison table of abbreviations.

Abbr. Full Name Abbr. Full Name

SAR Synthetic aperture radar TES Target echo signal

RFI Radio frequency interference TF Time–frequency

GoDec Go decomposition WBI Wideband interference

LRDS Low-rank and double sparsity NBI Narrowband interference

TFC-LRS TF constraint joint low-rank and sparsity SNR Signal-to-noise ratio

STFT Short-time Fourier transform SVT Singular value threshold

SVD Singular value decomposition BRP Bilateral random projection

MDL Minimum description length SDR Signal distortion ratio

SSIM Structural similarity index measure MNR Multiplicative noise ratio

ISNF Instantaneous-spectrum notch filtering ESP Eigenspace projection



Remote Sens. 2022, 14, 775 5 of 30

2. Algorithm Model Formulation

In this section, the framework of the RFI mitigation scheme in this paper is first
demonstrated. Then, the RFI statistical detection method based on TF skewness is pre-
sented and the structural properties of different components in SAR echo are analyzed.
Meanwhile, the RFI reconstruction model is derived, providing theoretical foundations for
the following discussions.

2.1. Flowchart of the Proposed Algorithms

The flowchart of the proposed algorithms is illustrated in Figure 2, which is applied
in parallel for SAR data along the azimuth dimension. Firstly, the original SAR data are
converted into the TF spectrograms by means of short-time Fourier transform (STFT).
Furthermore, the RFI-contaminated SAR echo is detected adaptively based on a statistical
difference, which is measured by TF skewness. Then, the different signal components are ex-
tracted iteratively until the RFI mitigation algorithm’s convergence from the RFI-corrupted
SAR echo. Finally, the TES is recovered by interference cancellation, and the well-focused
SAR image can be obtained incorporated with the state-of-the-art SAR imaging algorithm.
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2.2. RFI Formulation and Detection

A SAR echo signal Y
(
t, t̂
)

can be characterized as a mixture of the useful TES X
(
t, t̂
)
,

RFI I
(
t, t̂
)
, and additive noise N

(
t, t̂
)
, which can be expressed as [32]

Y
(
t, t̂
)
= X

(
t, t̂
)
+ I
(
t, t̂
)
+ N

(
t, t̂
)

(1)

where
(
t, t̂
)

denotes the tth range sample of the t̂th snapshot, and I
(
t, t̂
)

includes the NBI
and WBI.

Generally, NBI is concentrated within a limited number of frequency bins, and it
can be modeled as a summation of series monochromatic components with time-varying
envelopes [36]. The mathematical representation can be expressed as

INB
(
t, t̂
)
=

K

∑
k=1

Ak
(
t, t̂
)
· exp(2π fkt + φk) (2)

where Ak, fk and φk denote the complex envelope, frequency and initial phase of the k
th jamming component, respectively. As for WBI, there are two major forms, i.e., chirp-
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modulated WBI and sinusoidal-modulated WBI [37,38]. The chirp-modulated WBI is
characterized as

ICM
(
t, t̂
)
=

K

∑
k=1

Ak
(
t, t̂
)

exp
{

j
(

2π fkt + πγkt2
)}

(3)

where Ak, fk and γk are the amplitude, frequency and chirp rate of the kth component.
Moreover, the sinusoidal-modulated WBI can be expressed as

ISM
(
t, t̂
)
=

K

∑
k=1

Ak
(
t, t̂
)

exp{jβk sin(2π fkt + φk)} (4)

where Ak, βk, fk, and φk are the amplitude, modulation factor, frequency, and initial phase
of the kth component. In measured data, the WBI signatures can always be considered as
the combination of these two special forms.

Due to the large synthetic aperture time of SAR and the time-varying property of
interference, RFI may not be present in all snapshots. Therefore, it is of great significance
to identify whether RFI exists in a single echo, avoiding the unnecessary signal loss and
extra cost of the computational resources. However, the existing RFI detection methods
are mainly appropriate for the simple and isolated NBI, and may fail in the increasingly
complex electromagnetic environment. Therefore, this paper develops an RFI detection
method that is robust for both NBI and WBI.

The essence of RFI detection is to extract and quantify the maximum characteristic
difference between RFI and TES. It must be able to analyze the universal feature of NBI
and WBI, meaning that considering only the time or frequency domain will be insufficient.
Therefore, the STFT is utilized to combine the time and spectra features of SAR echo in the
two-dimensional TF domain.

Figure 3a–c show the TF spectrograms of RFI-free and RFI-contaminated SAR echoes,
respectively. It is clear that there are bright areas in Figure 3b,c corresponding to RFI
with stronger amplitude. Further, the statistical analyses presented in Figure 3d–f show
that the statistical fitting curve without RFI is gentler, whereas it has a sharper peak and
longer tail with RFI. Generally, under the complex Gaussian distribution assumption of
RFI-free SAR echo, the real and imaginary parts of its TF spectrogram obey the Gaussian
distribution. Therefore, the spectrogram amplitude obeys the Rayleigh distribution, which
is Gaussian-like. Owing to the presence of RFI, the histograms deviate from the Gaussian
distribution and concentrate in the low amplitude region, leading to a sharp left peak and
a fatter right tail. Therefore, there is the theoretical condition that this non-Gaussianity can
be utilized to perform RFI detection.

In the non-stationary signal field, the skewness defined as the third-order moment is
one of the simplest statistical metrics to measure the deviation from a Gaussian distribu-
tion [39]. The skewness S of the SAR echo spectrogram STFTY ∈ CM×N can be expressed as

S = E

{(
(‖STFTY‖ − µ)

σ

)3
}

=

1
MN

M
∑
m

N
∑
n
(‖STFTYmn‖ − µ)3

(
1

MN

M
∑
m

N
∑
n
(‖STFTYmn‖ − µ)2

)3/2 (5)

where E{·} denotes the expectation operator, µ and σ2 represent the mean and variance
of STFTY, and the term with subscript (·)mn is a matrix element in the mth row and nth
column. The skewness value ranges among (−∞,+∞). It is straightforward to show that
the skewness of a pure Gaussian distribution is zero, but it deviates from zero when non-
Gaussian signal sources are presented, as shown in Figure 3. A distribution with positive
skewness would have a more acute peak on the left and a fatter tail on the right than the
Gaussian distribution, whereas a distribution with negative skewness would have a peak
on the right and a tail on the left. The stronger amplitude of RFI components indicates a
positive skewness for the distribution of RFI-corrupted SAR echo. The skewness value of
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the RFI-free snapshot shown in Figure 3d is 1.06, whereas the RFI-corrupted pulses shown
in Figure 3e,f are equal to 12.867 and 5.491, respectively. This supports the conclusion that
there is an apparent statistical difference between the RFI and TES.
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It is easy to see that the NBI concentrates in several frequency points while WBI occupies a larger
frequency band. Furthermore, they all gather in limited regions with the higher amplitude in the
spectrogram, which increases the value of TF skewness.

