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Abstract: The search for clouds in satellite images is a challenging subject which still attracts a lot
of attention due to the amount and quality of data, which is growing at a tremendous pace, the
development of satellite techniques and methods, inexpensive equipment, and automation of satellite
imaging processes. This paper presents a new approach to the assessment of cloudiness based on the
use of the theory of moments with invariants. The values of moments with invariants, determined
on the basis of the available cloudiness maps, create a new, valuable set of data, which are the
geometrical parameters of the scene representing the cloud cover. In further research, the obtained
data sets will be used in machine learning methods, deep machine learning methods, etc. The method
is used for different conditions, including different angular positions of the Sun and time periods.
The effectiveness of the method is checked on the basis of comparing the entropy results of the input
maps after subtracting clouds masked by various methods. The obtained results additionally indicate
the potential of the moments method as a support for the existing methods of estimating cloudiness
over the sea surface.

Keywords: statistical moments; cloudiness; Baltic Sea

1. Introduction

Cloud detection is one of the basic problems in contemporary remote sensing [1].
The group of recipients interested in using satellite data is expanding, along with the devel-
opment of satellite technology and data analysis methods. There is a growing demand for
implementing new clouds detection methods, as well meeting the specific needs of various
groups of recipients included. An example of such a group is regional oceanographers.
An example of a region that requires the development of dedicated methods is the Baltic
Sea Basin. The Baltic is an inland sea of Northern Europe, with a surface area of about
415,000 km2 and a complex and developed coastline; see Figure 1.

In general, the methods of cloud detection based on the satellite imagery can be
divided into two groups: those based on radiative values and those based on structure.
Most of the recent research confirms the high efficiency of the structure-based methods,
emphasizing the important role of the initial parameterization [2]. Reference [3] gives a
review the literature on cloud detection techniques in satellite imagery, including hybrid
approaches using machine learning, physical parameter retrieval, and ground validation.
In reference [4], machine learning methods with manually pre-generated parameters are
compared with classical conventional methods. The authors show that the use of machine
learning methods for cloud detection is not robust enough. In contrast, deep learning
methods show excellent performance, surpassing many classic cloud detection methods.
Reference [5] presents a peculiar machine learning approach for detecting clouds over
the ocean, in both daytime and 24-h conditions. At night, the 24-h model demonstrates
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better results, but the quality of the references label and potential sampling problems
affect performance.

Figure 1. The example of the cloudiness map from 9 December 2019 at 00:00 UTC+01:00.

Reference [6] presents a comprehensive review and comparison of the most commonly
used model-based and machine learning-based segmentation strategies for remote sensing
images based on spectral information. It is observed that machine learning-based seg-
mentations are extremely reliable when the training and test sets are homogeneous. They
provide a competitive alternative to classical applications even if they have their specific
disadvantages. The authors of reference [7] use statistical machine learning techniques for
cloud identification in the extraction of marine biophysical parameters and explain the
effectiveness of the proposed method on a large number of marine satellite images. In refer-
ence [8], machine learning-based cloud detection algorithms are developed using spectral
observations aboard the Himawari-8 geostationary satellite. Both daytime and nighttime
algorithms, that differ depending on whether solar band observations are included or not,
are introduced. It was found that machine-learning-based algorithms can serve as a reliable
method for providing cloud masking results for day and night observations. They improve
the detection accuracy of cloudy pixels by 5%, as well as reduce misjudgement by 3%.

As discussed above, machine learning is a promising method for satellite-based cloud
detection on a regional scale, yet its instability prevents widespread application. Therefore,
the massive amount of highly variable data requires parameterization.

Selecting parameters that describe geometric shapes, positions and other characteris-
tics of clouds from satellite images is a research goal that requires a robust mathematical
apparatus. The separate clouds form a set of physically interacting objects that can be
described by partial differential equations of the Navier–Stokes type. The next step consists
of determining geometrical moments of the considered ensemble of clouds. This could
be done by investigation of the geometric moments of the multiply connected domain D,
where clouds are holes in this domain D. However, such a study loses the physical nature
of clouds, hence, does not properly describe the ensemble of clouds as a set of interacting
objects. Thus, the joint set of clouds is treated as a two-phase, two-dimensional medium.
Two-phase media are traditionally investigated by the theory of spatial correlation func-
tions, which theoretically describe them completely. However, computational restrictions
lead to the application of an autocorrelation function only. A computationally effective
method to calculate structural sums emn has been recently developed in references [9,10].
Such a structural sum can be considered as a geometric moment of a multiple order that
characterizes the shape properties of the multiply connected domain D. It was proven [9,10]
that the infinite set of structural sums quite sufficiently describes the physical properties
of interacting inclusions (clouds). A truncation of sums is used as in the classical moment
theory. The few sums emn of lower orders were implemented for elliptic shapes of holes
Dk [10].

In short, we apply two moment theories, the geometric moment theory for separately
investigated single clouds and structural analysis applied to the joint set of clouds. We con-
centrate our attention on the detection of clouds and their approximation by simple shapes,
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ellipses. Therefore, a two-phase model of clouds with sharp boundaries is introduced. It
can be considered as a geometric parameterization of the selected image scene equivalent
to the digitally established vectors that determine the considered clouds configuration.The
implementation of the method described above allows us to achieve the goal of our research
that consists of supplementing satellite data with an additional set of structural parameters
for further use in models based on machine learning and deep machine learning techniques.

