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Abstract: Deep learning (DL) is widely applied in the field of hyperspectral image (HSI) classification
and has proved to be an extremely promising research technique. However, the deployment of DL-
based HSI classification algorithms in mobile and embedded vision applications tends to be limited
by massive parameters, high memory costs, and the complex networks of DL models. In this article,
we propose a novel, extremely lightweight, non-deep parallel network (HyperLiteNet) to address
these issues. Based on the development trends of hardware devices, the proposed HyperLiteNet
replaces the deep network by the parallel structure in terms of fewer sequential computations and
lower latency. The parallel structure can extract and optimize the diverse and divergent spatial and
spectral features independently. Meanwhile, an elaborately designed feature-interaction module is
constructed to acquire and fuse generalized abstract spectral and spatial features in different parallel
layers. The lightweight dynamic convolution further compresses the memory of the network to realize
flexible spatial feature extraction. Experiments on several real HSI datasets confirm that the proposed
HyperLiteNet can efficiently decrease the number of parameters and the execution time as well as
achieve better classification performance compared to several recent state-of-the-art algorithms.

Keywords: lightweight; dynamic convolution; parallel structure; hyperspectral image; classification

1. Introduction

With continuous improvement to the accuracy of image acquisition equipment, the spec-
tral dimension of hyperspectral images (HSIs) has expanded greatly, which provides great
discrimination ability for the component analysis of materials and land covers, etc. There-
fore, the availability of abundant spectral–spatial information has allowed HSIs to be
widely used in various applications, e.g., Earth observation [1], military reconnaissance [2],
environmental protection [3], and resource management [4].

Numerous handcrafted features and traditional classifiers have been proposed over
the past decades. However, HSI data suffers from the “curse of dimensionality” prob-
lem, due to the extremely limited hyperspectral training samples [5]. Therefore, many
linear and nonlinear dimension reduction algorithms, such as band selection [6], principal
component analysis [7], independent component analysis [8], and the maximum noise
fraction [9] have been proposed to address this problem. Such algorithms employ feature
optimization to remove redundant features and improve classification performance. Tra-
ditional classifiers can be mainly divided into two categories, according to their feature
extraction characteristics: (1) spectral-based classification algorithms, such as support
vector machines (SVM) [10], K-nearest neighbor [11], multinomial logistic regression [12],
and random forest [13]; (2) spectral–spatial-based classification algorithms, e.g., SVM
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with composite kernels (SVMCK) [14], sparse representation-based classifiers [15], spatial–
spectral derivative-aided kernel joint sparse representation [16], and adaptive nonlocal
spatial–spectral kernels [17]. However, above-mentioned algorithms usually adopt hand-
crafted features in terms of the requirements of professional domain knowledge in the HSI
classification area.

In contrast, deep learning (DL)-based algorithms demonstrate automatic represen-
tative and abstract feature extraction due to the rapid iteration and GPU-based parallel
implementation. In the remote sensing field, DL-based algorithms also demonstrate ex-
tremely promising results. For instance, the stacked autoencoder [18] demonstrates the
effectiveness of DL models in abstract high-level semantic feature extraction. The restricted
Boltzmann machine and deep belief network [19] and unsupervised greedy learning al-
gorithms realize the DL of objects. With the development of DL, convolutional neural
networks (CNN) are widely used in HSI classification tasks. For example, Zhong et al.
proposed the spectral–spatial CNN-based algorithm (SSRN) [20] by combining 3D convo-
lutions and residual connections to realize robust HSI classification results. To refine the
feature fusion process, Gao et al. [21] performed multi-scale feature extraction and dense
feature fusion to expand the features of different levels and scales. Li et al. [22] proposed
a hierarchical homogeneity–attention network to consolidate the position supervision of
object regions and accelerate computation by reducing the number of similar operations.
In terms of the visual invariance of the CNN, input image visual transformation causes
drastic fluctuations in network performance. To address the issue of insufficient spectral–
spatial feature extraction, Zhang et al. [23] proposed a spectral–spatial attention fusion
with a deformable convolution residual network. The capsule network (CapsNet) was pro-
posed [24] to improve network robustness and preserve more efficient position information
that is omitted in traditional CNNs. Then, the deep convolutional capsule neural network
(DC-CapsNet) [25] introduced CapsNet in 3D convolution to enhance the robustness of the
learned spectral–spatial features. The generative adversarial network (GAN) has recently
demonstrated satisfying performance for alleviating the problem caused by an insufficient
number of labeled samples of CapsNet. However, it is difficult for GAN to model and pre-
serve the relative positions between features accurately. To eliminate the mode collapse and
gradient disappearance problem caused by traditional GANs, Wang et al. [26] developed a
dual-channel spectral–spatial fusion capsule GAN (DcCapsGAN) by integrating CapsNet
with a GAN. The progress of DL-based algorithms also exposed some challenging issues.
With the expansion in complexity of DL networks, though the performance improved
dramatically, the requirement of training samples and depths increase proportionally with
the complexity of the model and make it difficult to deploy on edge devices. Therefore,
realizations of an efficient DL structure with lower time costs and fewer training samples
are more requisite for improving the HSI classification performance; it is a more crucial
and applicable research task for mobile devices and in-orbit aerospace applications.