Therefore, the RFI detection is transformed into the skewness value judgement in the
TF domain, which is a binary classification problem. The key issue in solving this problem
is to determine an appropriate detection threshold, ξ, which is of great significance for the
missing detection and the false alarm in RFI detection. It is demonstrated as follows:{

S < ξ, ⇒ H0 : Without RFI
S ≥ ξ, ⇒ H1 : With RFI

(6)

The threshold value is critical to the accuracy of RFI detection. Hence, a comprehensive
consideration of RFI missing detection and false alarm is required to obtain the best
detection performance, ensuring that the false alarm rate satisfies the tolerance range. Thus,
the Neyman–Pearson criterion is exploited to adaptively select the optimal threshold ξ,
which can be expressed as [40]

ξ = argmax PD s.t. PF ≤ α (7)

where PD, PF and α denote the probability of detection, the false alarm rate and the expected
false alarm level. PF is no greater than 10−3, and is usually set within the range

[
10−3, 10−8].

According to the constraint of false alarm, α can be calculated as

α = PF =
∫ ∞

ξ
pS|H0

(v)dv (8)

where pS|H0
(v) is the statistical distribution of skewness without RFI.

To analyze the mathematical representation of pS|H0
(v), the no-RFI SAR dataset was

established first to fit the statistical distribution. This dataset was recorded by the Sentinel-1
satellite on 3 June 2021, and was not disturbed by RFI. Figure 4 shows the histograms and
statistical fitting curve of skewness calculated from the no-RFI SAR dataset, which declares
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that the skewness S tends to a Gaussian distribution asymptotically. Therefore, the optimal
threshold of skewness based on the Neyman–Pearson criterion is

ξ = µS +
√

2σ2
Serf−1(1− 2α) (9)

where µS and σS are the mean and variance of skewness, and erf−1 is the inverse error
function. According to (6) and (9), the accurate detection of RFI-contaminated pulses in
SAR data can be achieved. The representation of a single snapshot corrupted with RFI can
be simplified as

y(t) = x(t) + i(t) + n(t) (10)
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2.3. The RFI Reconstruction Model

The linear reversibility of the STFT ensures that this transformation does not affect the
linear superposition characteristics of the SAR echo [41]. Therefore, according to (10), the
TF matrix of the SAR echo can be expressed as

STFTY = STFTX + STFTI + STFTN (11)

Our goal is to reconstruct the RFI and TES from the observed echo in the TF domain,
and the noise can be treated as the reconstruction error based on the error modeling theory

min
STFTI,STFTX

f (STFTY, STFTI, STFTX) (12)

Generally, there is an assumption of complex Gaussian distribution for the noise
component in an SAR echo, and the optimization function in (12) is specified with the
Frobenius norm,

min
STFTI,STFTX

‖STFTY − STFTI − STFTX‖2
F (13)

where ‖·‖2
F is the symbol of the Frobenius norm.

The error reconstruction model in (13) is under the assumption of Gaussian noise.
However, it lacks the feature descriptions of RFI and TES, and is an incomplete RFI
reconstruction model. To refine the model, the characteristic constraints of RFI and TES
should be added based on the TF analysis.

2.3.1. The Low-Rank and Sparsity Properties of RFI

There are two TF spectrograms of measured SAR echoes contaminated with NBI
(Figure 5a) and WBI (Figure 5d). The bright areas in these spectrograms correspond to
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the RFI and only occupy a small proportion of the TF bins. This clearly indicates that RFI
should possess a low-rank and sparse characteristic in the TF spectrogram. To further verify
the low-rank structural feature, eigenvalue decomposition was performed on Figure 5a,d,
and the corresponding results are shown in Figure 5b,e, respectively. The eigenvalues reflect
the energies of different components in the SAR echo, as well as the structural redundancy
of the matrix. The figures show that very few large eigenvalues are related with RFI in the
spectrograms, which further demonstrates the low-rank characteristic of RFI. Meanwhile,
amplitude analysis was applied to Figure 5a,d, and the results are presented in Figure 5c,f.
Clearly, the number of TF bins with larger amplitudes corresponding to RFI is much lower
than the total number of TF units. Figure 5c,f declare that the RFI component in the TF
domain exhibits the sparse property.
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Figure 5. Structural analysis of RFI in the TF domain: (a,d), spectrograms of SAR echoes contaminated
with NBI and WBI, respectively; (b,e), Eigenvalue sequences corresponding to (a,d), respectively;
(c,f), amplitude analyses for (a,d), respectively.

Therefore, the RFI component in the TF domain can be considered as a low-rank and
sparse matrix, and the constraints of RFI can be tuned in the RFI reconstruction model

min
STFTI,STFTX

‖STFTY − STFTI − STFTX‖2
F

s.t.rank(STFTI) < r, card(STFTI) < C1

(14)

where rank(·) and card(·) denote the operators used for calculating rank and cardinality,
and r and C1 are the rank and sparsity of STFTI.

2.3.2. The Sparsity of TES

As discussed above, the RFI reconstruction model, (13), was tuned with the constraint
of RFI in (14). To pursue a more accurate RFI reconstruction model, the property of TES
should be restricted in (14) based on TF analysis. Although the TES is noise-like compared
with the strong RFI, its amplitude is stronger than the noise. Figure 6a presents the
amplitude analysis result of SAR echo without RFI, and it shows that the TES only occupies
several TF units, whereas noise is present throughout the TF spectrogram. Meanwhile, the
percentage of TES units is less than 20% in Figure 6b, which further supports the sparsity
of TES in the TF spectrogram.
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Figure 6. Structural analysis of TES in the TF domain: (a) TF spectrograms of TES; (b) amplitude
analysis result corresponding to (a).

Because the spectrogram of TES is a sparse matrix, the RFI reconstruction model can
be optimized as

min
STFTI,STFTX

‖STFTY − STFTI − STFTX‖2
F

s.t.rank(STFTI) ≤ r, card(STFTI) ≤ C1

card(STFTX) ≤ C2

(15)

where C2 is the sparsity of TES.
So far, the more accurate RFI reconstruction model has been established, and the

solution will be discussed in the following section.

3. Theory and Methodology

In this section, two iterative optimization algorithms are proposed to solve the RFI
reconstruction model based on the low-rank and sparse property of the components in
the SAR echo. The first algorithm utilizes the LRDS property to reconstruct RFI. It works
well for RFI mitigation but with a few unnecessary signal losses. Moreover, the TFC-LRS
algorithm introduces the concept of TF constraint instead of sparsity for RFI, and establishes
a more accurate RFI reconstruction model.

3.1. LRDS Algorithm

The RFI reconstruction model in (15) is a multivariate optimization problem under
several constraints, which is difficult to solve directly due to the coupled characteristics.
Naturally, the alternative iteration strategy is exploited to optimize the model parameters.
As for the reconstruction model in (15), it can be divided into three sub-problems according
to the constraints: the low-rank matrix approximation and the sparse reconstruction for
RFI and TES. Thereby, the multivariate optimization problem is iteratively transformed
into global optimizations for sub-problems. The sub-problems can be expressed as

L(l+1) = argmin
L
‖STFTY − L(l) − STFT(l)

X ‖
2

F

s.t. rank
(

L(l)
)
≤ r

(16a)

STFT(l+1)
I = arg min

STFTI
‖L(l+1) − STFT(l)

I ‖
2

F

s.t. card
(

STFT(l)
I

)
≤ C1

(16b)

STFT(l+1)
X = arg min

STFTS
‖STFTY − STFT(l+1)

I − STFT(l)
X ‖

2

F

s.t. card
(

STFT(l)
X

)
≤ C2

(16c)



Remote Sens. 2022, 14, 775 11 of 30

where L is the auxiliary variable representing the result of low-rank approximation, and
the superscript (·)l denotes the lth iteration.

