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Abstract: This study develops an objective deep-learning-based model for tropical cyclone (TC)
intensity estimation. The model’s basic structure is a convolutional neural network (CNN), which is
a widely used technology in computer vision tasks. In order to optimize the model’s structure and to
improve the feature extraction ability, both residual learning and attention mechanisms are embedded
into the model. Five cloud products, including cloud optical thickness, cloud top temperature, cloud
top height, cloud effective radius, and cloud type, which are level-2 products from the geostationary
satellite Himawari-8, are used as the model training inputs. We sampled the cloud products under
the 13 rotational angles of each TC to augment the training dataset. For the independent test data,
the model shows improvement, with a relatively low RMSE of 4.06 m/s and a mean absolute error
(MAE) of 3.23 m/s, which are comparable to the results seen in previous studies. Various cloud
organization patterns, storm whirling patterns, and TC structures from the feature maps are presented
to interpret the model training process. An analysis of the overestimated bias and underestimated
bias shows that the model’s performance is highly affected by the initial cloud products. Moreover,
several controlled experiments using other deep learning architectures demonstrate that our designed
model is conducive to estimating TC intensity, thus providing insight into the forecasting of other
TC metrics.

Keywords: tropical cyclone; intensity; Himawari-8 satellite; estimation; deep learning

1. Introduction

Tropical cyclones (TCs) are one of the most destructive natural disasters, threatening
both lives and property [1]. The effects of TCs include strong wind, heavy rain, tornadoes
and large storm surges near landfall. The destruction of a TC mainly depends on its
intensity, size, and location [2,3]. Therefore, accurate estimation of TC intensity plays an
important role in operational TC forecasts as well as for disaster prevention and mitigation.
In the past few years, TC intensity estimation has received a great deal of attention but still
remains one of the most difficult tasks in operational TC forecasting [4–7]. The primary
reason for this is that the complex physical and dynamic processes of the ocean atmosphere
that are related to TC development are not well understood as of yet [8]. Since most TCs
develop over the ocean, it is extremely difficult to estimate TC intensity using ground-based
observations alone [9]. The steady progress that has been made in meteorological satellite
sensor systems has produced new opportunities to improve TC intensity estimation.
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Satellite-based observations, such as microwave data from polar-orbiting or geosta-
tionary satellites, have been considered as the primary data source to estimate TC intensity
in recent years [10,11]. The upwelling microwave radiation achieved from polar-orbiting
satellites can be converted to the brightness temperature and can be further used to measure
the intensity of the TC’s warm core and the precipitation of the TC [12]. Compared to
polar-orbiting satellites, though geostationary satellites are unable to monitor the near sur-
face structure of a TC, they can provide imagery with a higher temporal-spatial resolution
and better quality [13]. Most valuable TC-related information, such as its genesis, location,
wind speed, and induced precipitation, can be indirectly observed from geostationary
satellite imagery. The use of geostationary satellite imagery to estimate TC intensity has
been explored in recent studies and has shown potential utility [13–16].

A widely used method to estimate TC intensity is the Dvorak technique (DT). It is
essentially a manual pattern recognition technique that estimates TC’s intensity based
on the cloud patterns observed by geostationary satellite infrared imagery [17,18]. DT is
highly dependent on the expertise levels of TC forecasters and satellite analysts; therefore,
it is subjective and time intensive [9,10]. Several improved versions of DT have been
proposed, such as the digital Dvorak method, the objective Dvorak technique (ODT),
and the advanced ODT (AODT [19]). Instead of empirical discriminant analysis, these
techniques are computer-based, reducing the uncertainty and variability of TC intensity
estimation. Moreover, the advanced Dvorak technique (ADT) proposes several additions
and modifications to AODT [20], and the deviation angle variance technique (DAVT)
estimates TC intensity by means of cloud dynamic analysis and the study of the symmetry
structure of infrared satellite imagery [21,22]. The aforementioned methods have been used
at different operational TC forecast centers; however, subjective rules and constraints may
lead to an inconsistency in TC intensity estimation.

Recently, numerous attempts to use deep learning (DL) techniques to estimate TC
intensity have been made. As the most commonly used DL technique, the Convolutional
Neural Network (CNN) technique has three main characteristics, local receptive fields,
weight-bias sharing, and pooling [23,24], and it is suitable for satellite-imagery-based TC
intensity analysis. Difference versions of CNNs can be constructed by varying the input
data, connection modes, and the number of layers, etc. For example, using single infrared
images, [16] designed a CNN architecture to categorize hurricanes at different intensity
levels, and the results showed that the estimation accuracy is higher than that achieved
by the state-of-the-art technique DAVT. Using satellite-based passive microwave sensor
data, [25] developed a 2D-CNN model, and the estimated TC intensity had an RMSE of
4.93 m/s when compared against the reconnaissance-aided best track. The authors of [14]
utilized both a 2D-CNN and a 3D-CNN to analyze the relationship between multi-spectral
geostationary satellite imagery and TC intensity, with an estimated RMSE of 4.28 m/s.
Based on the CNN framework, [13] proposed a combined model to perform TC intensity
classification and estimation tasks using infrared satellite images and TC best track data,
showing a mean absolute error of 3.43 m/s. Progress and achievements in estimating TC
intensity with DL and satellite imagery have also been documented in many others studies
(e.g., [26–29]).