Recent research has revealed that neural networks with deep structures typically
exhibit higher nonlinearity capabilities and stronger function approximations when auto-
matically learning more abstract features [27]. However, deeper network structures also
give rise to the vanishing and exploding gradient problems. Recent studies have indicated
that a class of widened ResNets is far superior than their deep counterparts [28]. Shallow
network structures with high parallelizations tend to provide fast responses and low latency.
In addition, Wu et al. proved that a well-designed shallow neural network can outperform
many deep neural networks [29], and recent empirical work has further indicated that
obtaining the best accuracy requires a balance of depth and width [30]. However, most
of these previous studies only focused on networks with linear and sequential structures.
Conversely, in [31], it is found that the performance of a shallow network with a parallel
structure is similar to that of the deep network. Therefore, compared to deep networks
with more sequential processing and higher latency, the parallel shallow networks are more
suitable for the hardware applications and deployment [31].
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On the other hand, compressing a well-trained complex model or learning a lightweight
model with carefully designed network structures are the current mainstream methods
to handle the network efficiency problem caused by CNN-based algorithms. Network
operating efficiency is primarily affected by the following four components: the number of
parameters, the number of computations, memory access, and memory usage. The main
design principle of a lightweight network architecture model can be mainly divided into
the convolutional level, the convolution operator level, and the computation method:

(1) In the convolutional level: Redesigning the convolutional level primarily involves
small-size convolution kernels, a bottleneck layer, and channel concatenation. For example,
SqueezeNet [32] replaces 3× 3 convolution with 1× 1 convolution, reduces the number
of input channels in the squeeze layer, and concatenates two sets of convolution output
channels to obtain the target number of output channels to reduce network complexity.

(2) In the convolution operator level: Standard convolution has the inherent properties
for global spacial and channel feature extraction. ShuffleNet V1 [33] limits the convolution
operation to each group and performs a channel shuffle to promote the flow of information
between groups. This is equivalent to decomposing the global channel feature extraction
process into a local channel feature extraction and channel shuffle process. Furthermore,
the depthwise separable (DW) convolution completely separates the space and channel
feature extractions. From the implementation perspective, DW convolution can be consid-
ered as a special case of group convolution. The MobileNet family has successfully applied
DW convolution and recently made a series of improvements [34–36]. Subsequently, dif-
ferent from DW convolution, Ghost [37] performs a one-to-many mapping output of a
single feature map. In addition to channel decomposition, standard convolution can be
further decomposed in spatial dimensions. For example, Zhang et al. [38] developed a
compact convolution module to divide the input feature maps into groups and perform
cyclic recursive feature extraction in each group. Compared to the channel-specific and
spatially-agnostic nature of convolution, Involution [39] involves a spatially-specific and
channel-agnostic operation that is distinct in the spatial extent but shared across channels.
However, extremely low computational costs are likely to cause significant performance
degradation. To address this problem, MicroNet [40] integrates sparse connectivity into
convolution and constructs a dynamic activation function, i.e., dynamic shift max.

(3) In the computation level: Current CNNs primarily rely on multiplication oper-
ations, which are more computationally complex than addition operations. To address
this issue, AdderNets [41] replaces massive number of multiplication operations in CNNs
with less-expensive addition operations to reduce computational costs. Note that most
of the aforementioned algorithms are based on the parameter and computation as model
design indicators, and the actual acceleration effect is inferior to the theoretical analysis
value. Shufflenet V2 [42] deeply analyzes the influence of different elements, e.g., memory
access cost. Therefore, in addition to theoretical indicators, more attention should be paid
to the actual time costs on equal hardware. The superiority of the lightweight structures
has also been confirmed in the HSI classification tasks. Zhang et al. [43] proposed 3-D-
LWNet, which has a deeper network structure and exhibits better classification performance
than conventional 3D-CNN models. In addition, LWCNN [44] employs spatial–spectral
Schroedinger eigenmap (SSSE)-based feature extraction and a dual-scale convolution mod-
ule. The former reduces dimensions, and the latter address the SSSE features from a 1D
vector viewpoint to reduce the number of parameters. Based on the conclusions of a neural
architecture search [45], LMAFN is proposed to combine Ghost and ECA modules for
further achieving efficient feature extraction performance [46]. LiteDepthwiseNet [47] used
3D depthwise convolution to reduce the number of parameters as well as remove the ReLU
layer and batch normalization layer in the original 3D depthwise convolution to improve
the overfitting phenomenon of the model on small-sized datasets.

Considering that compact lightweight models still achieved comparable or even better
performance with fewer parameters, a lightweight model indicates more effective repre-
sentative knowledge capacity than traditional DL models. However, blindly reducing
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model size can easily lead to knowledge degeneration, which contradicts the purpose
of the lightweight design. To address this issue, CondConv [48] embeds multiple sets
of convolution kernels in the convolutional layer and adaptively combines the weights
according to the input, which is equivalent to learning specialized convolutional kernels
for each example in terms of increasing network capacity while maintaining inference
efficiency. To reorganize multiple sets of static convolution kernels according to the in-
put, DYNet [49] performs a low-redundancy and efficient dynamic convolution to avoid
redundant calculations and similar feature generation while maintaining a lightweight
structure and efficient inference ability. Moreover, the study finds that dynamic networks
can address domain conflicts by aggregating residual matrices and a static convolution
matrix [50].

In the HSI classification area, the limited availability of labeled samples hinders the
classification accuracy and optimization performance of DL. Therefore, recently, few-shot
learning [51], domain adaptation [52], transfer learning [53], and meta learning [54] have
been gradually proposed to address this issue. For example, Li et al. [55] proposed DCFSL,
which utilizes a conditional adversarial domain-adaptation strategy to overcome domain
shift and achieve domain distribution alignment. In addition, AMF-FSL [56] transfers the
learned classification capabilities from multiple source data to the target data. To realize the
promising performance with limited labeled samples, the above DL methods are generally
based on complicated network structures and learning strategies. Therefore, an efficient
network model that can obtain effective classification results with limited labeled samples
is required. Intuitively, a lightweight model can also mitigate the requirements for the
quantity of labeled samples to a certain extent.