The low-rank approximation sub-problem in (16a) can be solved by the singular value
threshold (SVT) algorithm, which utilizes the selection of larger singular values to perform
low-rank approximation based on the relationship between rank and singular value. It can
be characterized mathematically as

L(l+1)
I = SVT

(
STFTY − STFT(l)

X

)
= UPH0(Λ)V (17)

where U, Λ, and V correspond to the left projection matrix, singular value matrix and
right projection matrix, respectively, and STFTY − STFT(l)

X = UΛV. Meanwhile, H0 :∣∣Λmn∈H0

∣∣ ≥ ∣∣∣Λmn∈H0

∣∣∣, |H0| ≤ r, and PH0(Λ) denotes the hard threshold mapping for
extraction of the first larger singular values.

However, there is a high computation burden for singular value decomposition (SVD),
which is the main step of SVT and requires min

(
MN2, M2N

)
flops per iteration. It is

impractical to implement SVD when the scale of the processing matrix is too large. However,
a large scale TF matrix is typically generated to ensure the time and frequency resolution.

In order to reduce the computational burden and accelerate the iteration convergence,
the bilateral random projection algorithm (BRP) is introduced to replace the SVT to extract the
low-rank component. First, the left random projection matrix B2 ∈ CM×r and the right ran-
dom projection matrix B1 ∈ CN×r for the dense matrix Z(l) = STFTY − STFT(l)

X ∈ CM×N are

defined with the rank r. By utilizing the auxiliary variables D1 = Z(l)B1 and D2 =
(

Z(l)
)H

B2,

the fast rank-r approximation of Z(l) is

L(l+1) = D1

(
BH

2 D1

)−1
DH

2 (18)

To prevent the slow decay of the singular values, a power scheme is introduced to

improve the efficiency of BRP, which is performed for the matrix Z̃ =
(

Z(l)Z(l)H
)q

Z(l)

instead of Z(l). Based on BRP, the fast rank-r approximation of Z̃ is

L̃ = D1

(
BH

2 D1

)−1
DH

2 (19)

where B2 = D1 = L̃B1 and B1 = D2 = L̃
H

B2 are utilized to update the random projection
matrix. In order to obtain the rank r approximation of Z(l), the QR decomposition is
calculated as D1 = Q1R1, D2 = Q2R2. Thus, the fast rank-r approximation of Z(l) is

L(l+1) =
(

L̃
) 1

2q+1
= Q1

[
R1

(
BH

2 D1

)−1
RH

2

] 1
2q+1

QH
2 (20)

As for the sparse reconstruction sub-problem, the hard threshold mapping is also
utilized to update the TES in traditional methods, which can be characterized as

STFT(l+1)
X = PH1

(
STFTY − STFT(l)

I

)
(21)

where H1 :
∣∣∣∣(STFTY − STFT(l)

I

)
mn∈H1

∣∣∣∣ ≥ ∣∣∣∣(STFTY − STFT(l)
I

)
mn∈H1

∣∣∣∣, ∣∣H1
∣∣ ≤ C2, and

PH1(·) denotes the mapping function to reserve the C2 largest values. However, for
complex matrices, the hard threshold mapping method would cause some reconstruction
errors and make the algorithm converge slowly. Therefore, the soft threshold mapping
method is introduced to solve sparse reconstruction sub-problems in this paper.
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As for the sparse reconstruction of RFI in (16b), the solution of applying the revised
soft threshold mapping is

STFT(l+1)
I = PΩ1

(
L(l+1)

)
(22)

where PΩ1(·) denotes the entry-wise soft threshold mapping, specifically expressed as

PΩ1(Emn) = PH1(Emn)− sign(Emn) · |sort(E)|C1+1 (23)

Here, PH(·) denotes the hard threshold mapping of matrix elements, sign(a) = a/|a|,
|sort(·)|C1+1 extracts the (C1 + 1)th largest value in descending order, and E denotes an
arbitrary matrix.

Similarly, the sparse recovery of TES is expressed as

STFT(l+1)
X = PΩ2

(
STFTY − STFT(l+1)

I

)
(24)

where PΩ2(Emn) = PH2(Emn)− sign(Emn) · |sort(E)|C2+1.
Therefore, the optimization problem of (16) can be solved iteratively by (20), (22), and

(24). It can provide an accurate reconstruction result of RFI and TES until convergence.
The LRDS algorithm is summarized in Algorithm 1, and the detailed performance will be
presented in the following subsection.

Algorithm 1. The Proposed LRDS Algorithm

Input: STFTY, r, C1, C2, q
Initialization: L(0), STFT(0)

I , STFT(0)
X , l = 0

While ‖STFTY − STFTl
I − STFTl

X‖
2
F/‖STFTY‖2

F > η do

Low rank approximation: L(l+1) = Q1

[
R1

(
AH

2 Y1

)−1
RH

2

]1/(2q+1)

QH
2 ;

RFI reconstruction: STFT(l+1)
I = PΩ1

(
L(l+1)

)
;

TES recovery: STFT(l+1)
X = PΩ2

(
STFTY − STFT(l+1)

I

)
;

l = l + 1
End while.
Output: STFTI = STFT(l)

I , STFTX = STFT(l)
X

3.2. TFC-LRS Algorithm

The TF sparsity of RFI describes the structural property in the whole TF spectrogram,
and LRDS establishes a more accurate RFI reconstruction model combined with the low-
rank and sparse properties. However, the particularity of the RFI structural distribution
makes it possible to improve the accuracy of the RFI reconstruction model further. As
shown in Figure 5, the RFI is aggregated in the TF spectrogram due to the continuous
modulation in the time and frequency domains, resulting in a special sparse structure.
Therefore, the TF constraint concept is introduced to restrict the location of RFI during the
alternative iteration.

Inspired by the adaptive statistical detection of RFI based on TF skewness, the TF
constraint matrix can be obtained through a binary detection, and the optimal threshold λ
is calculated as

λ = argmax P′D s.t. P′F ≤ α′ (25)

where P′D and P′F are the probability of detection and false alarm, and α′ = P′F =
∫ ∞

λ py(v)dv
is the maximum false alarm probability level. As discussed above, the probability distribu-
tion function py(v) is the Rayleigh distribution for the amplitude in the TF matrix without
RFI. Therefore, the optimal threshold is

λ = S−1
Ray
(
α′
)
=
√
−δy ln(α′) (26)
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where S−1
Ray(·) is the inverse survivor function of the Rayleigh distribution and δy is the

parameter of py(v). According to (26), the TF constraint matrix can be obtained easily,
as follows:

Tmn = max{sign(|STFTYmn | − λ), 0} (27)

Based on the TF constraint matrix T, the reconstruction model can be updated as

min
STFTI,STFTX

‖STFTY − STFTI − STFTX‖2
F

s.t. STFTI = T� L, rank(L) < r
card(STFTX) < C2

(28)

where L is the low-rank approximation of RFI. Specifically, the optimization problem shown
in (28) can be decomposed into two sub-problems, namely RFI reconstruction and TES
recovery, which are updated alternatively:

STFT(l+1)
I = arg min

STFTI
‖STFTY − STFT(l)

I − STFT(l)
X ‖

2

F

s.t. STFT(t)
I = T� L(l), rank(L(l)) < r

(29a)

STFT(l+1)
X = arg min

STFTX
‖STFTY − STFT(l+1)

I − STFT(l)
X ‖

2

F

s.t. card(STFTX) < C2

(29b)

Referring to (20), the solution of the RFI reconstruction sub-problem in (29a) is

STFT(l+1)
I = T�

{
Q1

[
R1

(
BH

2 D1

)−1
RH

2

]1/(2q+1)
QH

2

}
(30)

Referring to (24), the solution of the TES sparse recovery sub-problem in (29b) is

STFT(l+1)
X = PH2

[(
STFTN

′

)
mn

]
− sign

[(
STFTN

′

)
mn

]
·
∣∣∣sort

(
STFTN

′

)∣∣∣
C2+1

STFTN
′ = STFTY − STFT(l+1)

I

(31)

The reconstruction model, (29), can be solved by iteratively optimizing (30) and (31).
At last, the TFC-LRS algorithm is summarized in Algorithm 2, and a detailed analysis will
be presented in the following subsection.