Nevertheless, there are still several issues/challenges with TC intensity estimation
when using satellite images and DL methods. First, the performance is highly dependent
on the quality of the dataset. For example, the grids and coastlines in satellite images may
act as noise, complicating the training process [16]. Furthermore, as the structure of a TC
changes with time and location, quantitative indicators of the TC’s dynamic movement
within satellite images are necessary to improve the robustness of estimation models,
e.g., the use of data augmenting techniques [13,16,30]. Second, TC intensity estimation
based on satellite imagery and DL is inherently a nonlinear feature extraction task that
requires huge computing resources as well as a huge time-cost. As in most DL methods,
there are several problems with the deep architecture of CNNs, such as gradient vanishing,
gradient exploding, local optimum, over-fitting, and slow convergence. Therefore, a balance
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between the network’s architecture and the device hardware should be achieved [31,32],
and improved CNN-based architectures are worthy of experiments [26,27]. Third, as in
many meteorological fields, DL-based TC intensity estimation requires diverse teams of
DL researchers, DL system developers, domain experts, end-user stakeholders, software
engineers, and user interface designers [28].

Himawari-8 (H-8) is a new generation of Japanese geostationary meteorological satel-
lites that is able to monitor TC activities with a finer temporal-spatial resolution and that
has been orbiting over the Asia-Pacific region since 2015 [33,34]. The level-2 (L2) cloud
products of H-8 have been used in TC-related studies, and encouraging preliminary results
have been obtained [15,30,35,36]. In this study, we propose a novel DL-based architecture
that aims to improve the accuracy of TC intensity estimation on the basis of previous
DL-based models. Our contributions are (1) to mine potentially useful information from
H-8 L2 cloud products for TC intensity estimation over the western North Pacific basin;
(2) to develop a CNN-based framework that integrates two novel techniques: an attention
mechanism module [37] and a residual learning module [38], reducing the computational
complexity but improving the information extraction ability of the architecture; and (3)
to compare our model with other TC intensity estimation techniques (e.g., DT family)
and discuss its superiority, deficiency, and future improvements. The rest of this article is
organized as follows: Section 2 presents the data sources, methods, and experiment design.
We describe the developments and evaluations of the model in Section 3. The discussion
and summary are presented in Sections 4 and 5, respectively.

2. Data and Methods
2.1. Himawari-8 Geostationary Satellite Cloud Products

The satellites in the Himawari series are the first geostationary meteorological satellites
that were launched by the Japan Meteorological Agency in 1977. H-8 is a new generation
of the Himawari series that was launched in October 2014 and became operational in July
2015 [33,34]. H-8 has 16 observation spectral bands with spatial resolutions of 0.5 or 1 km
for visible and near-infrared bands and 2 km for infrared bands. The observation area is
60S–60N, 80E–160W, covering the majority of the western North Pacific basin and providing
images at temporal and spatial resolutions of 10 min and 5 km, respectively. In the current
study, five H-8 L2 cloud products from the years 2015 to 2020 are used, including cloud
optical thickness (CLOT), cloud top temperature (CLTT), cloud top height (CLTH), cloud
effective radius of band-6 (CLER), and cloud type (CLTY). Visually, the TC structure that
is well captured by these products is highly related to TC intensity. Therefore, using a
DL-based model to perform some computer vision tasks to aid in TC intensity estimation is
feasible and worthwhile. This study only examines the usage of H-8 L2 cloud products in
daytime TC intensity estimation tasks due to the unavailability of nighttime observations.

2.2. TC Data

The TC dataset is derived from the real-time typhoon track system released by the
Department of Water Resources of Zhejiang Province, data from which are available each
three-hour period for pelagic TCs and for every one-hour period for inshore TCs. It
contains detailed TC tracks and their associated time, longitude, latitude, minimum sea
level pressure, maximum wind speed (sustained 2 min average wind speed), moving
direction, moving speed, and landfall site over the western North Pacific basin. In order to
match the time span of the five cloud products mentioned above, a total of 3264 original TC
records (from 147 typhoon cases from the years 2015 to 2020) were extracted. For brevity,
the maximum wind speed was used as the target TC intensity, which is also the labeled
variable for the intensity regression task below. According to the TC intensity classification
criteria by the China Meteorological Administration (note that the criteria is different from
the Saffir–Simpson criteria), six TC types are defined: tropical depression (TD), tropical
storm (TS), strong tropical storm (STS), typhoon (TY), strong typhoon (STY), and super
strong typhoon (SSTY) (see Figure 1a). To facilitate the analysis below, these TCs are also
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divided into landfall TCs and non-landfall (nautical) TCs based on their distances from the
coastline (see Figure 1b).