Based on the above-mentioned knowledge, and aiming at realizing high efficiency and
performance at lower computation cost, a HyperLiteNet is proposed and designed in this
paper, which is an extremely lightweight non-deep parallel network. In the proposed Hy-
perLiteNet, a parallel shallow narrow network is constructed to reduce network complexity
and execution cost, where a parallel dual-branch structure is employed to enhance the
nonlinearity of network and the capability of feature extraction. In addition, the spatial fea-
tures and spectral features are extracted via a parallel dual-branch structure to, respectively,
promote the diversity and divergence of the extracted features. As the main components
of the dual-branch structure, lightweight pointwise convolution units and lightweight
dynamic convolution units are constructed to further reduce the network’s complexity.
In addition, the introduction of dynamic modules enables more elastic mapping with the
input sample to generate compact and representative features. The experimental results
confirm that the proposed HyperLiteNet outperforms other comparison algorithms with
an extremely low number of parameters and high execution efficiency.

The remainder of this paper is organized as follows. Section 2 presents the proposed
HyperLiteNet in detail. Experimental validation of the proposed HyperLiteNet compared
to existing algorithms, including parameter analysis, classification results, classification effi-
ciency, and accuracies, are presented in Section 3. Some experimental results are discussed
in Section 4. Finally, conclusions are presented in Section 5.

2. Proposed Methods

The overall framework of the proposed HyperLiteNet is shown in Figure 1. The pro-
posed HyperLiteNet can be roughly divided into five main components: (1) the parallel
interconnection module (PIM); (2) the pointwise convolution branch (PCB) to extract spec-
tral features; (3) the dynamic convolution branch (DCB) to extract spatial features; (4) the
feature interconnection module (FIM); (5) the classification module (CM). In summary,
the specific spectral and spatial features are extracted independently by the PCB and the
DCB, respectively. Then, the spectral–spatial features are fused by the FIM and classified by
the CM module. The details of different components are illustrated in the following parts.
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Figure 1. (a) The overall flowchart of HyperLiteNet. The five main parts: parallel interconnection
module (PIM), pointwise convolution branch (PCB), dynamic convolution branch (DCB), feature
interconnection module (FIM), and classification module (CM); (b) pointwise convolution (PW) units
with different numbers of convolution kernels; (c) dynamic convolution (DC) unit; (d) fully connected
layer (FC); (e) global average pooling (GAP); (f) feature interconnect (FI) structure.

2.1. Parallel Interconnection Module (PIM)

The PIM is the primary component of the proposed HyperLiteNet, where the parallel
structure contains more nonlinear activation layers than a serial structure at the same
depth. The paralleled shallow structure realizes an efficient nonlinear activation ability to
extract abstract high-level features through utilizing PCB and DCB structures. With the
reduced network depth, the vanishing and exploding gradient problems are mitigated
in the PIM. This dual-branch structure is adopted to extract abstract spectral and spatial
features independently and in a parallel manner through an extremely shallow network
structure. As a result, due to the task decomposition of the PCB and DCB, fewer channels
are established by the PIM in each branch than traditional spectral–spatial combination
networks. Therefore, the network structure can be efficiently compressed in a compact,
parallel manner with a lighter structure and better feature extraction. The structure of the
PIM is mainly composed of three stages (stage1, stage2, stage3), which extract shallow pixel-
level features, mid-level features, and deep high-level features, respectively. The features
extracted in each stage are fused at the tail of each stage and then input to the next stage to
further increase the discriminativeness of the extracted features. Meanwhile, each stage
contains two pointwise convolution (PW) units and one depthwise separable dynamic
convolution (DC) unit. In the feature extraction process, the PCB and DCB comprise
lightweight PW and DC units, respectively. Therefore, the spectral and spacial feature can
be extracted in a parallel manner to accelerate execution efficiency. Further, for combining
and fusing the spectral and spatial features at different stages, the FIM is designed to
connect each stage to the subsequent stage. The entire structure provides a compact and
efficient parallel method to extract and fuse the spectral and spatial features with a small
number of parameters and low computational cost.
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2.2. Pointwise Convolution Branch (PCB) and Dynamic Convolution Branch (DCB)
2.2.1. Pointwise Convolution Branch (PCB)

As shown in Figure 2a, lightweight PW units are employed in the PCB to extract
spectral features. Here, only continuous spectral features are processed at a certain point
in the feature map. The PCB is concentrated to effectively extract spectral distinguishing
features. The pointwise (PW) convolution is calculated as follows:

oc,ij = wc ⊗ xij (1)

where xij ∈ R1×1×Cin is the spectral vector at the (i, j) of the input features. wc ∈ R1×1×Cin is
the c-th PW convolution to convolve with xij for obtaining the output oc,ij ∈ R1, where oc,ij is
the value at (i, j) in the c-th channel of the output. It can be seen from the calculation process
that the PW convolution is essentially a weighted summation of the spectral vectors of the
input features. The procedure intensifies the channels that contributed more discriminant
information with a dynamic learning process, which can indicate more satisfying effects
and efficiency than traditional band-selection algorithms.

Figure 2. (a) PW units with the pointwise convolution, BN, and ReLU6. Convert the number of x
channels from input channels to 64 (upside); convert the number of input features channels from 64
to 64 (underside). (b) Spectral vectors at a certain point in the l-th layer and the l + 1-th layer.