At the beginning, we approximate each separate cloud by an ellipse and its set of
moments {Mmn}, written as a vector. Next, the vector of structural sums {emn} is assigned
to the set of clouds under study. Therefore, we treat a set of clouds as a two-dimensional
geometrical object, as a multi-connected domain on the macroscopic level, and, as well, as
an elliptical approximation assigned to a separate cloud. The atmospheric energy level (e.g.,
the amount of radiation reaching the sea surface [11]) is described by transmission equations
with appropriate initial and boundary conditions. The shape functions approximate the
locations of spectrally and spatially defined areas with ellipses embedded in a plane. Any
function that is continuously differentiable within a closed, smooth, connected domain
can be approximated by a special type of function called a packing function. It is a slight
modification of the class of continuous piecewise linear functions, with a few variables.
Therefore, radiation relationships can meet approximation conditions. This is why we
are confident that the method can be used to approximate the radiation function with the
packing functions. In addition to cloud approximations, ellipses form a graph related to
the Voronoi diagram. Such a graph can be regarded as a discrete model of separate clouds.

2. Materials and Methods

In satellite remote sensing, clouds assessment by the amount of reflected or emitted
radiance reaching the satellite is most commonly used. From the point of view of oceano-
graphic research, clouds alter the radiation in the atmosphere, making it impossible to
read sea surface parameters correctly. Thus, cloud cover corresponds to a lack of data
for sea analysis. All data used in the research were taken from the Eumetsat website
www.eumetsat.int (accessed on 1 February 2022). We used the satellite imagery obtained
from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) radiometer on-board the
Meteosat Second Generation satellite (MSG). The satellite images applied in this research
are the short-wave and long-wave radiation maps (reflection and brightness temperature),
according to the recommendations of the European Space Agency (ESA). In order to limit
the data for processing, the satellite images were covered with a mask of the Baltic Sea
area. The maps were radiometrically calibrated and converted to a uniform format that
was developed in the SatBaltic project [12].

For further research, we used maps downloaded from the SatBaltic database. The
main objective of the SatBaltic (2010–2014) (Satellite Monitoring of the Baltic Sea Environ-
ment) project was satellite-based monitoring of the Baltic Sea environment. This system
determined the properties of the sea and routinely characterized the structural and func-
tional relationships of the environment. Based on satellite data, the project determined
properties, such as: solar radiation influx to the sea’s waters in various spectral intervals,
energy balances of the short- and long-wave radiation, cloudiness, sea surface temperature
(SST), concentrations of chlorophyll, etc. In SatBaltic, the originally formed SEVIRI grid
was normalized using the nearest neighbor method at a spatial resolution of 1 km. To fully
exploit the potential of the source data, all available SEVIRI bands (Table 1) were involved
in the compilation of the cloud map. For the daytime, the split-window operation on
pairs of adjacent channels 1 and 2 (VIS0.6 and VIS0.8) and 3 and 4 (IR10.8 and IR12.0)
was used (see Table 1). Both the long-wavelength and short-wavelength combinations of
bands were used, together with the panchromatic channel (High-Resolution Visible (HRV)).
After transformation and normalization, the normalized pixel intensities of the maps and
the values of HRV belong to the range [0, 1]. At night, we also use channels 3 and 4. All
the details of the estimation of cloudiness and uncertainty arising from the cell size were
presented in reference [13]. Three data sets were used in further research: exact estimation
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examples for the original and normalized data of three projections—9 December 2019 at
06:00 UTC + 01:00 (set A.1), 9 December 2019 at 12:00 UTC + 01:00 (set A.2), and 10 July
2019 at 11:45–12:15 UTC + 02:00 (set A.3). More statistically relevant results were obtained
on the basis of 97 maps from a 24-h observation period from 8 December 2019 at 12:00 UTC
+ 01:00 to 9 December 2019 at 12:00 UTC + 01:00 (set B). Finally, for a fully serial evaluation
(set C), we used ≈3000 maps (31 days × 24 h/day × 4 projections/hours).

Table 1. SEVIRI and model spectral characteristics used in the analysis.

N* Channel ID Wavelengths (µm) Remarks
Central Minimum Maximum

Satellite
1 VIS0.6 0.63 0.56 0.71 Atmospheric visible window
2 VIS0.8 0.81 0.74 0.88 Atmospheric visible window
3 IR10.8 10.80 9.80 11.80 Atmospheric thermal window
4 IR12.0 12.00 11.00 13.00 Atmospheric thermal window
5 HRV 0.75 0.40 1.10 Atmospheric visible window

+ water vapor absorption

Modeled
6 VIS0.6M 0.63 0.56 0.71 SolRad
7 VIS0.8M 0.81 0.74 0.88 SolRad
8 IR10.8M 10.80 9.80 11.80 M3D
9 IR12.0M 12.00 11.00 13.00 M3D

N* is the channel number; Channel ID is the codename of the channels.

On the satellite image, the atmospheric transmission function h(x, y) summarizes, a
priori, the emission of radiation from the sea and the clouds. Its modeled equivalent relates
only to radiation from the sea in cloudless weather. h may be a normalized function that
determines the path of radiation reaching the satellite. It can be adapted for further research
with short-wave band data as follows:

h1(x, y) =
VIS0.8−VIS0.8M

VIS0.6M×VIS0.8−VIS0.8M×VIS0.6
VIS0.8×VIS0.6M−VIS0.6+VIS0.8M −VIS0.8M

, (1)