Figure 1. (a) The number of TC cases at different intensities (m/s) intervals; (b) the number of TC
cases at different distances (km) with coastline.

2.3. Data Augmentation

Training a DL model usually requires an enormous amount of data; hence, we utilized
the data augment technique to expand the initial samples. For example, Figure 2 shows the
data augmentation performed on the CLTT cloud product. For each image, a total of 13
different images (side length: 1280 × 1280 km) are generated at +/−15 degree rotational
increments and are positioned at the same storm center (longitude and latitude), resulting
in an array that is 13 × 256 × 256 in shape. The CLOT, CLTH, CLER, and CLTY products are
collected in a similar way. Therefore, the final sample size is 42,432 × 5 × 256 × 256. Note
that H-8 is unable to conduct monitoring activities at night because it uses visible bands,
and there are also some abnormal data due to hardware failures, so the final sample size
was reduced from 42,432 to 39,787.

Figure 2. An example of data augmentation in CLTT cloud product.

2.4. Convolutional Neural Network (CNN)

The detailed mathematical principle and formula derivation of the CNN are presented
in studies [39,40]. A CNN consists of three key layers: convolutional (feature extraction)
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layers, pooling (down sampling) layers, and dense (fully connected) layers. In the con-
volutional layers, various trainable convolutional kernels (also known as filters) with a
constant size have the “parameters sharing” (weights and biases) feature, which enables
them to extract multiple features from the original input pattern. This step not only reduces
the computational cost and the number of parameters, but it also alleviates over-fitting to
some extent. Pooling layers are usually inserted among consecutive convolutional layers,
retaining the main features as well as reducing the number of parameters. As such, they
can reduce the dimensionality of the representation, and create an invariance to small
shifts and distortions [24], which helps to increase the generalization ability and to alle-
viate the over-fitting of the model. The flexible combination of convolutional layers and
pooling layers may extract some well-organized features from the original inputs. Dense
layers act as classifiers or regressors in the CNN architecture; in other words, the outcomes
of convolution and pooling can be integrated by the dense layers. The CNN method
is well suited for image processing and pattern recognition, especially for images with
translational invariance, rotational invariance, and scale invariance. Because TC images
are generated under 13 rotational angles, are always centered on the storm center (see
Figure 2), and usually have well-organized structures (e.g., outer wind bands, middle spiral
cloud bands, cyclone eye walls, inner cores) with various shapes and sizes, it is possible to
assume the three invariances mentioned above. Using the regressive pattern of the CNN,
the TC intensity estimation from satellite cloud products (seem as images) can thereby be
converted to a nonlinear feature extraction problem. The basic architecture of the CNN
follows the net from the “Oxford Visual Geometry Group (hereafter VGG; [41])”, which is
a widely used technology in computer vision tasks. The VGG in this study contains four
“convolutional blocks” with filter sizes increasing from 32 to 256 (see Figure 3).

2.5. Residual Learning

Intuitively, the VGG architecture extracts ample features by stacking multiple convolu-
tional and pooling layers. However, an architecture that is this deep can raise three issues:
the huge consumption of computing resource, model over-fitting, and model gradient
vanishing/exploding [42,43]. The above issues can be solved by a graphic processing unit
(GPU) cluster, expanding the sample size, implanting regularization layers, etc. In practical
training processes, stacking more layers will inevitably lead to network degradation that
is not caused by over-fitting [38,44]. Therefore, [38] presented a deep residual learning
framework, suggesting the utilization of a few stacked layers to fit a residual mapping
from an initial mapping instead of directly fitting an initial mapping. Such deep residual
learning can be implemented by a feedforward network with shortcut connection and can
thus be embedded into the VGG architecture flexibly. Notably, residual learning helps to
accelerate convergence. This study will embed “double-level” residual learning (see Res1
and Res2 in Figure 3) in the VGG architecture.

2.6. Attention Mechanism

Note that the importance of each cloud product (channel) will not be sorted before the
convolutional operation in the VGG architecture. Moreover, for each cloud product, values
at different areas (e.g., TC eye, TC eye wall, TC outer spiral rain-band) will play divergent
roles within convolutional operation. The above conjectures imply that appending an
“attention mechanism” in the VGG architecture would obtain much stronger representation
power. Simply, the attention mechanism makes the architecture pay more attention to
the “what” and “where” of the cloud products. Ref. [37] proposed a convolutional block
attention module (CBAM) containing two independent modules: channel attention and
spatial attention. CBAM sequentially estimates attention sequences along the channel
and spatial dimensions, uses inner product operation to integrate the attention sequences
and the raw input features, and further obtains adaptive feature refinement, and can
hence be seamlessly implanted into the VGG architecture. The CBAM in this study can
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further enhance feature representation for the VGG architecture, help the network focus on
significant “feature maps”, and inhibit unnecessary ones among the convolutional layers.