2.2.2. Dynamic Convolution Branch (DCB)

In traditional convolution, all input samples are treated equally to the convolution
kernel, and the parameters of the convolution kernel are determined after the training
process in a static network manner. Differing from static networks, dynamic networks
attempt to adjust the network structure adaptively and dynamically according to the varied
inputs. Therefore, for different inputs, a dynamic network can deform the network structure
corresponding to the local areas, which efficiently improves the robustness and knowledge
capacity of the network with low latency. The introduction of a dynamic network enables a
more elastic mapping. Define the network convolutions in Figure 3a as follows:

W̄ = W + Ŵ (2)

where W ∈ Rk×k×Cin×Cout and Ŵ ∈ Rk×k×Cin×Cout are the static convolution kernel and the
dynamic convolution kernel, respectively. Cin and Cout are the number of input channels
and the number of output channels. If W is ignored, W̄ is equivalent to Ŵ.
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(a) (b)

(c)

Figure 3. Adaptive dynamic convolution. (a) Dynamic module composed of the static convolution
kernel W and the dynamic convolution kernel Ŵ. Ŵ realizes subspace routing based on the input
adaptive α. If W is ignored, W̄ is equivalent to Ŵ. (b) Standard dynamic convolution Ŵ implementa-
tion. ⊗ refers to the convolution operation. ~ is the input adaptation. The adaptive importance α

multiplied by the features is equivalent to path selection based on different input samples. (c) DW
dynamic convolution implementation. (Both BN and ReLU6 are ignored.)

The structure of the standard dynamic convolution is shown in Figure 3b, where
the multi-group parallel standard convolutions extract features independently. Then,
the extracted features are adjusted dynamically through each attention dynamic unit.
The multi-group features are dynamically fused by a dynamic fusion unit. Essentially,
the dynamic fusion unit reorganizes multi-group standard dynamic convolutions with
different weights. The standard dynamic kernel can be generated by the following formulas:

ŵc =
g

∑
i

αi
c ·wi

c (3)

where c = 0, . . . , Cout and i = 0, . . . , g are the output channels and number of static
convolution kernel groups, respectively. α represents the importance weights of different
sets of static convolution kernels based on the input. wi

c ∈ Rk×k×Cin indicates the c-
th convolution kernel of the i-th static convolution. Based on the linear combination
characteristic of convolution, the dynamic convolution output can be mathematically
represented as:

Ôc = ŵc ⊗ X =
g

∑
i
(αi

c ·wi
c)⊗ X =

g

∑
i
(αi

c ·wi
c ⊗ X)

=
g

∑
i
(αi

c · (wi
c ⊗ X)) =

g

∑
i
(αi

c · oi
c)

(4)
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where the output Ôc of the dynamic convolution kernel can be expressed as a linear
combination of the output Oi

c of the static convolution kernel.
Further, for realizing the design of the lightweight structure, we adopt the lightweight

DW dynamic convolution as the primary component of the DC unit in Figure 3c. Specifi-
cally, the parameter definition is different in the realization of the DW dynamic convolution.
wi

c ∈ Rk×k×1 indicates the c-th channel of the i-th static DW convolution due to the char-
acteristic of DW convolution. Compared with the standard dynamic convolution, DW
dynamic convolution realizes the single-channel-level dynamic fusion to further decom-
pose and refine the dynamic convolution. In addition, we further analyze the DW dynamic
convolution from the perspective of parameters and calculations. Assume the standard con-
volution WS ∈ Rk×k×Cin×Cout and the DW dynamic convolution WDW ∈ Rk×k×Cout×Cout×g.
The PW convolution adjusts the number of channels in the DW dynamic convolution. Ig-
noring the input adaptive correlation calculation, the reduced computation and parameters
effect can be written as follows:

k× k× Cout × s× s× g + Cin × Cout × s× s
k× k× Cin × Cout × s× s

=
g

Cin
+

1
k2 ≈

1
k2 (Cin � g)

(5)

where s is the space size of the feature map.
Compared to the traditional standard convolution, the diversity and spatial differences

of the spatial characteristics can be extracted flexibly and enhanced by the dynamic module.
In addition, the DCB realizes the potential for reducing the number of parameters and
computations, which improves the efficiency of the network operations.

2.3. Feature Interconnection Module (FIM) and Classification Module (CM)

The function of FIM is to fuse the spectral and spatial features of the two branches and
feed the fused features to the next stage of the network. Here, suppose the input spectral
and spatial features in stage3 are defined as XP6 and XD3 , respectively. The calculation
process of FIM is determined by the following formula:

XFIM3 = XP6 + XD3 (6)

For the CM, the PW unit progressively reduces the number of channels and prevents
the sharp reduction in the number of channels for avoiding the feature information loss.
In this module, we utilize cross entropy as the loss function for HSI classification. The cross
entropy loss can be represented as:

Loss = − 1
N

N

∑
n=1

C

∑
c=1

yn
c log(ŷn

c ) (7)

where C indicates the number of classes, yn
c and ŷn

c are the truth and predicted labels,
respectively, and N is the number of samples in a minibatch.

3. Experiments and Analysis

In this section, we mainly evaluate our proposed frameworks on three real HSI datasets.
The experimental settings and results, including parameters analysis and evaluation metrics
are illustrated. Finally, the comparison result with the existing algorithms are analyzed and
discussed in this section.

3.1. Datasets Descriptions

The Indian Pines (IN) dataset was captured in 1992 over the Indian Pines agriculture
experimental area by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor.
The IN dataset has 220 bands with a wavelength range from 0.4 to 2.5 µm, and with
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145× 145 pixels. Note that 20 bands of noisy or water-absorption regions are removed in
our experiments. The IN dataset contains 16 different ground-truth classes. The three-band
false-color composite of the IN images and the corresponding ground-truth data are shown
in Figure 4.

The University of Pavia (UP) dataset was collected in 2001 over the Pavia univer-
sity campus through the Reflective Optics System Imaging Spectrometer (ROSIS). The UP
dataset has 115 bands with a wavelength range from 0.43 to 0.86 µm, and with 610× 340 pix-
els. Note that 12 bands of noisy or water-absorption regions are removed in our experiments.
The UP dataset contains nine different ground-truth classes. The three-band false-color
composite of the IN images and the corresponding ground-truth data are shown in Figure 5.