where h1 is a dimensionless parameter that determines the cloudiness coefficient based on
the short-wave range; VIS0.6 and VIS0.8 are radiances in the neighboring SEVIRI channels;
and VIS0.6M and VIS0.8M are radiances from the sea in a cloudless atmosphere modeled
for SEVIRI channels 1 and 2, respectively (see Table 1). The radiation that reaches the
satellite in a cloudless atmosphere was determined using the SolRad model [14] in relation
to the Solar Zenith Angle (SZA). A comprehensive analysis of the method was presented in
references [13,15]. The long wavelength part is described as [16]:

h2(x, y) = 1− IR12.0− IR12.0M

IR10.8M×IR12.0−IR12.0M×IR10.8
IR12.0×IR10.8M−IR10.8+IR12.0M − IR12.0M

, (2)

where h2 is a dimensionless parameter that determines the cloudiness coefficient from
the long-wave radiation information; IR10.8 and IR12.0 are the SEVIRI temperatures in
Kelvins (K) (see Table 1); IR10.8M and IR12.0M are the cloudless atmosphere values in K
as determined from the model. The solution evaluates the brightness temperature based
on the sea surface temperature, according to the M3D model [17]. For detailed description
of the data flow, please see Appendix A [18]. The data are successively checked with (1)
and (2) to estimate normalized values between 0 and 1 for the short-wave and long-wave
radiation, respectively [13,15]. Finally, we chose h as maximum pixel value of rasters [h1
or h2 or HRV] (Table 1), where h1 and h2 are dimensionless and normalized from 0 to
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1 (at night-time h = h2). The higher value is used to generate the final cloud map (see
reference [13] for the algorithm description).

Mathematical Approach

The normalized function gives the intensity of each pixel of the cloud map. Based on
the intensity map, we define the boundaries of the segmentation, or, rather, the intensity
class. Such transition areas do not always give a definite answer. However, the normaliza-
tion by differentiating the registered and modeled radiation for the cloudless sea surface
determines the dimensionless factor. So, for a completely cloudless atmosphere, we have
an intensity value of 0. Everything above is cloudy to some degree. Of course, the segmen-
tation boundary can be defined, inter alia, according to the transmission function [14] to
0.1, where there will also be thin clouds that slightly distort the signal recorded from the
sea surface.

From a mathematical point of view, cloud detection must answer the question of how
wide the range of patterns observed in the atmosphere can be assigned to a homogeneous
group. Mathematical methods for those patterns are based on differential equations of
selected structures. Such structures can be regarded as a result of solving various partial
differential equations. In a previous paper, a discrete link was established between opti-
mal positions on the model formation plane [19]. Differential equation-based solutions
are demonstrated to be amenable to approximation by physical functions, for example,
equations describing the transmission of solar radiation through the atmosphere [14,19].
The shape analysis is conducted on a 2D plane by developing a finite difference technique
for certain boundary conditions. An applied geometric method can be related to the ap-
proach of structural approximation, that consists of combining the theory of moments and
structural analysis of cloud sets [20,21].

Consider N separated clouds. Fix a cloud with a number k and investigate the plane
domain Dk which models the cloud. The classical theory of image moments [22] describes
the shape properties of a simply connected domain Dk on the plane (x, y). The image
moment of order (p, q) is expressed by integrals (sums) on the characteristic function of Dk
multiplied by weights represented by the power functions xpyq (p, q = 1, 2, . . .). The set
of moments is theoretically infinite, but it is truncated in practical applications. Hence,
a finite vector of moments is assigned to the domain Dk. The main mathematical result of
the theory of moments is the assertion that any convex domain is uniquely determined
by the set of its moments, and it is approximated by a finite truncated vector of moments.
The (0, 0)-moment is equal to the area of the considered D, and the first and second
moments define an ellipse which approximate D. In the present paper, we use the theory of
moments in order to approximate the shape of each cloud by an ellipse. Therefore, a finite
shape vector can be assigned to every cloud. This set of moment vectors is the first goal of
our computations.

3. Results

The question in this section is: how can the frequencies computed with moments
and invariants be compared and visualized? We would like to superimpose approximate
shapes over the surface of the Earth, or more precisely, of the atmosphere over the Baltic
Sea. Figure 2 shows the experimental data flow for set A.3—the three following maps with
15-min interval for angular conditions SZA 30–35 degrees. The research data flow goes
through the following steps: raw data (satellite image)—calculation of radiation transfer
through the atmosphere (cloudiness map 0–1), in Figure 2a–c—determination of the binary
cloud mask (0/1), in Figure 2d–f [19]—description of the geometrical elliptical mask (0/1),
in Figure 2g–i—derivation of parametric data on their basis Table 2. In addition, SST maps
are included for comparison, in Figure 2j–l.

The moments functions that compute the geometrically clouded part of the map
are based on fitting a circle, an ellipse, or a rounded shape to the region (the circle fit is
computed by fitting the first-order moments, etc., in Mathematica software). To determine
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the map of moments based on a binary cloud mask, we used the script in MATLAB software.
The analytical procedure required fine-tuning of the parameters of the script. A procedure
was developed to determine the ellipse parameters for the best fit with a given SatBaltic
cloud mask. A useful technique is given in reference [23]. It eliminates clouded pixels
when reduced to a binary mask. Since it is statistically difficult to determine which are
correct, it is worth looking at a few selected cases, as in Figure 3. The effectiveness of each
comparison is determined by the degree of similarity between multiple measurements of
the same quantity by different methods: where all case numbers are defined as the sum of:
a—the number of cases defined equally as cloudiness by both methods; b—the number of
overestimated cases (not defined equally and as cloudiness by one method); c—the number
of underestimated cases (not defined equally and as cloudiness by the other method);
and d—the number of cases correctly detecting no cloudiness. Ideal detection preserves
H = (ad − bc)/((a + c)(b + d)) at 1; H equals 0 for a statistically random distribution,
while negative values classify detection as poor [13]. More detailed instructions for the
experimental set-up can be found in Appendix A. The analysis began with unsupervised
classifications (successively supplemented with moments) aimed at determining local
features for automatically defined data fields. The classification assessed the extent of
cloudy areas. In the following part, this study is compared to the supervised solution.
There were false positive and false negative areas (underestimated is marked in dark yellow
and overestimated marked in white in Figure 2g–i, respectively).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Cont.
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(j) (k) (l)