3.3. Analysis of the Prior Parameters

The proposed LRDS and TFC-LRS algorithms iteratively optimize the RFI reconstruc-
tion model, joining the sparsity and low-rank properties while extracting the RFI and TES
alternatively. Meanwhile, the well-focused SAR image will be obtained from the recovered
TES via the state-of-the-art SAR imaging algorithm. However, there would be some un-
avoidable errors for different components’ reconstruction. Therefore, the RFI cancellation
strategy is introduced to reduce the system error, and it is expressed as follows:

x̂(t)=ISTFT[STFTY − STFTI
∗] (32)

where ISTFT(·) denotes the inverse short-time Fourier transform, and STFTI
∗ denotes the

reconstructed RFI matrix until iteration convergence. At last, the complete RFI mitigation
procedure is presented, and the RFI-free data can be obtained in parallel with the detection
algorithm proposed in this paper.

It should be noted that the above mitigation algorithms need the prior parameters,
matrix rank, and cardinality of the RFI and TES components. These are the same as
the parameters in the other model-driven algorithms, which significantly influence the
performance of RFI mitigation. As for the rank of RFI, the minimum description length
(MDL) criterion is utilized to estimate the value based on the SVD [42].
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Algorithm 2. The Proposed TFC-LRS Algorithm

Input: STFTY, r, C2, q
Initialization: STFT(0)

I , STFT(0)
X , T, l = 0

While ‖STFTY − STFTl
I − STFTl

X‖
2
F/‖STFTY‖2

F > η do

RFI reconstruction: STFT(l+1)
I = T�

{
Q1

[
R1
(
BH

2 D1
)−1RH

2

]1/(2q+1)
QH

2

}
;

TES recovery: STFT(l+1)
X = PΩ2

(
STFTY − STFT(l+1)

I

)
;

l = l + 1;
End while.
Output STFTI = STFT(l)

I , STFTX = STFT(l)
X

Applying SVD yields the singular value sequence s = [s1, s2, · · · , sr, · · · , sR] of the TES
matrix, where s1 ≥ s2 ≥ · · · ≥ sR and R = min{M, N}. The calculation of r is represented
as follows:

r∗ = min
r

MDL(r) s.t. r = 0, 1, 2, · · · , R− 1 (33)

Here, the following definitions are applied:

MDL(r) = 2R(R− r)ϕ(r) + 1
2 r(2R− r) log(2R)

ϕ(r) = log
(

R
∑

i=r+1
si

)
− log(R− 1)− 1

R−r

R
∑

i=r+1
log si

(34)

Once all the singular values are utilized during the procedure, the estimated result of
the MDL criterion would deviate from the true value because of the minima in the singular
value sequence. The very small singular values have smaller energy contributions but
larger normalization factors, which brings about the estimation error. To avoid this, the
singular values, which participate in the estimation with large contributions, are filtered via

R = index{max(s < η)} − 1 (35)

where s < η denotes the partial singular value sequence smaller than η, and index{max(·)}
represents the subscript of the maximum in the sequence. It is noteworthy that η is
usually reset in the range

(
10−3, 10−1). Thereby, the rank of the RFI matrix would be

estimated accurately.
The rank in the RFI reconstruction model is easy to understand and estimate, but its

cardinality is difficult to determine. In actual implementation, there are almost enough
units in the TF matrix that have a magnitude exceeding 104. Hence, there is some robustness
for cardinality, which declares the sparsity of different components in SAR echo, and it
is unnecessary to tune it exactly. Thus, the sparsity coefficient ε ∈ (0, 1) is introduced to
satisfy card(A) = ε · numel(A), where numel(A) denotes the total number of elements in
the TF matrix. Generally, ε can be tuned manually from the range (0.05, 0.5) at the level
of 10−2.

4. Performance Analysis and Evaluation
4.1. Computational Complexity

For the LRDS algorithm, one low-rank matrix approximation and two sparse re-
coveries are needed per iteration. Specifically, the low-rank approximation part needs
the BRP procedure, QR decomposition, and low-rank matrix computation, which re-
quires 2(2q + 1)MNr, r2(M + n) and 2

(
Nr2 + MNr + r3) flops for a dense matrix with

a power scheme q and rank r, respectively. Therefore, the computational complexity of
low rank matrix approximation is

(
r2(2N + M + 4r) + (4q + 4)MNr

)
. Meanwhile, (2MN)

flops are required for the sparse recoveries of STFTI and STFTS, which means that two
soft threshold mapping procedures are needed. Hence, the LRDS algorithm requires(
r2(2N + M + 4r) + (4q + 4)MNr + 2MN

)
flops per iteration.

Furthermore, based on the similar analysis of LRDS, it is easy to know that the
GoDec algorithm requires

(
r2(2N + M + 4r) + (4q + 4)MNr + MN

)
flops for one iter-



Remote Sens. 2022, 14, 775 15 of 30

ation. As for TFC-LRS, it needs one low-rank matrix approximation and one sparse
recovery for each iteration. The low-rank matrix approximation includes the BRP proce-
dure, QR decomposition, low-rank matrix computation, and the TF constraint procedure,
which need

(
r2(2N + M + 4r) + (4q + 4)MNr + MN

)
flops per iteration. Combined with

(MN) flops for the sparse recovery of TES, the computational complexity of TFC-LRS is(
r2(2N + M + 4r) + (4q + 4)MNr + 2MN

)
flops for one iteration.

Table 2 shows the computational complexity of GoDec, LRDS, and TFC-LRS per
iteration. Not taking performance into account, it seems that GoDec is the most efficient
algorithm. However, the total computational complexity does not only depend on the
computational complexity per iteration, as the iteration number also plays an important
role. It is noteworthy that there is just a small gap among the computational complexity
of GoDec, LRDS, and TFC-LRS. Therefore, the efficiency hinges more on the convergence
speed and a further analysis of time consumption will be conducted in the following section.

Table 2. Computational complexity of GoDec, LRDS, and TFC-LRS per iteration.

Algorithm Computational Complexity

GoDec
(
r2(2N + M + 4r) + (4q + 4)MNr + MN

)
LRDS

(
r2(2N + M + 4r) + (4q + 4)MNr + 2MN

)
TFC-LRS

(
r2(2N + M + 4r) + (4q + 4)MNr + 2MN

)
4.2. Evaluation Metrics

To evaluate the effectiveness of the proposed algorithms, the performance should be
analyzed both qualitatively and quantitatively. Qualitative evaluation is conducted by
visually comparing the characteristics of recovered echo signals in the different domains.
Quantitative evaluation is conducted by applying various evaluation metrics, which include
the signal distortion ratio (SDR) [9], the structural similarity index measure (SSIM) [43],
and the multiplicative noise ratio (MNR) [44].