Figure 3. The framework of the TC intensity estimation model in this study, where Max Pooling rep-
resents the maximum pooling layer, Avg Pooling represents the average pooling layer, Conv2D is the
2-D convolutional layer, Conv1D is the 1-D convolutional layer, and⊕ is the residual learning module.

2.7. The Framework of TC Intensity Estimation Model

In summary, the complete TC intensity estimation model consists of residual learning
and CBAM based on the VGG architecture, as shown in Figure 3. In the model, the
maximum pooling layer is added before feeding the input data into the training process,
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and then CBAM is carried out at the backend of the maximum pooling layer. The first
residual learning level (Res1) is added at each convolutional module (and includes three
convolutional layers); the second residual learning level (Res2) is used for identity mapping
and connects the first and the second convolutional module as well as the third and the
fourth convolutional module to each other. The average pooling layer is performed ahead
of each convolutional module. Note that after all of the convolutional modules, we use
several 1-D convolutional layers and one fully connected layer rather than one single
dense layer to fully connect the training labels. Such an operation will help to reduce
the number of parameters. The last layer releases the estimated TC intensities which are
one-to-one correspondences to the training labels (target intensities). Moreover, we also
adopted a “Batch-Normalization” layer and a “dropout” layer to ease over-fitting. All of
the convolutional layers (Conv2D) have leaky rectified linear unit (LeakyReLU) activation
functions, and all of the related kernel sizes are 4× 4, the strides are all set to (1, 1), and
their padding strategies are all set to “same”, with their kernel numbers being 32, 64, 128,
and 256. The kernel size of the 1-D convolutional layers (Conv1D) decreases from 128 to 32.
Model training and optimization were performed using the adaptive momentum (Adam)
gradient descent optimizer and mean absolute error (MAE) loss function. The total number
of training epoch is 200, and the number of the early stopping epoch is 20, which helps to
alleviate over-fitting. Therefore, the input size is (256, 256, 5), while the output size is 1
(scalar TC intensity determined by the model).

For model configuration, the modeling samples (sample length is 39,798) were divided
into two parts: the cross-validation set (first 90%, 35,808 samples) and the independent
test set (last 10%, 3979 samples). Specifically, the cross-validation set was further divided
into six equal groups (each group has 5968 samples), and the six-fold cross-validation
method was used to tune the model’s trainable parameters during the training process,
which means that we trained the model six times using different parameters and validation
losses, ensuring each sample was validated one time. The above steps can be implemented
through the “Tensorflow” package in Python syntax. To further examine the model’s
generalization ability, we tested the model two times (which have the two lowest validation
losses from the previous cross-validation step) using independent test sets and averaged
their outputs.

3. Results
3.1. Assessment on Cross-Validation Data

Here, we analyze the dependability of the model using the cross-validation set. We
adopted the DL architecture with CBAM and Res1 (see Section 2.7 and Figure 3) to per-
form the assessment. Figure 4a compares the estimated intensity (ŷ) and target intensity
(y) in 4 m/s intervals and shows the probability of the estimated ŷ conditional on tar-
get y. Intuitively, the linear fitting suggests that ŷ is highly correlated with y through
ŷ = 0.79× y + 5.48 (R2 = 0.95). The model demonstrates the overestimation of the inten-
sity at y < 24 m/s, showing with high probabilities, especially for those at the 14 m/s
intervals and that have a probability close to 1. Comparatively, TCs with intensities exceed-
ing 30 m/s intervals were underestimated by the model at various probability levels, and
the biases increased with the intensity. The largest underestimation occurred for violent
TCs with intensities close to 60 m/s. Considering the fact that the intensity of most TCs are
around 30 m/s (see Figure 1), the biases in estimating those marginal TCs (e.g., tropical
depressions or typhoons, strong typhoons) are considered acceptable. These results are
consistent with the findings of [27].

Moreover, we calculated the standard deviation (σ) of the estimated intensity to
investigate the model’s stability. In Figure 4b, the standard deviation is lower than 1.6 m/s
when y < 40 m/s and then gradually increases with y, reaching its peak at y = 56 m/s.
Overall, the standard deviations are fairly low, with values ranging in 1–2 m/s, suggesting
that the model is relatively stable in reproducing different TC intensities, especially for those
of weak TCs. Figure 4c presents the bias and the RMSE of the estimated intensities. It is clear
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that the biases are negatively correlated with the target intensities, where overestimations
appear in weak TCs (tropical depressions, tropical storms), with bias values ranging from
0–2 m/s, and underestimations occur in strong TCs, with biases ranging from −9 to 0 m/s.
Generally, the RMSE values are within the small range (<7 m/s), suggesting that the
designed architecture and parameters are effective for model training. Consistent with the
bias values, the model demonstrates small RMSEs at y < 32 m/s intervals but begins to
degenerate as the target intensities increase. The possible reason for such large biases in
strong TCs could be due to the relatively small set of samples (e.g., strong typhoons and
super typhoons in six typhoon seasons) are used for feature extraction.