Figure 2. Diagram of the data set A.3 processing. The first row presents different maps of atmospheric
transmission 10/July/2019, time UTC+02:00 for 11:45 (a), 12:00 (b), and 12:15 (c), gray scale. Black
colors corresponds to the sea surface, dark grey to the land. The second row presents the transmission
of cloud masks (d–f). Colors and their corresponding objects as follows: white—clouds, black—sea,
dark grey—land). The third row (g–i) presents the results of the moment method. Yellow-white area
is equally defined as cloudiness in both methods: yellow-black means overestimated area; white
means underestimated area, black means not overcast area, and grey and yellow-grey means land.
The fourth row presents SST maps (j–l).

(a) (b)

(c) (d)

(e) (f)

Figure 3. Cont.
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(g) (h)

Figure 3. Results of the different cloud detection methods based on an satellite image 09/Decem-
ber/2019 6:00 UTC + 01:00 and 12:00 UTC + 01:00 normalized to the SatBaltic format. Maps of (a)
inverse radiation temperature based on set A.1 and (b) reflectance set A.2 (white and degrees of
grey—clouds, dark grey—sea, black—land), (c,d) application of the conventional detection technique
+ moment-assisted method, (e,f) the Otsu + moment-assisted method, and (g,h) the supervised
+ moment-assisted method (yellow-white—area defined equally as cloudiness by both methods,
yellow-black—overestimated area (not defined equally and as cloudiness by the first method); white—
underestimated area (not defined equally and as cloudiness by the method of moments), black—area
correctly detecting no cloudiness, and grey and yellow-grey—land).

The central moments of the domain D are defined by the integrals [22]

Mmn :=
∫∫

D
f (x, y)dxdy, (3)

where f (x, y) = xnym is written in the local coordinates, with the origin corresponding to
the center of gravity of D. The corresponding discrete form of (3) is given by the sum [22]

Mmn := ∑
P∈D

f (P), (4)

where P = (xi, yi). Following reference [24], we use the invariants of the central moments

I1 = M20 + M02,
I2 = (M20 −M02)

2 + 4M2
11,

I3 = (M30 −M12)
2 + (3M21 −M03)

2,
I4 = (M30 −M12)

2 + (M21 −M03)
2.

(5)

Analogous long formulas take place for the invariants of higher orders [24].
The invariants can be normalized by scaling [24]

I′j = −sign(Ij) log10(abs(Ij). (6)

The invariants (5) and (6) are calculated for a selected large cloud displayed in Figure 2
for I′j (j = 1, . . . , 8). In Figure 4, the cloud is shown in dynamics at the time 10 July
2019–11:45 UTC + 02:00 (blue), 12:00 UTC + 02:00 (pink), and 12:15 UTC + 02:00 (yellow),
respectively.
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(b)

(a) (c)

Figure 4. Time series moments: (a) masks 10/July/2019 11:45-12.15 UTC+02:00, (b) example of
realized ellipses difference, and (c) example for separated cloud.

The moments and invariants are calculated by the Formulas (4)–(6) for two sets of data
corresponding to Figure 2b,c, at three time points. The values I′j (j = 1, . . . , 8) are selected in
Table 2 for three moments of times. The graphical illustration of the moments in dynamics
is displayed in Figure 5. The graphs corresponding to Figure 2b are shown by solid lines,
and to Figure 2c by dashed lines. The dashed lines demonstrate the perturbation of the
moments calculated for the fixed separate cloud by small clouds surrounding the main
cloud or by its fuzzy boundary. One can see that the moments I′j (j = 1, . . . , 8) changes in
time and can compound the principal moment vector which characterizes the considered
cloud and its dynamic. The moments I′j (j = 1, 2) changes slowly and can be neglected in
the further analysis.

Figure 5. Dynamics of moments 10 July 2019 11:45-12.15 UTC+02:00. The values of moments from
Table 2 calculated (4)–(6). Moments I′b for Figure 4b versus time are shown by solid lines, and I′c for
Figure 4c by dashed lines.
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Table 2. Results the calculations of the invariants of the central moments according to Figure 4.

ID 20190710114500 20190710120000 20190710121500

Figure 4 (b) (c) (b) (c) (b) (c)

I′1 −0.005626 −0.00004 −0.010374 −0.00024 −0.005504 −0.00027

I′2 0.314075 0.47134 0.349036 0.566524 0.377664 0.632733

I′3 1.310573 1.187512 1.771835 1.536233 1.976419 2.060756

I′4 1.488028 2.911716 1.866378 3.104067 2.508078 4.612025

I′5 2.122588 3.581997 1.905485 3.603337 2.193086 4.395174

I′6 4.106302 6.830714 4.337209 6.961784 5.027498 8.906801

I′7 2.783723 4.190248 2.815536 4.404323 3.209285 5.428758

I′8 3.933062 6.973255 3.853848 7.029442 4.721769 9.044957

Let us compare the results of effective detection obtained with the four methods:
1. using the conventional technique, from values of radiation transmission rang-

ing from 0 to 1 (at this stage the notation 0.5 means a single pixel half covered by com-
pletely opaque clouds or completely covered by semi-transparent clouds [14]) (see refer-
ences [13,15,16,25]) by linear approximation [14] to 0/1 binary mask (0 if clear/1 if cloudy);

2. the conventional technique supplemented with the method of moments with
invariants (0/1 binary mask, 0 if clear/1 if cloudy);

3. the Otsu technique supplemented with the method of moments with invariants [26]
(0/1 binary mask, 0 if clear/1 if cloudy);

4. in a supervised manner, with the subjective participation of the observer (0/1 binary
mask, 0 if clear/1 if cloudy).