The SDR is utilized to evaluate the distortion degree of the recovered TES after RFI
mitigation,

SDR = 10 log10

(
∑|x0 − x|2/∑|x0|2

)
(36)

where x0 represents the original RFI-free echo. Here, the SDR decreases as the echo
distortion decreases.

The SDR analyzes the effect of RFI suppression in terms of signal energy, but it lacks
detailed evaluation. Therefore, SSIM is introduced to measure the difference between the
recovered TES and the original TES. Its mathematical definition is

SSIM(|x|, |x0|) =

(
2µ|x|µ|x0| + C1

)(
2σ|x||x0| + C2

)
(

µ2
|x| + µ2

|x0|
+ C1

)(
σ2
|x| + σ2

|x0|
+ C1

) (37)

where |x| and |x0| are the TF spectrograms of recovered TES and original TES, µ|·| and σ2
|·|

denote the mean and variance of matrix, σ|x||x0| represents the covariance. C1 = (0.01× I)2

and C2 = (0.03× I)2 are the constant factors, and I is the variation range of the amplitude
in the TF matrix. The SSIM metric ranges from −1 to 1. Here, a larger SSIM is deemed to
represent the less SAR image loss.

However, the above metrics are only applicable when the original TES is known.
Accordingly, these evaluation metrics can only be employed typically on the simulated
SAR data. Therefore, MNR is exploited to evaluate the SAR imaging quality for measured
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SAR data. MNR represents the intensity ratio between the weak regions and the bright
regions in a SAR image, and is defined as follows:

MNR = 10 log10

(
G
J

J

∑
j=1

∣∣∣F1
j

∣∣∣2/
G

∑
g=1

∣∣∣F2
g

∣∣∣2) (38)

where J and F1
j represent the number and the gray level values of pixels in a weak region,

while G and F2
k represent these factors for a bright region. Accordingly, the contrast of a

SAR image increases with decreasing MNR.

5. Experimental Results

In this section, in order to verify the effectiveness and robustness of the proposed
algorithms, RFI mitigation experiments on the simulated and measured SAR datasets are
detailed. Meanwhile, the performances of LRDS and TFC-LRS are compared with those
obtained by instantaneous-spectrum notch filtering (ISNF) [12], Eigenspace projection
(ESP) [19], and GoDec [33].

The experiments depicted in this section contained four kinds of data, including
the simulated single snapshot, the measured SAR scene data with simulated RFI, the
NBI-corrupted measured SAR data, and the WBI-corrupted measured SAR data. The
simulated single snapshot was generated by applying RFI with an interference-to-signal
ratio of −10 dB to a measured SAR echo signal collected without interference by an X-band
airborne SAR. The measured SAR scene data with simulated RFI were synthesized as the
simulated snapshot, and the difference is that the RFI-free SAR scene data were recorded
by the Sentinel-1 satellite of the European Space Agency at C band around the Roskilde
gulf in northern Germany on 24 April 2020. The NBI-corrupted SAR data were recorded by
the airborne SAR at the X band, and illuminated a rural area with farmlands and village
buildings. Furthermore, the acquisition of the WBI-contaminated SAR dataset was also
undertaken with the C-band Sentinel-1A satellite in southern United Arab Emirates on 3rd
June 2021. The above SAR data involves two SAR platforms, whose parameters are listed
in Tables 3 and 4.

Table 3. Parameters of the airborne SAR system.

Carrier Frequency X Band The Pulse Repetition Frequency 1000 Hz

Bandwidth 180 MHz Velocity 100 m/s

The pulse width 10 µs Resolution (Range × Azimuth) 1 m× 1 m

Table 4. Parameters of the spaceborne SAR system.

Carrier Frequency C Band The Pulse Repetition Frequency 1717.129 Hz

Bandwidth 56.59 MHz Velocity 7.598 km/s

The pulse width 52.406 µs Resolution (Range × Azimuth) 5 m× 20 m

5.1. RFI Mitigation Results of the Simulated Single Snapshot

Firstly, a one-dimensional measured signal with simulated RFI was generated to
prove the effectiveness and superiority of the proposed algorithms. Figure 7a,b shows the
representation of the SAR echo with and without RFI in the time and frequency domains,
respectively. It demonstrates that the envelopes are drastically changed due to the presence
of RFI. Figure 7c,d presents the spectrograms of the RFI-free and RFI-contaminated SAR
echoes, respectively, in which the characteristics of TES are completely suppressed. Then,
different algorithms were utilized to recover the TES.
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Figure 7. Representations of the simulated RFI-contaminated SAR echo signal. (a,b), the RFI-
corrupted SAR echo in the time and frequency domains, respectively; (c) original RFI-free signal; and
(d) RFI-contaminated SAR echo in the TF domain.

As discussed above, some parameters including rank and sparsity should be preset
before applying the proposed algorithms. The eigenvalue sequence in Figure 8a was
obtained by performing eigenvalue decomposition on the spectrogram matrix shown in
Figure 7d. As is well known, the eigenvalues reflect the intensities of signal energies and
relate to the matrix rank directly. So, the minor large eigenvalues in Figure 8a indicate the
low-rank property of RFI. Combined with (33), the rank of the RFI matrix is 23 through the
MDL criteria. As for cardinality, ε1 = 0.12 and ε2 = 0.4 are adopted empirically.
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To mitigate the RFI in Figure 8, the iterative algorithms were first applied, and the
results are shown in Figure 9. Figure 9a,d,g shows the spectrograms of the reconstructed
RFI after applying the GoDec, LRDS, and TFC-LRS, respectively. It is clear that LRDS and
TFC-LRS have more accurate RFI reconstruction results, whereas GoDec has partially useful
signals remaining around the reconstructed RFI. Meanwhile, the RFI reconstructed results
shown in Figure 9g show fewer signal residuals than those in Figure 9d, representing the
best RFI reconstruction accuracy among these three algorithms.
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Figure 9. Analysis of the mitigation results. (a,d,g), the spectrograms of reconstructed RFI after
applying GoDec, LRDS, and TFC-LRS, respectively. (b,e,h), the spectrograms of recovered TES after
applying GoDec, LRDS, and TFC-LRS, respectively. (c,f,i) comparison of the spectrums of the original
TES and the recovered TES after applying GoDec, LRDS, and TFC-LRS, respectively.

The recovered TESs after applying the mentioned iterative RFI mitigation algorithms
are presented in Figure 9b,e,h, respectively. There are distinct gaps shown in Figure 9b,
indicating greater signal loss after applying GoDec. However, as shown in Figure 9e,h,
there were no obvious vacant areas and the TES overlapped by the RFI were effectively re-
covered after applying LRDS and TFC-LRS. Furthermore, Figure 9c,f,i present the spectrum
comparison results of the original TES and the recovered TES after applying GoDec, LRDS,
and TFC-LRS, respectively. By utilizing LRDS and TFC-LRS, the recovered TES was more
similar to the original TES. The divergence between the original TES and the recovered TES
obtained by using the GoDec was the largest, and it was smallest after applying TFC-LRS.
The comparison in Figure 8 validates the conclusion that the proposed algorithms have
better performance due to the more accurate RFI reconstruction model.