Figure 4. (a) Estimated vs. target TC intensity, P(ŷ|y) is the probability of the estimated ŷ given y,
and the blue line denotes the linear fitting curve between ŷ and y; (b) standard deviation σ under
each of the target intensity levels; (c) estimated bias and RMSE.

Figure 5 presents a boxplot of the estimated biases at different regions. Overall, the
estimated biases range from −10 to 4.5 m/s. Though most TCs are overestimated by the
model, the mean biases are around 0 m/s, revealing that overestimation almost reaches
parity with underestimation. Compared to nautical (non-landfall) TCs, the biases from
landfall TCs have smaller fluctuations. Note that most landed TCs end with low intensities,
and these weak TCs account for the small biases for low intensity TCs discussed above. For
nautical TCs, according to the shape of each group box, it is obvious that pelagic TCs (D
> 400 km cyclones) have greater biases than inshore TCs (0 < D < 200 km and 200 < D
< 400 km cyclones), indicating that the estimated biases increase as the coastal distances
increase. Because most TCs are recorded more frequently (1-h sampling) over inshore areas
than they are pelagic areas (3-h sampling), our model can excavate useful information
and can fit the target intensities with relatively small biases by using these ample training
samples of inshore TCs.
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Figure 5. Boxplot of estimated biases at different regions. The solid line shows the minimum, median
(black line), and maximum values of the estimated biases.

3.2. Performance on Independent Test Data

We verified the performance of the model using an independent data set. As shown
in Figure 4, several statistics are calculated. Overall, the estimated intensity ŷ matches
with the target y with a liner fitting of ŷ = 0.84× y + 4.15 (R2 = 0.85), which is slightly
inferior to that in the cross-validation data. In Figure 6, it is clear that overestimations
appear in y < 20 m/s TCs with relatively high probabilities. In contrast, underestimations
can be found in the y > 30 m/s TCs with various probabilities. For example, y ≈ 48 m/s
TCs are predicted by the model to have an intensity 44 m/s with probability of 0.5, and
y ≈ 50 m/s TCs are underestimated at intensity of 46∼50 m/s with low probabilities.
Nevertheless, the model is still able to reproduce maximum intensities (at around 50 m/s).
Similar to previous assessment on cross validation data, our trained model has a tendency
to overestimate (underestimate) TC intensities when the target intensity is low (high). This
is not surprising, since the loss function of our model is MAE and could be generally
minimized by providing the mean TC intensity outputs. However, in view of the small
MAE and RMSE (both are slightly greater than that from validation data) values, the model
is skillful in predicting the TC intensity.

To conduct a comprehensive performance analysis, we also compared the proposed
model against those developed in other existing studies. The RMSE is presented in Table 1
since it was used as the evaluation indicator in these existing studies. ADT [45] has many
enhancements compared to its previous version and is used operationally by TC forecast
centers worldwide. However, it depends on the comprehensive application of multi-source
data, as well as objective analysis. The authors of [22,46] used the DAV technique and
infrared imagery to estimate TC intensity in the north Atlantic and the eastern North
Pacific basins, achieving RMSEs of 6.68 m/s and 6.55 m/s, respectively. The relatively
high RMSE values that were achieved by the DAV are probably caused by DAV signal
oscillations that do not occur in smoothed best track intensity estimates. The CNN-based
methods adopted various satellite images as input and achieved satisfactory performance.
For example, the RMSE ranges from 4.31 to 4.52 m/s in [26] and from 4.42 to 4.93 m/s
in [13]. The author of [14] utilized both 2D-CNN and 3D-CNN, and the the minimum
RMSE was reached at 4.27 m/s. In [25], the “DeepMicroNet” model achieved an RMSE of
4.93 m/s compared to the reconnaissance-aided best track intensity. Although the above
CNN-based methods outperform the DAV and ADT in terms of the RMSE, they extract
nonlinear features by blindly stacking multiple convolution layers, which may be affected
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without the interrelations of each feature and may introduce intensity estimation errors.
Note that by using residual connections and an attention mechanism, our model extracts
and reorders potential features more effectively, obtaining an RMSE as low as 4.06 m/s,
which is considered to be a satisfactory and comparable result.

Figure 6. Same as Figure 4a, but for the independent test data.

Table 1. Comparison with existing studies.