Cloud detection based on selected maps from 9 December 2019 was performed ac-
cording to methods 1 to 4; the results are shown in Figure 3. Data from 06:00 UTC +
01:00 are presented in the left column (set A.1—the brighter areas correspond to low tem-
peratures) and from 12:00 UTC + 01:00 in the right column (set A.2—the brighter areas
correspond to high reflectivity). In the Baltic Sea area, the cloud cover was determined
with the conventional method according to the SatBaltic algorithm [13] (method 1) (see
Figure 3a,b). The maps were then subjected to a masking operation using the method
of moments (method 2); the results are shown in Figure 3c,d. The second order method
of moments provides for cloud masking using ellipses; hence, in Figure 3, transparent
yellow ellipses appear on the masks. The next pair, Figure 3e,f, represents the results of
the statistical work of the Otsu technique with moments added (method 3). The last pair,
Figure 3g,h, is the result of the work of a subjective observer. As explained earlier, in the
figures, we observe both underestimation (visible light grey fragments) and overestimation
of cloudiness (ellipse superimposed on dark grey sea fragments not covered by clouds).
The coast/land fragments in the outline of the ellipses are not included.

3.1. Comparative Analysis of Cloud Detection according to Methods 1 and 3

The results of cloud detection in the Baltic Sea area determined according to methods
1 and 3 were compared. In Figure 6a,b, we see a comparison of histograms for the initial
map (orange color): after applying the cloud mask according to the conventional SatBaltic
algorithm (blue color), and after completing using the method of moments (grey color).
The preliminary results show satisfactory results for the application of the method of
moments in cloud estimation. The analysis shows that the combination of methods can
have a positive impact on the detection, effectively eliminating cloud “noise” initially
classified as sea. The cloud cover of the Baltic Sea basin determined according to methods 1
and 3 at 06:00 UTC+01:00 (set A.1) was 43% and 47%, respectively, and, at 12:00 UTC+01:00
(set A.2), it was 39% and 38%, respectively (see Figure 6 and Appendix B). That is, for the
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map (Figure 6a), the method of moments relative to the conventional method leads to
an overestimation of the clouded area by 4%, and, for the reflectance map (Figure 6b), it
underestimates it by 1%. Significant differences between the cloud detection paths occurred
for intensities in the interval [0.00, 0.30]; pixels in this interval were mostly found in the
parts of the satellite image showing sea. For set A.1, the method of moments yielded
a cloudiness result that was 7% higher than the conventional methods; for set A.2, the
result was 2% lower for the method of moments. For pixel intensities in the range [0.60,
0.75] (pixels from this range were mostly present in the cloud parts of the satellite image),
the method of moments yielded cloudiness results 3% higher for set A.1, and 5% higher for
set A.2. These results were determined after removing land areas from the moments mask
and partly mixing with the measurement uncertainty limit.

(a) (b)

Figure 6. Histograms for the initial map (orange color), after applying the cloud mask according to
the conventional SatBaltic algorithm (blue color) and after completing using the method of moments
(grey color) for the: (a) temperature function (set A.1, Table 3) and (b) reflectance function (set A.2,
Table 3) (orange—initial map, blue—after applying conventional cloud mask, grey—after completing
by moments mask).

Table 3. SEVIRI data sets used in further research.

ID Source File Date Time Remark

A.1 MSG4-SEVI-MSG15-0100-NA-20191209060000 9 December 2019 06:00 UTC + 01:00 Figure 3a
A.2 MSG4-SEVI-MSG15-0100-NA-20191209120000 9 December 2019 12:00 UTC + 01:00 Figure 3e
A.3 MSG4-SEVI-MSG15-0100-NA-20190710114500– 10 July 2019 11:45– Figure 2a

MSG4-SEVI-MSG15-0100-NA-20190710121500 12:15 UTC + 02:00 Figure 2b
Figure 2c

B MSG4-SEVI-MSG15-0100-NA-20191208120000– 8 December 2019– 12:00– Figure 7
MSG4-SEVI-MSG15-0100-NA-20191209120000 9 December 2019 12:00 UTC + 01:00

C MSG4-SEVI-MSG15-0100-NA-202010 December/2020 Figure 8

3.2. Comparative Analysis of Cloud Detection Results for Methods 1–4

The effectiveness of various cloud detection methods is carried out on the basis of
a comparison of the entropy calculation results for the “residuals” of the output image
after the cloud masking. According to the research hypothesis, a more adequate method
is the one when the result of the calculated entropy is the closest to the entropy of the
cloudless model map (black line); see Figure 7. The study is conducted on the basis of data
set B (Table 3), being a 24-h sequence of satellite images from 8 December 2019 12:00 to 9
December 2019 12:00 UTC + 01: 00, taken every 15 min.
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(a)

(b) (c)

Figure 7. Results of entropy calculation for methods 1–4, black line according to the lower limit of
the entropy calculated for the cloudless map (a); (b,c) selected periods in which the application of the
moment method improves the results.