Meanwhile, the execution efficiency was analyzed, and the convergence curves of
GoDec, LRDS, and TFC-LRS are shown in Figure 10. The convergence curves depict the
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RFI reconstruction error trend for different RFI mitigation algorithms along the iteration
times. The RFI reconstruction error was measured by the root mean square error (RMSE).
Obviously, LRDS and TFC-LRS converged after the 14th and 15th iteration, respectively,
and the convergence speed was faster than the GoDec. In fact, there was no sign of
convergence for GoDec until the maximum iteration number was reached. As discussed
above, GoDec has slightly less computational complexity per iteration compared with the
proposed algorithms. Therefore, the apparently fewer iterations indicated lower whole
computational complexity, which was tested by the time consumption, as shown in Table 5.
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Figure 10. The convergence curves of the root mean square error when utilizing GoDec, LRDS,
and TFC-LRS.

Table 5. Performance comparison of RFI mitigation algorithms for a simulated snapshot.

Method

Metric
SDR (dB) SSIM Time (ms)

ISNF −5.09 0.75 49.02

ESP −3.74 0.56 43.74

GoDec −3.56 0.54 416.63

LRDS −6.72 1 0.843 144.08

TFD-LRS −7.10 0.844 194.17

Improvement (%) 2 32.02/79.68/88.76
39.49/89.84/99.44

12.40/50.54/56.11
12.53/50.71/56.30

-/-/65.42
-/-/53.40

1 The best and the second best results in each metric are highlighted in bold and italics, respectively. 2 The two
rows denote the improvements of the LRDS and TFC-LRS compared ISNF, ESP, and GoDec, respectively.

In pursuit of a more thorough evaluation, non-iterative RFI mitigation algorithms
including the ISNF and ESP were applied to compare the performance, and their RFI
mitigation results are shown in Figure 11a,b, respectively. It is clear that the RFI was
mitigated and the characteristics of TES were recovered to varying degrees. However, there
were distinct gaps around the RFI location of the spectrogram after applying ISNF and
ESP. This indicates that the RFI mitigation results of the ISNF and ESP had large signal loss.
After the visual comparisons shown in Figures 9 and 11 were conducted, it became clear
that LRDS and TFC-LRS can achieve better RFI mitigation performances.
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Figure 11. Spectrograms of the results after applying (a) ISNF and (b) ESP.

In addition to the visual comparison, the quantitative SDR, SSIM, and time consump-
tion metrics obtained by applying the five different RFI mitigation algorithms considered
are listed in Table 5. The best and second best values in each metric are highlighted in
bold and italics, respectively. The two lines in the improvement row correspond to the
percentage increases in the LRDS and TFC-LRS, and the three terms in each row corre-
spond to comparisons with ISNF, ESP, and GoDec, respectively. It is obvious that the
proposed RFI mitigation algorithms have the lowest and second lowest SDR, indicating
less signal distortion. In addition, they have the best and second best performance in the
SSIM metric, which indicates greater consistency with the original TES. It can be concluded
that the proposed algorithms exhibit superior performance. As for the time consumption,
the proposed algorithms have less expenses than GoDec but more than the non-iterative
algorithms including ISNF and ESP. Compared with GoDec, the percentage decreases in
time consumption for LRDS and TFC-LRS exceed 65% and 53%, respectively.

5.2. Mitigation Results of the Measured SAR Data Corrupted with Simulated RFI

Furthermore, the measured SAR scene data with simulated RFI were synthesized and
processed by the RFI mitigation algorithms mentioned above to compare the performance.
The SAR imaging result of this dataset, shown in Figure 12a, is well-focused and has
detailed target features. Meanwhile, Figure 12b presents the SAR imaging result of the
same dataset corrupted with the simulated RFI shown in Figure 7. The simulated RFI is
modulated randomly along the time and frequency. It is obvious that the RFI seriously
hinders the SAR image quality and the subsequent SAR image interpretation.

Remote Sens. 2022, 14, x FOR PEER REVIEW 24 of 34 
 

 

5.2. Mitigation Results of the Measured SAR Data Corrupted with Simulated RFI 
Furthermore, the measured SAR scene data with simulated RFI were synthesized and 

processed by the RFI mitigation algorithms mentioned above to compare the perfor-
mance. The SAR imaging result of this dataset, shown in Figure 12a, is well-focused and 
has detailed target features. Meanwhile, Figure 12b presents the SAR imaging result of 
the same dataset corrupted with the simulated RFI shown in Figure 7. The simulated RFI 
is modulated randomly along the time and frequency. It is obvious that the RFI seriously 
hinders the SAR image quality and the subsequent SAR image interpretation. 

  
(a) (b) 

Figure 12. SAR image of the measured data (a) without RFI and (b) corrupted with simulated RFI. 

Firstly, the performance of RFI detection algorithm based on TF skewness was eval-
uated. The RFI-free SAR dataset was established based on the measured SAR data analy-
sis, and the skewness of each sample was calculated via (5). Then, the curve of the optimal 
threshold along the different false alarm rates was constructed and found to be monoton-
ically decreasing, as shown in Figure 13a. The RFI threshold was set as 2.298 at a false 
alarm rate of 10ିଷ. As shown in Figure 13b, the snapshots corrupted with RFI or not were 
separated precisely by the red dotted line corresponding to the optimal threshold, which 
was selected from Figure 13a. 

  
(a) (b) 

Figure 13. RFI detection results of the measured SAR data corrupted with simulated RFI: (a) the 
variation of optimal threshold with different false alarm levels. (b) the RFI detection result at a false 
alarm rate of 310− . 

Similarly, ISNF, ESP, GoDec, and the proposed algorithms were applied to mitigate 
the RFI, and the RFI mitigation performances were analyzed. The SAR imaging results 
obtained after applying the RFI mitigation algorithms mentioned above are presented in 
Figure 14b–f, respectively, and the scenes marked with different colored boxes are 

Pr
ob

ab
ili

ty
 o

f F
al

se
 A

la
rm

Figure 12. SAR image of the measured data (a) without RFI and (b) corrupted with simulated RFI.



Remote Sens. 2022, 14, 775 21 of 30

Firstly, the performance of RFI detection algorithm based on TF skewness was evalu-
ated. The RFI-free SAR dataset was established based on the measured SAR data analysis,
and the skewness of each sample was calculated via (5). Then, the curve of the optimal
threshold along the different false alarm rates was constructed and found to be monoton-
ically decreasing, as shown in Figure 13a. The RFI threshold was set as 2.298 at a false
alarm rate of 10−3. As shown in Figure 13b, the snapshots corrupted with RFI or not were
separated precisely by the red dotted line corresponding to the optimal threshold, which
was selected from Figure 13a.
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Figure 13. RFI detection results of the measured SAR data corrupted with simulated RFI: (a) the
variation of optimal threshold with different false alarm levels. (b) the RFI detection result at a false
alarm rate of 10−3.