Model/Method Satellite Data/Channel RMSE (m/s) Reference

ADT IR, visible/PMW imagery 5.77 [45]
DAV GOES-12, IR (10.7 µm) 6.68 [46]

DAVT MTSAT, IR (10.7 µm) 6.55 [22]
DeepMicroNet DMSP, TRMM, Aqua AMSR-E etc. 4.93 [25]

CNN-TC GridSat, IR1, WV, PMW 4.31∼4.52 [26]
2D-CNN, 3D-CNN COMS MI, IR1, IR2, WV, SWIR 4.27∼5.82 [14]

TCICENet, TCICENet-S GMS, GEO, MTSAT, H-8, etc. 4.42∼4.93 [13]
VGG-ResNet-CBAM H-8 L2 cloud products 4.06 This study

4. Discussion
4.1. Interpretability of the Model

Similar to most DL methods, our model is also an “end-to-end” black box that is
unable to interpret the estimated results. Here, we use a so-called “feature map” to address
this disadvantage. It is known that convolution kernels (filters) are the main operators
for feature extraction in a CNN-based architecture; thus, we visualized the outputs from
the kernels of one convolutional layer to intuitively understand and interpret the forward
process of the model. Figure 7 exhibits 32 feature maps derived from the convolution
process of the first “Conv2D” layer (with a total of 32 filters). From Figure 7, we can
recognize various TC structures and related cloud band features directly. For example,
F1∼F10 describe the formation stages, development stages, and whirling patterns of TC
eye wall cloud bands. In terms of the outer wind bands and the middle spiral cloud
bands in F1∼F10, their shapes appear to be amorphous, presumably because (1) the CBAM
assigns distinct spatial attentions to them and (2) the various filters activate all of the pixels
differently. There are conspicuous outer wind bands and middle spiral cloud bands framing
F9∼F12 that have very high negative pixel values. The model seems to focus on outer wind
bands and TC eye wall bands while disregarding those marginal clouds (clouds around the
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edge of a storm) in F13∼F14, in the opposite of which is observed in F15∼F16. Moreover,
F21∼F27 also depict the intensification of middle spiral cloud bands and the storm’s inner
core structures, and F28∼F32 pay more attention to the outer wind bands. All of above
feature maps record the storm’s spiral patterns and symmetric structures exactly.

Figure 7. Visualization of the outcomes (after [−1,1] standardization) from the first convolutional
layer in Figure 3.

As CBAM is used in our model, it is important to determine how the feature maps
are activated by the five channel inputs (cloud products) and whether they act as further
indicators for cyclone intensity estimation. For example, the feature maps in F6∼F8,
F19∼F20, F25∼F27, and F31∼F32 show TC eye wall bands and inner core structures that
are associated with CLOT and CLTH; the feature maps in F15∼F16 have outer wind bands
that are associated with CLTT and CLTY; the feature maps in F1∼F5 and F21∼F24 depict
marginal clouds that are associated with CLTH and CLTY; and the feature maps in F13∼F14
have TC eye wall bands and outer wind bands that are likely associated with CLTH and
CLER, etc. Overall, it is hard to elaborate a direct link between each feature map and each
single cloud product due to various attentions that the CBAM pays to each input. However,
these diverse feature maps enable the model to represent complex aspects of TC intensity.

4.2. Initial Cloud Products under Different TC Intensities

Because our model uses five cloud products as the training inputs, it is important to
comprehend how these products work when estimating TC intensities. It is well known
that TC intensities are affected by many aspects, such as the size, structure, warm moist air,
convergence on the upper troposphere, divergence on the lower troposphere, convective
activity, wind shear, orographic effects, etc. [47–51]. In the visualized cloud products, the
well-organized structure of the cloud system and the decentration between convective
activity and the center of the TC are two important dynamic factors that reflect the strength
of the vorticity and vertical wind shear, respectively. In addition, the cloud type and
the cloud top temperature are two key thermal factors that reflect the development of
convective activity and the development of the TC’s inner core, respectively. Figure 8
shows initial cloud products for TCs with different intensities than those observed in the
independent test dataset.
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Figure 8. Initial cloud products and corresponding TCs.