By analyzing the entropy diagrams presented in Figure 7, we concluded that, according
to this parameter, the use of the alternative method based on moments (method 3), leads
to a greater discrepancy of results compared to those obtained by the observer. Methods
1 and 2 yield similar results over the whole observation interval. Let us pay particular
attention to the time intervals from 16:00 to 21:00 UTC + 01:00 (Figure 7b) and from 0:00
to 5:00 UTC+01:00 (Figure 7c), in which the predominance of method 2 in cloud detection
is observed (based on a measure of entropy). The comparison of these results with the
cloud cover curve leads to the research hypothesis that it is particularly appropriate to use
method 2 in periods of forecasted high cloud cover variability. In these two time periods,
the changes of cloudiness took place every 15 min at an amplitude of approximately 5%.

In more complex situations (Figure 8), this comparison shows that the moments
method can effectively support unsupervised detection (for a relatively large data set,
this depends on some elimination of clouds that do not contrast with the sea). The Baltic
pixels remaining after masking determine the entropy described by Figure 7a. Additionally,
the dashed line in Figure 7a shows the cloudiness of the Baltic Sea. The extent of the binary
mask depends on the method, the product of the statistical moment map, or the opinion of
the subjective observer. The last one takes place in a supervised procedure, allowing areas
difficult to detect by automatic methods to be completed. This has been demonstrated
by analyzing less turbid areas, while keeping entropy at its lowest level. At this stage, it
is difficult to say that the alternative method of moments (method 3) is superior to the
conventional solutions (method 1), but, due to the high correlation of the solutions, we can
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consider it an interesting addition. The final product could be a conventional cloud mask
with added moment shapes (method 2), whose aim is not to compete with nor replace
existing solutions but to complement them. Specifically, Figure 7a specifies two periods
(1 and 2, in Figure 7b,c), where a combination of solutions improves the results. It should
be noted that these are spectrally and spatially well-defined objects. To demonstrate that
the method indeed has the potential to parameterize cloud signaling, a 1-month satellite
image sequence was used (Figure 8).

Figures 7 and 8 shows the entropy value of the SatBaltic maps after masking in an
automatic and supervised manner. The quantitative evaluation of the method consists of
determining the entropy difference between the conventional and assisted moments and
the supervised solution.

The moments method allowed the entropy to be decreased by a 3%, while eliminat-
ing a underestimated area 5%. It is clear that underestimated sea areas occur, but the
decreased estimation of entropy becomes high enough not to be ignored in the overall
budget. In general, as can be seen in Figure 8, cloud cover can be estimated with moments,
but significant uncertainties arise. Uncertainty estimation is not the goal at this stage; the
goal is to effectively demonstrate the potential for improving conventional analysis using
the moments method.

Figure 8. Results of entropy calculation for set C; see Table 3.

On the other hand, for poorly-defined cloud formations, overestimation may result
from the assumptions of the method itself. Such formations cover rather large areas, so they
extend to the semi-transparent regions (e.g., blurred cloud edges). As shown above, the mo-
ments method accomplishes this task by extending the cloudiness estimate to areas that are
considered cloud-free by operational cloudiness detection systems. Further references to
other operational cloud detection systems can be found in reference [13]. Clouds are also
characterized by multicoherent regions (e.g., an ellipse within an ellipse) due to the great
diversity in their structures. Each ellipse contains a set of statistical parameters that we use
for further processing, for example, providing data for machine learning. A set of clouds in
the atmosphere can be modeled as a set of inclusions embedded in a bulk medium with
physical properties, such as density, thermal and electrical conductivity, etc. Due to the
different physical properties of clouds and the surrounding air, interactions between clouds
are possible. In this model, interactions of physical fields, not mechanical collisions, are
captured. With the help of this method, we naturally arrive at the consideration of cloud
sets as a two-phase medium. This theory is outlined in the following section.
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3.3. Structural Sums

The theory of two-phase media is based on the field interactions of inclusions dispersed
in a bulk medium. These interactions are described by various partial differential equations.
In reference [21], it was shown that a sufficiently large class of such phenomena can be
described by the structural approximations associated with a graph. It was proven in refer-
ences [9,10] that expressions for the macroscopic physical properties can be decomposed
into a linear combination of the structural sums. The set of structural sums associated with
any geometric object is infinite, and one usually takes its finite subset. To be consistent with
references [9,10], the following scaling is used. The coordinates of the square in Figure 6
are reduced by a linear transformation to the unit square (−0.5, 0.5)× (−0.5, 0.5). The cor-
responding ellipse centers are written in terms of the complex coordinates ak = xk + iyk,
where (xk, yk) denotes the Cartesian coordinates of the centers, and i the imaginary units.
Let Ak and Bk be the semi-axes of the kth ellipse. Its area is

sk = πAkBk. (7)

Let Ep(z) denote the Eisenstein function of order p [9,21]. These functions are related
to the classic Weierstrass elliptic functions by simple formulas and are usually implemented
in standard packages. The low-order structural sums are introduced as below. The clouds
of significant area are taken into account in the example in A.2 (N = 20). Introduce the area
fraction of clouds in the normalized unit cell

f =
N

∑
k=1

sk. (8)

Introduce the low-order structural sums following references [9,21] and using another
scaling in concentration f :

e2 =
1

f 2N2

N

∑
k=1

N

∑
m=1

sksmE2(ak − am), (9)

and

epp =
(−1)p

f 2pNp+1

N

∑
k=1

∣∣∣ N

∑
m=1

sksmEp(ak − am)
∣∣∣2, p = 2, 3, 4. (10)