The Salinas (SA) dataset was gathered over the Salinas Valley in California by the
AVIRIS sensor. The SA dataset has 220 bands with a wavelength range from 0.36 to 0.5 µm,
and with 512× 217 pixels. Note that 20 bands of noisy or water-absorption regions are
removed in our experiments. The SA dataset contains 16 different ground-truth classes.
The three-band false-color composite of IN images and the corresponding ground-truth
data are shown in Figure 6.

(a) (b) (c)

Figure 4. IN. (a) False-color image. (b) Ground-truth map. (c) Ground-truth classes.

(a) (b) (c)

Figure 5. UP. (a) False-color image. (b) Ground-truth map. (c) Ground-truth classes.

3.2. Experimental Configuration and Parameter Analysis
3.2.1. Experimental Configuration

The experimental configuration is as follows: an Intel Xeon W-2123 CPU at 3.60 GHz
with 64-GB RAM and an NVIDIA GeForce GTX 2080 Ti graphical processing unit (GPU)
with 11-GB RAM were used. The software environment includes a 64-bit Windows 10
system and the Pytorch 1.6.0 DL frameworks. Here, the learning rate is set to 0.0001,
and the Adam optimizer is used with a batch size of 72. In addition, five labeled samples
are randomly selected from each class as a training set for each HSI. To avoid the inclination
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in random sampling, the evaluated mean value is reported for parameter analysis and
classification result comparison with ten random repetitions.

(a) (b) (c)

Figure 6. SA. (a) False-color image. (b) Ground-truth map. (c) Ground-truth classes.

3.2.2. Experimental Parameter Analysis

To evaluate the effectiveness of the proposed HyperLiteNet, we mainly evaluate the
effect of the number of kernels (extracted channels), the quantity of parameters, and the
training epoch. We first analyze the effect for the number of kernels in each conventional
layer. The number of kernels in each layer is selected from {16, 32, 48, 64, 72, 96, 128} for
each dataset. The effect analysis results are illustrated in Figure 7a,b; we can notice that
the number of 16 kernels, corresponding to the least number of parameters, presents the
worst performance for all experimental datasets. The overall accuracy (OA) gradually
increased with the increasing number of channels. Compared to 128 channels, we observe
from Figure 7a that 16 channels obtain lower OA with the same number of training epochs
(4000). It is notable that the increasing number of channels can improve the classification
accuracy significantly. However, when the number of convolution kernels exceeds a
certain threshold, the performance gradually increases to a stable value. The excessive
number of convolution kernels brings additional an parameter burden without beneficial
effects on performance. The aforementioned data analysis indicates that the limited model
performance and difficult model optimization phenomenon exist in low-parameter models.
Therefore, the optimal parameters acquired from the above-mentioned analysis are utilized
in the following comparison experiments.

(a) (b) (c)

Figure 7. Effect analysis for the number of convolution kernels, the number of parameters, and the
training epoch. (a) OA corresponding to different channel numbers (4000 epochs). (b) Parameters
corresponding to different channel numbers. (c) OA corresponding to different training epochs
(64 channels).
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Because of the correlation between time costs and model convergence, we evaluate
OA under different numbers of training epochs to achieve a balance between time costs
and performance, where training epochs are a varied set from 50 to 4000 with step 200.
The analysis results are presented in Figure 7c. We can notice that the proposed model
reaches a stable and exceptional OA after 2000 epochs. Moreover, MiniNet achieves
acceptable results in 1000 epochs. Considering the necessity of adequate training, 4000 is
chosen as the number of training epochs in the following experiment.

3.3. Ablation Study for DW Dynamic Convolution

To verify the proposed effectiveness of the DW dynamic convolution (DC), we compare
the proposed DC with standard convolution (SC) (3× 3 convolution kernel is applied),
and multi-scale convolution (MSC) (3 × 3 and 5 × 5 convolution kernels are applied).
The comparison results are illustrated in Table 1. It is obvious that the DC improves the
classification performance while effectively compressing the model size. In addition to
quantitative analysis, the t-SNE feature visualization technology is further exhibited to
qualitatively analyze the differences between the three convolutions in Figure 8. The blue
dotted line indicates the comparison between DC and SC, and the red dotted line represents
the comparison between DC and MSC. From Figure 8a–c, we can observe that the dotted
line in Figure 8a has a higher concentration and purity ratio. This phenomenon also
appeared in Figure 8g–i. The red dotted area in Figure 8d,g exhibits better concentration
than Figure 8f,i. Moreover, it is roughly observed that the distinction between the red
and green cluster in the blue dotted rectangle region for Figure 8d is inferior to Figure 8e.
Meanwhile, in real classification investigations, there are many misclassified samples in
these two classes for Figure 8d,f, which further indicates that these two classes are more
indistinguishable in real classification tasks. Overall, from the t-SNE feature visualization,
as illustrated in Figure 8, the DC achieves a more distinguishable and recognizable feature
extraction capability.

Table 1. Model performance analysis (OA) and parameters (P) with different convulution types.
(1) DC: depthwise separable dynamic convolution; (2) SC: standard convolution; (3) MSC: multi-scale
convolution.