Similarly, ISNF, ESP, GoDec, and the proposed algorithms were applied to mitigate
the RFI, and the RFI mitigation performances were analyzed. The SAR imaging results
obtained after applying the RFI mitigation algorithms mentioned above are presented
in Figure 14b–f, respectively, and the scenes marked with different colored boxes are
magnified for detailed comparison in Figure 15. A visual inspection of the SAR images
shown in Figure 14 indicated that all five RFI mitigation algorithms achieved interference
suppression and recovered the original scene. However, the SAR images in Figure 14b–d
have poor contrast, and some strong scatter regions are defocused with partial information
loss compared with Figure 14a. The SAR imaging results in Figure 14e,f, obtained after
applying LRDS and TFC-LRS, are more consistent with the original image. The results
demonstrate that there was less information loss and more abundant detailed features after
applying the proposed algorithms.

Next, the partial regions were analyzed further to evaluate the details. The magnified
SAR images, after applying ISNF (Figure 15b), showed lower contrast and amplitude,
which suggests a large signal loss. As for the green boxes corresponding to Figure 15c,d, the
edges of vegetation were defective and blurry, indicating the distortion of TES. Therefore,
the SAR imaging results obtained after applying LRDS and TFC-LRS presented obviously
better performance than those obtained using the other RFI mitigation algorithms.

Beyond the visual comparison, the quantitative evaluation metric values obtained by
the five RFI mitigation algorithms are listed in Table 6. The pixels within the yellow and red
circles shown in Figure 14 correspond to the weak region and strong region, respectively.
Apparently, the LRDS and TFC-LRS had the highest and second highest SSIM metrics,
exceeding those of ISNF, ESP, and GoDec by at least 22% (for LRDS) and 32% (for TFC-
LRS). This indicates less signal loss and more abundant details in the SAR images after
applying the proposed algorithms. The MNR metrics of the LRDS and TFC-LRS were at
least 13% and 22% lower, respectively, compared to the other algorithms, indicating the
higher contrast of LRDS and TFC-LRS. Moreover, the time consumption values of LRDS
and TFC-LRS were 66.99% and 60.36% lower compared to that of GoDec. Among the
three iterative algorithms, LRDS and TFC-LRS were the most efficient. Among all five
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RFI mitigation algorithms, the LRDS and TFC-LRS achieved superior performance with
good effectiveness.
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5.3. Mitigation Results of the Measured SAR Data Corrupted with NBI

The above experiments verified the effectiveness and superiority of the proposed
RFI mitigation algorithms. Next, the NBI mitigation experiments were conducted on
the measured NBI-contaminated SAR data to evaluate the robustness of the proposed
algorithms. Figure 16a represents the measured SAR data, which were contaminated by
strong NBI in the two-dimensional time domain. The RFI detection results at a false alarm
rate of 10−5 are presented in Figure 16b based on the TF skewness detection method.
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Table 6. Performance comparison of RFI mitigation algorithms for the measured SAR data with
simulated RFI.

Method

Metric
SSIM MNR (dB) Time (s)

ISNF 0.61 −10.22 26.38

ESP 0.56 −11.23 24.99

GoDec 0.51 −11.00 215.63

LRDS 0.75 1 −12.80 71.19

TFD-LRS 0.81 −13.73 85.48

Improvement (%) 2 22.95/33.93/47.06
32.79/44.64/58.82

25.24/13.98/16.36
34.34/22.26/24.82

-/-/66.99
-/-/60.36

1 The best and the second best results in each metric are highlighted in bold and italic, respectively. 2 The two
rows denote the improvements of the LRDS and TFC-LRS compared ISNF, ESP, and GoDec, respectively.
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Based on the prior information offered by RFI detection, the algorithms mentioned in
the simulated data experiments were utilized to compare the performance for the measured
NBI-corrupted SAR data. Figure 17a is the SAR imaging result without RFI mitigation,
where the bright lines overshadow the important target features, such as the buildings
and fields. The SAR imaging results obtained after applying ISNF, ESP, GoDec, LRDS, and
TFC-LRS are presented in Figure 17b–f, respectively. Although the majority of the NBI was
mitigated, some deficiencies were observed in the SAR images when applying ISNF, ESP,
and GoDec. By visual comparison, the SAR image of ISNF was found to be blurry around
the middle artificial architecture, and it was impossible to extract target features for the
subsequent interpretation. Some vestiges of the RFI mitigation procedure can be observed
above the artificial building area in Figure 17c,d, indicating signal distortion. Meanwhile,
the SAR imaging results obtained after applying LRDS and TFC-LRS were well focused,
demonstrating better performance as compared to ISNF, ESP, and GoDec. Similarly, the
scenes of red and green boxes are magnified in Figure 18. In summary, the results of the
proposed RFI mitigation algorithms were found to have more clear target features and
stronger contrast.

After the visual analysis, quantitative evaluation was performed based on the MNR
metric and the time consumption listed in Table 7. In Figure 17, the pixels in the yellow and
red circles correspond to the weak region and strong region, respectively. It can be seen
that the LRDS and TFC-LRS achieved the lowest and second lowest MNR, with obvious
improvements compared to ISNF, ESP, and GoDec. Meanwhile, the time consumption
values of LRDS and TFC-LRS were 71.87% and 76.60% less than that of GoDec, respectively.
The above analysis results demonstrate that the proposed RFI mitigation algorithms are
overall more effective, superior, and efficient.
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Figure 18. Comparison of the enlarged areas in Figure 17. (Row 1): the red box region; (Row 2) the
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Table 7. Performance comparison of RFI mitigation algorithms for the measured NBI-corrupted
SAR data.

Metric

Method
ISNF ESP GoDec LRDS TFC-LRS Improvement (%) 2

MNR (dB) −7.05 −7.89 −7.44 −7.97 1 −7.94 13.05/1.01/7.12
12.62/0.63/6.72

Time (s) 23.18 23.50 237.97 66.95 55.68 -/-/71.87
-/-/76.60

1 The best and the second best results in each metric are highlighted in bold and italic, respectively. 2 The two
rows denote the improvements of the LRDS and TFC-LRS compared ISNF, ESP, and GoDec, respectively.
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5.4. Mitigation Results of the Measured SAR Data Corrupted with WBI

Furthermore, the measured WBI-contaminated SAR data were utilized to validate
the superiority and robustness of the proposed RFI mitigation algorithms. Figure 19a
represents the SAR data in the two-dimensional time domain, and the WBI detection results
are shown in Figure 19b at a false alarm rate of 10−5; these results facilitated the following
RFI mitigation procedure.
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Figure 20a contains the direct SAR imaging result obtained without applying the
RFI mitigation algorithm. This SAR image is blurry, and the strong stripes caused by
WBI fully suppress the characteristics of the natural and artificial scenes. Figure 20b–f
show the imaging results obtained after applying ISNF, ESP, GoDec, LRDS, and TFC-LRS,
respectively, where the major WBI was suppressed and the target scene was recovered.
However, some misty residual WBI can be observed in the right region of Figure 20c,
meaning there was incomplete RFI mitigation. Although there is no residual WBI visible
in Figure 20b,d, the SAR images obtained after applying ESP and GoDec were found
to be more defocused and blurrier. The target scenes are shown to be even darker in
Figure 20d; this was due to the large signal loss. Unlike the SAR images in Figure 20b–d,
there are clearer edges and more details in those shown in Figure 20e,f. This shows that the
proposed algorithms achieve better RFI mitigation performance compared with ISNF, ESP,
and GoDec.