Here, |z| denotes the modulus of the complex number z. It is assumed that E2(0) := π
by definition when ak = am for shortness in the sums (9) and (10). For the cases in question,
we have:

(e2, e22, e33, e44) = (0.00929− 0.00278i, 0.0123, −0.11, 31.86), (11)

and, in A.1, it is:

(e2, e22, e33, e44) = (0.00262− 0.037i, 0.247, −579.4, 1.47 · 106). (12)

These are characteristic vectors of this set of clouds. The monodispersed structural
sums were considered in references [9,10]. For instance, emono

2 is defined by (9) with f = 1
and sk = sm = 1. The values emono

2 = 3.05 + 1.16i and emono
2 = 0.0478− 0.6798i for sets

A.1 and A.2, respectively, characterize the macroscopic isotropy of the corresponding
cloud phase. For an ideally isotropic set, we have emono

2 = π. It can be seen thatm for
different vectors, (11) and (12), calculated for sets A.1 and A.2, we get different results. This
means that the first group of clouds is more isotropic than the second. In this simple way,
the information calculated graphically shows the extent of anisotropy of the cloud cluster.
The cloud moments, as well as the cloud clusters, are different; this applies to both groups
and individual moments with elliptical shapes (Table 4).
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Table 4. The values of moments for the examples discussed.

ID M11 M20 M02 [I1, I2] [I′1, I′2]

A.1 −0.1346 0.7434 0.5993 [1.3427, 0.0933] [−0.1280, 1.0302]
A.2 −0.2919 1.0850 0.5365 [1.6215, 0.6416] [−0.2099, 0.1927]

The final features of the satellite image (given as input data) are the values [ϕ1, ϕ2].
These functions are used to recognize clouds from an satellite image and can be used to
recreate an mask of clouds. The advantage is that the mask is reduced to a few mathematical
functions related to the cloud’s features. The structural sums e22, e33, and e44 include the
higher orders of correlation functions and characterize the “total” shape of the set of clouds.
It follows from general theory [9,10] that an infinite set of structural sums completely
describe the set. Therefore, its truncation (11) approximates the structure in question.

4. Discussion

The cloud detection process requires many different methods, such as dynamic thresh-
olding, surface analysis, etc. Each of the above-mentioned methods has its own strengths
and weaknesses [16]. New solutions, such as machine learning [5], are often unstable and
require some parameterization. The main goal of this research is to obtain a data set of
parameters of the geometrical structures (i.e., values of invariant moments) that models
real satellite images. The obtained data set will be used in our further research to make a
prognosis of the cloudiness changes. The method of moments can be used to complement
satellite-based solutions. Its main advantage is that it supports the detection of objects with
regular shapes on a local scale by overestimating regions that are conventionally difficult
to detect but physically justified (e.g., blurred cloud edges).

There may be some concerns about the representation of a complex cloud structures
with compact shapes, such as ellipses. However, clouds as atmospheric objects have a
natural tendency to form compact structures due to the accompanying physical phenomena,
including electrostatic interactions. Therefore, the method works well for predicting
dynamics events. A valuable advantage of the method may be the obtained parameters
defining geometric structures, which can be used in further research. The mask of the sea
is a certain obstacle, and, in the next stage, a procedure will be developed, allowing for
the extension of the research area with adjacent pieces of land. However, it is important
to understand the important differences in the detection of clouds over water and over
land. In more complex situations, it can effectively support oceanographic analyses (e.g.,
for a large data set that does not contrast with the sea, even at the expense of possible
overestimation).

5. Conclusions

Improving the quality of cloud analysis is of great importance in various branches of
science, from oceanology to climatology. In order to successfully complement the detection
of clouds on a regional and local scale, more attention should be paid to the analysis of
objects visible on the background of the sea. One of the way to achieve this goal is to
introduce additional geometric parameters at the level of the raw digitized satellite image,
before applying the image analysis methods. Conventional methods for eliminating noise
to obtain a homogeneous map may lead to a loss of important satellite image features, thus
lowering the recognition accuracy. The innovative method of cloud detection presented
in the article is based on the theory of unchanging moments and structural sums. This
allows the parameters of the problem to be optimized. In this paper, the theory of moments
and structural approximation are used to consider a set of clouds as a two-dimensional
geometric object. The corresponding shape moment vector is assigned to a separate
cloud. Moreover, a cloud set is investigated as a multi-connected domain by structural
approximation in order to describe the interactions between separate clouds within the
set. This method consists of combining the basic features of an satellite image on the same
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scale in different directions, according to the rule of unchanging moments, in order to
detect an object for identification. The experimental results show that the proposed method
is effective and parameterizes the detection of satellite image features. In the next step,
the set of relations (11) and (12) will be used in the application of machine learning and
for classifying cloudiness based on structural sums and the analysis of feature vectors
(e2, e22, e33, e44) and {Mmn}.
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Appendix A