Type
Metric OA P OA P OA P

DC 75.75 ± 3.25 59,658 85.89 ± 4.60 51,939 90.70 ± 1.76 59,914

SC 75.19 ± 3.16 153,840 83.96 ± 4.88 146,121 90.35 ± 2.07 154,096

MSC 75.34 ± 3.62 461,616 83.11 ± 3.89 453,897 88.72 ± 4.21 461,872

Dataset IN UP SA

3.4. Classification Accuracy and Performance

In this part, we compare the proposed HyperLiteNet with six comparable meth-
ods: two traditional methods, SVM and SVMCK, and four deep learning-based methods,
SSRN, LMAFN, DcCapsGAN, and DCFSL. The SVM only extracts spectral features, and
the SVMCK further introduces spatial features for classification. The SSRN is a classic
method using 3D convolution for HSI classification. The DcCapsGAN combines the capsule
network and GAN to enhance the model robustness. Based on the lightweight character-
istics of the proposed HyperLiteNet, we also compared it with the LMAFN. In order to
test the effectiveness of proposed HyperLiteNet under the condition of limited labeled
samples, we further compared the proposed HyperLiteNet with the few-shot learning
method DCFSL. The quantitative experimental results of different methods are shown
in Tables 2–4. The metrics include overall accuracy (OA(%)), average accuracy (AA(%)),
kappa (KP(%)), the number of parameters (PA), floating point operations (FLOPs (M)),
training time (Train(s)), and test time (Test(s)).
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(a) IN for DC (b) IN for SC (c) IN for MSC

(d) UP for DC (e) UP for SC (f) UP for MSC

(g) SA for DC (h) SA for SC (i) SA for MSC

Figure 8. 2D t-SNE feature visualization for different convolution types on three datasets. The corre-
sponding colored dotted lines are used in the figure to indicate representative differences. (a) IN for
DC; (b) IN for SC; (c) IN for MSC; (d) UP for DC; (e) UP for SC; (f) UP for MSC; (g) SA for DC; (h) SA
for SC; (i) SA for MSC.

Table 2. Classification results (%) on the IN dataset (five labeled samples per class). The best
performance values are marked in bold.

Class SVM SVMCK SSRN LMAFN DcCapsGAN DCFSL HyperLiteNet

1 83.17± 10.32 94.63± 3.75 45.60± 21.99 99.51± 0.98 100± 0.00 93.17± 9.05 99.76± 0.73
2 28.09± 9.09 51.33± 11.37 64.03± 11.93 55.85± 11.61 50.50± 0.29 43.25± 9.14 61.33± 15.75
3 37.53± 10.10 51.25± 6.99 63.89± 14.14 67.82± 9.63 44.36± 0.10 53.82± 4.95 69.95± 7.97
4 59.18± 11.14 88.71± 11.50 44.11± 15.82 90.60± 8.90 46.70± 0.54 78.19± 18.67 93.41± 8.93
5 67.91± 9.21 64.16± 12.82 78.58± 12.99 80.94± 7.47 65.06± 0.17 72.53± 6.42 81.72± 8.07
6 72.43± 13.84 63.03± 15.13 90.83± 7.92 94.52± 3.56 83.77± 0.07 85.31± 9.64 96.40± 2.53
7 90.00± 5.52 98.70± 1.99 31.90± 14.60 100± 0.00 100± 0.00 98.70± 3.91 100± 0.00
8 67.51± 15.56 96.62± 3.86 97.58± 3.86 93.78± 9.86 80.20± 0.20 86.89± 11.06 95.88± 7.87
9 91.33± 13.35 96.00± 8.00 25.50± 15.94 100± 0.00 100± 0.00 99.33± 2.00 100± 0.00

10 53.58± 14.38 57.61± 6.27 57.57± 9.91 69.51± 8.70 62.36± 0.22 62.53± 7.68 71.98± 7.57
11 36.12± 15.10 53.05± 14.20 69.27± 7.80 62.73± 11.90 65.02± 0.13 58.45± 8.90 64.12± 12.27
12 34.32± 9.08 69.46± 12.03 51.80± 16.10 69.37± 13.83 48.58± 0.32 45.90± 7.84 69.12± 15.96
13 88.00± 6.34 95.20± 7.96 88.56± 15.34 99.05± 1.60 99.01± 0.00 98.40± 3.49 98.50± 1.75
14 61.27± 12.99 71.52± 12.69 95.24± 5.47 88.13± 10.50 94.89± 0.19 82.02± 9.45 89.61± 9.64
15 28.69± 7.84 73.78± 10.15 65.58± 14.58 76.93± 17.21 35.61± 0.75 76.09± 11.54 86.25± 12.16
16 89.20± 6.37 98.52± 2.16 70.83± 18.10 99.32± 1.04 98.86± 0.24 97.95± 4.09 98.75± 2.00

OA 47.45± 5.32 62.74± 5.60 67.10± 3.24 73.41± 3.95 65.57± 0.03 64.96± 2.03 75.75± 3.25
AA 61.77± 3.20 77.01± 4.00 65.05± 2.96 84.26± 1.91 73.43± 0.04 77.03± 0.86 86.05± 1.50
KP 41.67± 5.38 58.46± 6.05 63.00± 3.49 70.08± 4.37 60.94± 0.03 60.65± 2.08 72.71± 3.50
PA − − 346,784 161,451 33,521,328 4,270,121 59,658

Flops (M) − − 110.245 7.369 433.220 − 2.920
Train(s) − − 436.20 281.83 2394.88 2629.22 80.84
Test(s) − − 31.38 1.43 11.51 2.21 0.24
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Table 3. Classification results (%) on the UP dataset (five labeled samples per class). The best
performance values are marked in bold.