Obviously, the TC intensity increases as the CLOT increases. In particular, there
are conspicuous spiral cloud bands in STY and SSTY when the CLOT is greater than
60 and 100 (unit: dimensionless), respectively. Additionally, empty areas (no clouds)
can be found around storm eyes. From TS to SSTY, the cloud systems become much
more highly organized (see CLOT, CLTH and CLER). The above analysis agrees with
our background knowledge that outer wind bands and spiral cloud bands might gather
abundant warm moist air and convective clouds, which intensify convective activities
and produce TCs. Additionally, from TS to SSTY, the values of both CLOT and CLTH
become higher, indicating the development of convective activity and the inner core of a
TC. Generally speaking, CLTT and CLTH are closely related to updraft and are indirectly
related to TC intensity. In the troposphere, stronger updrafts are more prone to lifting
convective clouds to the top, causing the cloud top temperature to decrease. Occasionally,
however, strong updrafts do not lead to strong TCs due to the inhibition of anticyclones
at high-level divergence. Considering that convective activities mainly occur in the areas
between the outer of TC eye wall and the spiral cloud band, it is not surprising that low
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CLTT but high CLTH values are centered in such areas, especially those areas in strong
TCs, such as in TY, STY, and SSTY. Moreover, The eyes of TCs can be found in the CLTH of
STS and SSTY, since downdrafts prevail around TC centers. In terms of CLER, it can reflect
moist air conditions to some extent. From weak TCs to strong TCs, the convective activities
become stronger, while their ring-like CLER values become more evident. This proves once
again that strong convective activity mostly takes place in the areas between the outer TC
eye wall and the spiral cloud band.

4.3. Cloud Product Composites on Overestimation and Underestimation

Here, we used cloud product composites to understand the model prediction behavior
(overestimation or underestimation). Figure 9 demonstrates the composites of four cloud
product channels from the independent test data. Intuitively, the underestimation cases
correspond to more vivid cloud products compared to overestimation cases. Different
cloud band outlines and inner cores of the storms are distinguished (especially for CLOT,
CLTH, and CLER) in the underestimation cases, but are not in the overestimation cases.
Overall, the underestimated TCs have deep and well-organized cloud system structures,
and the inner core structures are clear, which is the opposite in the overestimated TCs,
suggesting that the estimated TC intensity is highly related to the analog convective activity
and the inner core of the TC. According to the analysis in Section 4.2, most overestimations
(underestimations) occur in weak (strong) TCs, which correspond to vivid (assorted) cloud
products. The model’s performance is highly affected by initial cloud products.

Figure 9. Initial cloud products on overestimated (the first row) and underestimated (the second
row) intensities.

4.4. Further Discussion on the Model’s Architecture

The model’s architecture consists of a VGG network, residual learning, and CBAM. To
further illustrate the necessity of the designed architecture, we implemented several con-
trolled experiments (Table 2). As seen from the first three experiments, both VGG + CA and
VGG + SA have roughly the same number of parameters as that of VGG, with VGG + SA
having the longest running time. In terms of the MAE and RMSE, VGG + CA is marginally
superior to VGG, while VGG + SA produces a greater MAE and RMSE than VGG and
VGG + CA do. The above results demonstrate that the estimation performance is only
slightly improved when appending a channel attention module to the basic VGG but that it
degrades when appending the spatial attention module, indicating that the channel atten-
tion mechanism is more effective than the spatial attention mechanism. This is presumably
because the former concurrently derives “average pooling” and “maximum pooling” to
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determine which feature (upon channel axis) is more important, while the latter might
make up for the deficiency of the former by determining “where” the operator should
focus within each feature. Therefore, we can state that when using both the spatial and
channel attention modules (VGG + CBAM), the MAE and the RMSE reduce to 3.40 m/s
and 4.29 m/s, respectively, and the running time even decreases almost one time.

Another interesting finding from the last three architectures in Table 2 is that different
“skip connecting modes” performed differently. Res1, which connects only one convolu-
tional block (VGG + CBAM + Res1), is superior to Res2, which connects two convolutional
blocks (VGG + CBAM + Res2); although Res1 has a longer running time than Res2, the
number of parameters is substantially reduced; furthermore, both the MAE and RMSE
in Res1 are smaller than those in Res2. These phenomenon can be explained by the net-
work degradation effect. In a VGG network, based on the principle of “Data Processing
Inequality”, as the layer increases, some of the useful information included in the feature
maps gradually decreases. However, adding more residual learning modules (which can
be considered as an “identity mapping” process) will help the structure to retain more
useful information on each feature map; hence, when a skip connects longer steps, than less
running time is required than when a skip connects shorter steps, such as in Res2 versus
Res1. Additionally, note that, for a deep VGG network, the weights in some layers or nodes
are too small, subtly impacting the architecture. Therefore, adding appropriate residual
learning modules (which can be considered as a “pruning” process) will help to detach the
number of parameters in the back propagation of gradients and will further compress the
architecture. Hence, it is not hard to understand that Res2 occupies more parameters than
Res1 but that it also produces a greater MAE and RMSE. Furthermore, if Res1 and Res2 are
used concurrently (VGG + CBAM + Res1 + Res2), then the model only demonstrates slight
improvement compared to when Res2 (VGG + CBAM + Res2) or CBAM (VGG + CBAM)
are used alone. However, no improvement is observed when Res1 (VGG + CBAM + Res1)
is used alone. The above results suggest that residual learning blocks are favorable for
saving computational cost and for improving estimation performance. However, it does
not necessarily mean that some mindless residual learning modules would provide better
TC intensity estimations.