The reader must have simple instructions on how to repeat the method on their own.
We feel obligated to present a way to develop satellite data, so that the reader can test the
method without much effort. Once implemented, the process takes a only seconds, which
proves that the method is reliable enough to automate the process. The first step is to obtain
satellite data. These are supplied raw (without radiometric and geographic calibration)
by the provider, Eumetsat, at www.eumetsat.int (accessed on 1 February 2022). The raw
data can be geographically and radiometrically corrected using commercial software,
for example, TNTMips at www.microimages.com (accessed on 1 February 2022), or the
free program SNAP at https://step.esa.int (accessed on 1 February 2022). In the next step,
the raw data are reduced to the SatBaltic map [13] format by masking the Baltic region
and normalizing the pixel brightness according to the Formulas (1) and (2). The remaining
radiometric pollution problems, known from almost all areas, are perhaps least related
to the homogeneous structures of the sea. The procedure requires the use of appropriate
channels for day/night projection, as in (1) and (2); see Table 1. The reader can skip the
above step by downloading the developed maps directly from the SatBaltic database at
https://www.satbaltyk.pl/en/ (accessed on 1 February 2022). For mass analysis, the reader
can use the above-mentioned satellite image processing software with its proprietary scripts.
Optionally, to easily document the method in small batches, it is convenient to use a prebuilt
library at https://blogs.mathworks.com (accessed on 1 February 2022) in MATLAB or the
Octave environment. In this case, the ellipses are computed by determining the second-
order moments. The moments of successive approximations can be determined in a similar
way (see https://www.mathworks.com/help/images/ref/regionprops.html (accessed on
1 February 2022)). This, the method developed, assumes an extreme restriction on the
input parameters: the size of the ellipse and the mapping threshold. Of course, the reader
can customize the best parameters to fit their research area. The best fit for the training
domain of the Baltic Sea was determined to be l = 0.4π with a threshold of 35% (the
parameters were subjected to a still unpublished machine learning procedure). Selected
examples are discussed in the text. Due to the large amount of satellite data and partial
operator involvement, an extremely limited number of script parameters were analyzed:
field geometry (range of short and long axes of the ellipse), number of invariants, frequency
range, and SEVIRI threshold over the SatBaltic map standard format from 0% to 100%
(statistically, the choice was HRV with a threshold of 76%, or IR10.8 with a threshold of
19%, in 96% of the cases; note the inverted temperature scale). Of course, it is difficult

https://www.satbaltyk.pl/en/
www.eumetsat.int
www.microimages.com
https://step.esa.int
https://www.satbaltyk.pl/en/
https://blogs.mathworks.com
https://www.mathworks.com/help/images/ref/regionprops.html
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to manually check such a large number of maps, so we tend to automate the procedure.
The analysis of the resulting values considering the geometry allows relationships for the
Baltic Sea to be developed.

Appendix B

20191209060000 20191209120000

Binarization Classical Otsu Supervised Classical Otsu Supervised

Threshold Dynamic M3d 0.3311 0.3487 Dynamic Solrad 0.3062 0.3247

Clouded Baltic area 44.658 47.054 45.726 38.926 42.871 40.233
(446549 tot.) (199440) (210140) (204210) (173841) (191459) (179678)

Entropy 0.264813 0.26535 0.2283 0.26956 0.26828 0.2341

Mass center −134.25 54.588 −133.33 53.880 −134.08 54.374 −188.30 −67.329 −190.13 −64.263 −190.09 −64.913

Nb ellipses of mask 192 188 185 182 178 173

Max ellipse 76 72 69 72 71 70

Max Centroid 737.73 320.60 724.09 360.59 722.93 362.12 671.78 397.02 716.05 340.55 714.21 346.35

Max MajorAxis 656.54 757.15 752.21 394.06 776.84 769.91

Max MinorAxis 198.04 208.71 207.46 166.25 181.40 179.93

Max ellipse area 102118 124112 122564 51453 110677 108801

Max Orientation 60.150 63.823 63.915 49.282 61.009 60.431

M11 −0.224089 −0.222616 −0.227541 −0.6928 −0.6531 −0.7157

M20 1.138071 1.093078 1.119721 0.9410 0.8669 0.8910

M02 0.336161 0.332819 0.334632 0.7302 0.6738 0.692

M21 0.016759 0.018518 0.017396 0.2314 0.2009 0.2107

M12 −0.175099 −0.173690 −0.176984 −0.3645 −0.3391 −0.3847

M03 0.228121 0.223453 0.225910 0.4756 0.4270 0.4429

M30 −0.785457 −0.759354 −0.801245 −0.2872 −0.2592 −0.3105

I1 1.474232 1.425896 1.454353 1.6713 1.5407 1.5831

I2 0.843923 0.772863 0.814597 1.9643 1.6451 1.7457

I3 0.099312 0.069860 0.086957 0.6978 0.5696 0.6107

I4 0.982634 0.853854 0.929769 0.9246 0.7223 0.7852

I5 0.067680 0.018251 0.046180 0.6845 0.4245 0.4990

I6 0.902651 0.750640 0.839150 1.2610 0.8993 1.0078

I7 −0.045637 −0.035660 −0.017214 0.5945 0.3580 0.4251

I8 −0.078100 −0.074773 −0.084594 −0.6970 −0.5832 −0.7154

I′1 −1.6857× 10−1 −0.154088 −0.162670 −0.223042 −0.187726 −1.9950× 10−1

I′2 7.3697× 10−2 0.089057 0.111897 −0.293207 −2.4197× 10−1 −0.257422

I′3 1.0030 1.155771 1.060694 0.246265 0.244400 2.1416× 10−1

I′4 7.6081× 10−3 0.068616 0.031625 0.034068 0.141259 1.0503× 10−1

I′5 1.1695 1.738705 1.335542 0.164626 0.372166 3.0191× 10−1

I′6 4.4480× 10−2 0.124568 0.076161 −0.100698 0.046095 −3.3914× 10−3

I′7 −1.3407 −1.447821 −1.267845 0.225848 0.446152 3.7150× 10−1

I′8 −1.1073 −1.126253 −1.004694 −0.156784 −2.3419× 10−1 −0.108946
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