Class SVM SVMCK SSRN LMAFN DcCapsGAN DCFSL HyperLiteNet

1 49.41± 13.47 55.21± 11.76 96.30± 2.20 75.68± 11.73 36.40± 4.74 74.94± 17.10 86.64± 6.63
2 44.45± 14.50 56.70± 11.93 96.42± 3.57 77.49± 14.00 74.92± 0.52 85.96± 8.44 80.62± 12.13
3 62.34± 18.77 71.77± 8.74 61.35± 8.69 68.64± 15.32 77.94± 1.21 62.43± 12.45 87.40± 7.65
4 86.33± 11.81 93.46± 5.50 76.77± 18.53 96.21± 5.48 98.29± 0.11 91.62± 5.01 92.94± 6.24
5 96.19± 6.99 99.57± 0.22 99.19± 1.20 99.45± 0.87 100± 0.00 99.25± 0.95 99.57± 0.79
6 52.54± 13.28 71.86± 15.90 62.92± 12.21 79.36± 16.01 54.15± 0.38 71.07± 10.49 88.07± 9.58
7 73.50± 21.41 94.42± 2.07 77.03± 15.96 92.33± 7.52 98.04± 0.43 77.69± 8.81 98.29± 2.36
8 49.04± 15.44 72.46± 12.68 74.35± 12.96 80.18± 20.70 69.86± 2.33 68.16± 11.62 89.12± 11.37
9 93.68± 7.54 86.69± 7.78 99.25± 0.69 97.07± 5.68 100± 0.00 99.03± 1.41 97.29± 4.14

OA 54.05± 6.35 66.15± 5.95 82.03± 3.31 80.15± 6.04 69.94± 0.90 80.66± 4.02 85.89± 4.60
AA 67.50± 3.37 78.97± 3.36 82.62± 3.07 85.16± 3.29 78.84± 0.65 81.13± 2.70 91.11± 2.25
KP 44.90± 5.99 58.52± 6.41 77.24± 3.76 74.87± 6.97 62.29± 1.07 74.92± 4.81 82.03± 5.38
PA − − 199,153 153,060 21,468,326 4,259,294 51,939

Flops (M) − − 54.178 7.001 342.850 − 2.553
Train(s) − − 139.12 216.60 766.54 1593.04 79.47
Test(s) − − 73.67 4.78 22.17 7.11 0.70

Table 4. Classification results (%) on the SA dataset (five labeled samples per class). The best
performance values are marked in bold.

Class SVM SVMCK SSRN LMAFN DcCapsGAN DCFSL HyperLiteNet

1 97.45± 1.70 98.73± 0.87 98.49± 4.51 97.74± 2.37 97.72± 1.11 99.25± 1.05 98.65± 2.48
2 95.89± 2.99 93.76± 7.00 99.44± 0.88 90.74± 12.57 99.95± 0.00 99.62± 0.30 95.92± 10.14
3 69.86± 17.07 71.02± 17.71 96.29± 1.53 85.40± 13.74 100± 0.00 89.48± 13.06 91.16± 10.05
4 98.42± 2.40 99.63± 0.18 95.86± 3.51 99.83± 0.19 99.86± 0.00 99.29± 0.48 99.73± 0.40
5 94.36± 5.00 96.61± 2.09 97.08± 2.28 94.54± 3.57 95.57± 0.11 91.55± 2.85 93.03± 11.65
6 99.21± 0.29 99.50± 0.12 99.78± 0.34 99.63± 0.67 100± 0.00 99.20± 0.79 99.57± 0.59
7 98.36± 1.50 97.59± 2.03 99.29± 1.04 99.86± 0.10 99.83± 0.00 99.13± 1.14 99.96± 0.07
8 58.39± 13.63 61.67± 13.65 82.17± 5.25 63.25± 14.20 61.66± 0.52 74.96± 11.32 78.79± 9.25
9 96.28± 0.46 95.61± 3.00 99.10± 0.68 99.57± 0.70 99.87± 0.00 99.44± 0.73 99.67± 0.68
10 76.97± 6.46 83.15± 6.71 90.97± 3.72 85.47± 13.79 79.71± 0.16 84.36± 5.98 90.82± 4.19
11 93.88± 3.43 91.83± 8.65 93.08± 2.84 99.10± 0.95 98.28± 0.09 97.38± 2.21 99.20± 0.77
12 82.39± 19.68 93.11± 9.79 97.65± 3.94 99.53± 0.75 99.90± 0.04 98.55± 1.82 98.69± 1.29
13 97.65± 0.75 97.86± 0.79 92.87± 7.42 98.97± 2.27 99.74± 0.05 99.20± 0.47 99.58± 0.38
14 89.92± 5.11 91.61± 3.66 92.73± 10.92 98.07± 1.23 99.41± 0.04 98.48± 1.78 97.29± 5.03
15 59.13± 16.60 66.76± 16.26 64.45± 7.39 69.89± 17.11 38.65± 1.63 74.50± 6.53 78.39± 14.47
16 85.03± 6.05 83.17± 5.96 99.55± 0.63 93.88± 6.07 97.71± 0.07 87.56± 8.17 93.53± 6.70

OA 80.55± 2.29 82.95± 2.08 88.95± 2.03 85.51± 2.47 82.07± 0.19 88.79± 2.48 90.70± 1.76
AA 87.04± 2.43 88.85± 1.89 93.67± 0.83 92.22± 2.03 91.74± 0.14 93.25± 1.66 94.62± 1.13
KP 78.43± 2.53 81.09± 2.30 87.74± 2.23 83.93± 2.71 80.17± 0.20 87.55± 2.73 89.67± 1.96
PA − − 352,928 161,707 34,627,364 4,270,521 59,914

Flops (M) − − 112.178 7.382 1274.300 − 2.933
Train(s) − − 398.63 206.90 2585.84 2574.94 79.98
Test(s) − − 178.85 5.50 13.59 10.29 1.20