Similarly, some target scenes marked with different colored boxes are magnified for
detailed comparison in Figure 21. As for the red box in Figure 21b,d, it can be seen that
the target scenes obtained after applying ISNF and GoDec were blurry with large defects
in the road features. Furthermore, some residual WBI appeared, as can be seen in the
green box of Figure 21c, exhibiting a diffuse target scene. Unlike those RFI mitigation
results, the recovered target scenes obtained after applying LRDS and TFC-LRS clearly
showed better performance. After the visual inspection, the quantitative MNR and time
consumption metrics shown in Table 8 were utilized to evaluate the performance of the five
RFI mitigation algorithms. The TFC-LRS and LRDS had the lowest and second lowest MNR
values, respectively. This indicates higher contrast in the SAR images after applying the
proposed algorithms. Moreover, the time consumption values of LRDS and TFC-LRS were
64.70% and 49.38% lower than that of GoDec, respectively. Therefore, it can be concluded
that the proposed RFI mitigation algorithms can achieve superior performance with more
effectiveness and efficiencies.
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Table 8. Performance comparison of RFI mitigation algorithms for the measured WBI-corrupted
SAR data.

Metric

Method
ISNF ESP GoDec LRDS TFC-LRS Improvement (%) 2

MNR (dB) −11.72 −10.28 −11.43 −11.86 1 −12.19 1.19/15.37/3.76
4.01/18.58/6.65

Time (s) 19.45 27.02 101.90 35.97 51.58 -/-/64.70
-/-/49.38

1 The best and the second best results in each metric are highlighted in bold and italic, respectively. 2 The two
rows denote the improvements of the LRDS and TFC-LRS compared ISNF, ESP, and GoDec, respectively.
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6. Discussion

The RFI mitigation experiment on the simulated single pulse was performed to validate
the effectiveness of the proposed RFI mitigation algorithms. As shown in Figure 7, the
simulated RFI was found to seriously reduce the SNR and suppress the characteristics of
the TES. Firstly, detailed comparisons of the RFI reconstruction results and the recovered
TESs, utilizing GoDec, LRDS, and TFC-LRS, are shown in Figure 9. The RFI reconstruction
accuracies of LRDS and TFC-LRS were found to be higher than that of GoDec. Meanwhile,
the recovered signals obtained after applying LRDS and TFC-LRS were more consistent
with the original TES, indicating less signal loss. Figure 10 shows the convergence curves
of GoDec, LRDS, and TFC-LRS. It is clear that LRDS and TFC-LRS converged faster than
GoDec. Moreover, the non-iterative ISNF and ESP were also utilized to compare the
RFI mitigation performance (Figure 11). The large gaps in the spectrograms of the TES
recovered by ISNF and ESP indicate serious signal loss, further proving the superiority of
the LRDS and TFC-LRS. For more accurate comparison, the quantitative SDR and SSIM
metrics were utilized to evaluate the performance of ISNF, ESP, GoDec, LRDS, and TFC-LRS.
Table 5 shows that the SDR and SSIM of the proposed RFI mitigation algorithms were
improved by at least 32.02% and 12.40%, respectively. This further supports the fact that the
proposed RFI mitigation algorithms have better RFI mitigation performance. Meanwhile,
LRDS and TFC-LRS were found to have over 53% lower time consumption than GoDec,
indicating their faster operation speeds.

To further evaluate the effectiveness and superiority of the proposed RFI mitigation
algorithms, the RFI mitigation performances of ISNF, ESP, GoDec, LRDS, and TFC-LRS were
analyzed in the image domain. These experiments were based on the measured SAR data
superimposed with the simulated RFI, including NBI and WBI. The statistical RFI detection
method was validated, as shown in Figure 13. This reveals the effectiveness and robustness
of the proposed RFI detection method, with a precise identification result for both NBI
and WBI. Then, the SAR imaging results obtained after applying the five mentioned
RFI mitigation algorithms are presented in Figure 14. Based on a visual inspection of
the SAR images, the images obtained after applying LRDS and TFC-LRS were found
to have clearer edges. Meanwhile, Table 6 shows that the quantitative SDR and SSIM
metrics of the proposed RFI mitigation algorithms were improved by at least 22.95% and
13.98%, respectively. This indicates that there was less signal loss and distortion in the
reconstructed results of the LRDS and TFC-LRS. The time consumption shown in Table 6
demonstrates that the proposed RFI mitigation algorithms are more efficient than GoDec,
with a percentage decrease of at least 60.36%.

Beyond the simulated RFI mitigation experiments, the measured RFI-contaminated
SAR datasets were employed to verify the robustness of the proposed RFI mitigation algo-
rithms in the experiments described in Section 5.3 (NBI-contaminated data) and 5.4 (WBI-
contaminated data). Similarly, the proposed RFI detection method was successfully applied
to the measured SAR datasets. The RFI detection results shown in Figure 16 and demon-
strate its effectiveness and robustness both for the measured NBI and WBI. Then, the
resulting SAR images obtained after applying the five different interference mitigation
algorithms are presented in Figures 17 and 20. Through visual inspection, it was found that
the images of ISNF, ESP, and GoDec were defocused or blurry, and some even contained
residual RFI. On the contrary, clearer edges and better contrast were observed in the SAR
imaging results after applying LRDS and TFC-LRS. Meanwhile, the quantitative metric
MNR and time consumption for the five algorithms are listed in Tables 7 and 8. According
to the value of MNR, it is clear that the proposed LRDS and TFC-LRS achieved the best
and second best performance in both experiments, indicating their stronger robustness and
superior performance. Moreover, LRDS and TFC-LRS had significantly better efficiency
compared with GoDec because they consumed at least 49% less time.

According to the four experiments, it can be concluded that the proposed RFI miti-
gation algorithms are more effective and have superior performance compared with the
mentioned existing algorithms. Meanwhile, they are more robust for both simulated and
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measured datasets corrupted with different types of RFI. Moreover, the efficiency of both
LRDS and TFC-LRS were found to be greatly improved with faster convergence speeds
compared to GoDec.

7. Conclusions

RFI seriously detracts from the SAR imaging quality, which necessitates the devel-
opment of RFI mitigation algorithms with more accurate models and faster convergence
speeds compared to the existing model-driven algorithms. This paper proposes the use of
the LRDS and TFC-LRS algorithms to join the low-rank property and the double sparsity
property based on the measured SAR data analysis. Firstly, RFI detection was performed by
exploiting the fact that the spectrograms of SAR echo with and without RFI have different
degrees of Gaussianity. This could be measured by TF skewness, and the adaptive level
was improved with the help of the Neyman–Pearson criterion. Then, the LRDS algorithm
was introduced to reconstruct the RFI with more precise constraints of structural features
for RFI and TES. An alternative iteration strategy combined with the BRP and the soft
threshold mapping method was also utilized to optimize the RFI reconstruction model. It
improved the accuracy of the RFI reconstruction model and reduced the computational
complexity compared with GoDec. Meanwhile, TFC-LRS introduced the TF constraint
concept to improve the accuracy of the reconstruction model further. This was inspired by
the special sparsity of RFI, which was caused by successive modulation along with time
and frequency. The TFC-LRS algorithm could eliminate unnecessary signal loss to yield
better performance. With respect to the experiments on both the simulated and measured
SAR datasets, the proposed algorithms exhibited more effectiveness, superior performance,
and better robustness compared with ISNF, ESP, and GoDec.
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