Table 2. Comparison of several DL architectures. Note: CA = channel attention; SA = spatial
attention; CBAM = CA + SA; Res1 and Res2 are two kinds of residual learning modules, such as
those shown in Figure 3. The running time is counted over one training epoch; the fifth architecture
(VGG + CBAM + Res1) with smallest MAE and RMSE is adopted by this study. All of the above
experiments codes are performed on the following environment: Python = 3.8, tensorflow = 2.4.1,
GPU = NVIDIA GeForce RTX 3090 with 24G video memory.

Architecture Num. of Parameters Running Time (s) MAE (m/s) RMSE (m/s)

VGG 3,478,241 138 3.62 4.62
VGG + CA 3,478,257 136 3.61 4.53
VGG + SA 3,478,260 145 3.81 4.80

VGG + CBAM 2,789,700 78 3.40 4.29
VGG + CBAM + Res1 301,444 114 3.23 4.06
VGG + CBAM + Res2 844,932 67 3.57 4.43

VGG + CBAM + Res1 + Res2 2,929,220 126 3.38 4.25

4.5. Case Study

Here, we choose two representative typhoon cases to examine the performance of the
model (Figure 10). The first typhoon, Higos, was generated on 16 August 2020 and made
landfall in southern Zhuhai at about 6:00 a.m., 19 August 2020. It was rapidly downgraded
to a strong tropical storm (STS) after 9:00 a.m. and then moved northwestwards at a speed
of 25 m/s. This typhoon caused huge losses over a short period of time. Our model slightly
overestimated the storm’s intensity (after landfall), with an MAE of 1.82 m/s, agreeing well
with the fact that the model has a tendency to overestimate TC intensity when the target
intensity is low (e.g., less than 30 m/s). The development after landfall is well captured.
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The second typhoon, Saudel, was generated on 19 October 2020, and its intensity increased
from 28 m/s (at 09:00 a.m., 22 October) to 33 m/s (at 14:00 p.m., 22 October) and was judged
as a rapid intensification typhoon (+5 m/s per 6-h). Our model successfully captures its
intensification feature with an MAE of 1.97 m/s. Note that though the model generally
tends to underestimate the TC intensity when the target intensity is high, for Saudel, it was
slightly overestimated.

Figure 10. Case study: the estimated results of the typhoons Higos (top) and Saudel (bottom).

5. Conclusions

In this study we propose a DL-based model for TC intensity estimation using the
H-8 L2 cloud products CLOT, CLTT, CLTH, CLER, and CLTY. The model uses VGG as
the basic architecture and integrates “attention mechanism” and “residual learning” to
reduce the number of parameters as well as to improve the estimation precision. The model
was trained and optimized under six-fold cross-validation data and was further evaluated
using independent test data. The following useful conclusions can be drawn:

(a) For cross-validation, the model behaves differently for different TC intensity inter-
vals. Generally, underestimation is seen in strong TCs, and overestimation is observed in
weak TCs. Over specific regions, biases in estimated intensities for landfall TCs have smaller
fluctuations than those for nautical TCs due to the imbalance in the recorded TC samples,
which may affect the model’s training and feature representation. For the independent test,
our model produced a relatively low RMSE of 4.06 m/s and an MAE of 3.23 m/s, which
are comparable to those determined from existing studies using Dvorak-based techniques
and various other CNN-based DL techniques.

(b) By visualizing the outputs from one of the convolutional layers, we were able
to clearly identify various cloud organization patterns, storm whirling patterns, and TC
structures, which helped the model represent the complex changes in the TC intensity
and produce reliable estimations. Moreover, the initial cloud products were able to reflect
some of the factors associated with TC intensity, such as warm moist air, convergence,
divergence, and convective activity. Furthermore, by examining the initial cloud products
under different intensity levels, we were able to determine that our model has a tendency
to overestimate (underestimate) weak (strong) TCs. Finally, the superiority of the model
designed in this paper is demonstrated through a comparison with other residual learning
and CBAM-based architectures.
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Overall, the proposed DL-based model is promising for TC intensity estimation and
future studies are highly needed to improve the model further. First, more satellite imagery
from different infrared bands, microwave bands, regions, and nighttime periods, as well
as TC best track data, ground, marine, and voyage observations should all be considered
to augment the model’s training samples [14,25,31] in order to improve the robustness of
the model. Second, because the TC intensity is affected not only by its size and structure
but also by ambient thermodynamic conditions and physical factors [52,53], future work
should consider more parameters such as surface temperature, water vapor, sea level
pressure, vertical wind shear, steering flow, etc. Third, the proposed architecture is tackled
as a feature extraction and regression task intended for TC intensity estimation. More DL
architectures (e.g., ConvLSTM, [54]) can be tried for spatial-temporal series regression tasks
in TC tracks or precipitation nowcasting in the future.
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