From Tables 2–4, we can observe that, in most cases, the accuracy of SVM and SVMCK
are inferior to DL-based methods. In terms of the spectral–spatial information involved in
SVMCK, which presents higher classification accuracy than SVM, data-driven characteris-
tics and nonlinearity fitting of CNNs can approximate any function, which facilitates the
extraction of discriminant features. Therefore, most of the DL-based models in this paper
perform better than traditional SVM and SVMCK methods. The implementation of 3D
convolution is consistent with the continuity of the HSI spectral curve. Therefore, the SSRN
obtains relatively stable classification performance on most datasets. Our previous research
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work presents LMAFN based on a lightweight design, which achieves the best operating
efficiency among all comparable DL-based methods. The ingenious combination of the
GAN and capsule network promotes the robustness of the DcCapsGAN. However, the huge
number of parameters in the capsule network also becomes a significant burden for Dc-
CapsGAN. The DCFSL obtains acceptable numerical indexes with low efficiency based
on conditional adversarial domain daptation strategy. Compared with LMAFN, we can
observe from Tables 2–4 that the proposed HyperLiteNet further compresses the quantity of
parameters and greatly improves network efficiency, which is beneficial to the deployment
of the HyperLiteNet on edge devices. Meanwhile, the feature extraction capabilities of
the HyperLiteNet support satisfactory classification results with limited labeled samples.
Generally, the proposed HyperLiteNet achieves the optimal classification accuracy among
all comparison methods with the lowest number of parameters and execution costs.

The qualitative comparisons of the classification maps for different algorithms are
illustrated in Figures 9–11. In our expectation, due to the lack of spatial information, SVM
indicates the most random misclassified noise labels on the three datasets. In contrast,
other methods that exploit spectral–spatial combination information present smoother
classification maps than SVM. In addition, the SSRN and DcCapsGAN have more distin-
guishable classification boundaries based on more elaborately designed structures involved
in the structure, whereas the number of parameters also increased dramatically. We can
further observe that the HyperLiteNet produces a smoother classification area compared
with other comparison algorithms in the red dotted-line area in Figure 11i. These results
further demonstrate that the proposed HyperLiteNet can obtain more satisfactory results
with fewer parameters and more efficient execution times, even under a limited training
sample size.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Classification maps for IN. (a) False-color image; (b) ground-truth map; (c) SVM;
(d) SVMCK; (e) SSRN; (f) LMAFN; (g) DcCapsGAN; (h) DCFSL; (i) HyperLiteNet.

As shown in Figure 12, we further evaluate the classification performance with varied
training sample sizes for different comparison algorithms. From Figure 12, we can notice
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that the classification accuracy gradually improves as the number of training samples
increases. It is easy to find that the proposed HyperLiteNet exhibits acceptable satisfactory
classification results with different sample sizes.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 10. Classification maps for UP. (a) False-color image; (b) ground-truth map; (c) SVM;
(d) SVMCK; (e) SSRN; (f) LMAFN; (g) DcCapsGAN; (h) DCFSL; (i) HyperLiteNet.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 11. Classification maps for SA. (a) False-color image; (b) ground-truth map; (c) SVM;
(d) SVMCK; (e) SSRN; (f) LMAFN; (g) DcCapsGAN; (h) DCFSL; (i) HyperLiteNet.
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(a) (b) (c)

Figure 12. Overall Accuracy (OA) % with different training samples with 5, 10, 15, 20, and 25 for (a)
Indian Pines (IN), (b) Pavia University (UP), and (c) Salinas (SA).

4. Discussion
4.1. Assessment of the Model Design

According to the experimental results of the different numbers of training epochs
(Figure 7c), the HyperLiteNet has the characteristic of fast convergence for different datasets
during the training process. In addition, Figure 7a,b confirm that the model complexity
and model convergence ability are negatively correlated. The smaller the model, the more
difficult it is to find the appropriate parameters. Therefore, the key is to achieve a suitable
balance between the efficiency and the model size. Many practical applications only focus
on inference costs. Therefore, more training time in exchange for less inference time is
feasible for small algorithm models, which can facilitate online leaning in open-scenario
circumstances. On the other hand, as can be seen from Table 1, the dynamic convolution on
the three datasets improves model performance (from 0.35% to 2.78%) while reducing the
number of parameters over 60% and 80% when compared to the SC and MSC. Meanwhile,
the dynamic characteristic support the stability of the model on different datasets. This
conclusion is further demonstrated through the t-SNE visualization in Figure 8.

4.2. Assessment of the Model Performances

As illustrated in Tables 2–4, the HyperLiteNet achieves the highest classification OA—
75.75%, 85.89%, and 90.70%—with gains of 2.34%, 3.86%, and 1.75% over the optimal
results in the comparison algorithms on the three experimental datasets under extremely
small training sizes. Through an elaborate, lightweight design, the HyperLiteNet reduces
the number of parameters by 66%–98% and Flops by 60%–99%, compared to other DL-
based comparison algorithms. In terms of training time and testing time, even compared
with the fastest LMAFN, the HyperLiteNet still achieves 2.6-times and 4.6-times efficiency
improvements. Experiments on three representative datasets indicate that the proposed
HyperLiteNet outperforms these state-of-the-art DL-based comparison algorithms with ex-
tremely high efficiency and a low number of parameters. However, Figures 9–11 show that
the classification maps generated by the HyperLiteNet presents oversmoothed results. This
phenomenon illustrates that HyperLiteNet achieves efficient classification performance,
whereas the lightweight structure of spectral information is apt to result in oversmooth
boundaries of classes.

5. Conclusions

At present, small, portable smart devices require low energy consumption and fast
response times. This limits the efficiency and size of the DL models. Therefore, it is not
advisable to blindly pursue the high complexity of the model in exchange for the improve-
ment of the performance. In this article, an extremely lightweight, non-deep MiniNet model
is proposed for HSI classification. The proposed model employs dynamic convolution and
a feature interaction module to realize the flexible extraction and interaction of abstract
features in different stages, which can further improve the discriminant information of
different inputs. Meanwhile, the dual-branch PW and dynamic convolutional structure
plays an important role in extracting spectral and spatial features in a hardware-friendly
manner through the shallow parallel lightweight structure design, with extremely low
numbers of parameters and execution costs.
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