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Abstract: The monitoring of forest degradation in the Amazon through radar remote sensing method-
ologies has increased intensely in recent years. Synthetic aperture radar (SAR) sensors that operate in
L-band have an interesting response for land use and land cover (LULC) as well as for aboveground
biomass (AGB). Depending on the magnetic and solar activities and seasonality, plasma bubbles in
the ionosphere appear in the equatorial and tropical regions; these factors can cause stripes across
SAR images, which disturb the interpretation and the classification. Our article shows a methodology
to filter these stripes using Fourier fast transform (FFT), in which a stop-band filter removes this
noise. In order to make this possible, we used Environment for Visualizing Images (ENVI), Sentinel
Application Platform (SNAP), and Interactive Data Language (IDL). The final filtered scenes were
classified by random forest (RF), and the results of this classification showed superior performance
compared to the original scenes, showing this methodology can help to recover historic series of
L-band images.

Keywords: ionospheric scintillation; ALOS/PALSAR-2; FFT filtering; SNAP; ENVI

1. Introduction

The Amazon has suffered high rates of deforestation in recent decades, resulting from
dynamic changes in land use and coverage, which have contributed to the increase in
greenhouse gasses, promoting climate change at a regional and global level [1–3].

The development of remote sensing methodologies is increasingly necessary and
a priority for monitoring this forest degradation promoted by agricultural expansion,
urbanization, illegal logging, and extraction of mineral resources [4–7].

Optical sensor systems, commonly used to map and monitor land use and land
cover, are ineffective in tropical regions, and especially in the Amazon, due to frequent
cloud cover and adverse atmospheric conditions, which often make it difficult to obtain
information from these images during rainy season [8]. In recent years, the use of active
sensors (synthetic aperture radar (SAR)) has grown because of its advantages of being
able to generate its own energy source, not being influenced by clouds or aerosols, and
sensitivity to variations in the forest structure [9–13].

Currently, many orbital SAR sensors are operating at different wavelengths, from 3 to
25 cm, where the greatest penetrations in forest canopies are obtained for the longest wave-
lengths, such as L-band. The greater penetration of microwaves allows us to understand
the different forest strata that make up the forest cover at different stages of ecological
succession. This makes it possible to improve the level of thematic characterization of the
landscape, enabling the discrimination of different land use types [12–18].

Among the current operating systems, the Phased Array L-band Synthetic Aperture
Radar (PALSAR) sensor aboard the Japanese Space Agency’s (JAXA) Advanced Land
Observing Satellite (ALOS) operating in the L-band (1.27 GHz) has been shown to be the

Remote Sens. 2022, 14, 962. https://doi.org/10.3390/rs14040962 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14040962
https://doi.org/10.3390/rs14040962
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4585-5067
https://orcid.org/0000-0003-4002-0981
https://orcid.org/0000-0003-0247-8449
https://doi.org/10.3390/rs14040962
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14040962?type=check_update&version=2


Remote Sens. 2022, 14, 962 2 of 13

most suitable sensor for measurements of signal interaction with the interior of the canopy
and, depending on the forest structure, even with the ground surface [19,20].

Due to their longer wavelengths, the ALOS PALSAR-1 and ALOS PALSAR-2 systems
(L-band, λ ∼= 20 cm) are more susceptible to ionospheric effects than the shorter wavelength
SAR systems (C-band, λ ∼= 5 cm or X-band, λ ∼= 3 cm), which correspond, for example, to
the Sentinel-1, RADARSAT Constellation satellites, TerraSAR-X, and CosmoSkyMed.

Previous studies reveled that these scintillation signatures are caused by the turbulent
recombination of free electrons in the post-sunset equatorial ionosphere. This can give rise
to plumelike irregularity regions with total electron content (TEC) fluctuations that can
stretch to over 1000 km along the geomagnetic field lines [21].

These ionospheric disturbances cause a diffractive effect called ionospheric scintilla-
tion, which affects the operation of the Global Navigation Satellite System (GNSS) [22,23] as
well as causes interference stripes in SAR images, visually perceptible in amplitude or inten-
sity images [24]. This disturbance effect extends distances up to 2000 km [21], degrading the
image quality and hindering the classification and identification processing of the studied
phenomena [19,25]. Based on 2800 ALOS-PALSAR images (2006 to 2011) acquired at night
over South America, it was noticed that 14% of them were contaminated with visible stripes,
and in October, 75% of images were contaminated due to ionospheric scintillation [21].

Depending on the solar wind and seasonality (solar activity cycle, ~11 years), iono-
spheric bubbles appear in the equatorial and tropical regions at latitudes ±20◦ [19,23,26],
being more frequent after sunset and from March to April and September to October [21,26].

This article presents a method to detect and minimize the stripes caused by ionospheric
scintillation in the ALOS/PALSAR-2 radar satellite images, through spectral filters in the
wavenumber domain, avoiding degradation of resolution and occurrence of artifacts in
the classification of images as an intermediate step in the processing chain of Sentinel
Application Platform (SNAP) software.

2. Materials and Methods

In this section, we describe the test site and the methodological approach proposed in
this paper. This approach consists of image processing, classification, and validation.

2.1. Study Area

Our experiment was performed in the Tapajós National Forest (TNF) and its sur-
roundings, located in the Brazilian Amazon rainforest, Pará State, 320 km from the equator
(Figure 1). The climate of the region is classified by Köppen as AmW, with an average
annual temperature of 25 ◦C and average relative humidity of 85%. The average annual
rainfall is 1909 mm with a dry season between July and November [12].

This site is situated in a relatively flat area with an elevation between 80 and 180 m [12,13].
The vegetation in the TNF is mainly formed by dense and open ombrophylous rainforests.
These forests are composed of a continuous canopy of perennial trees with heights between
25 and 30 m, and occasional emergent trees that reach up to 50–60 m in height. The
vegetation is also formed by open rainforests, secondary forests, and anthropic areas (crops
and pastures), mainly in the surroundings of the national forest [12].

2.2. Methodological Approach

Image filtering can be understood as transformation techniques applied to each pixel
of the image, taking into account the magnitude levels of a neighboring region of each pixel
of the image. Basically, filtering techniques can be divided into two types: spatial domain
and wavenumber domain filtering. Spatial domain filtering refers to the set of pixels that
make up an image and a set of values that operate directly on these pixels, which can be
expressed as:

g(x,y) = T (f (x,y)) (1)

where f (x,y) is the input image, g(x,y) is the processed image, and T is an operator over f,
defined over some pixels neighboring the pixel (x,y).
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Image filtering in the spatial domain is based on the use of masks. These masks are
small matrices and the values of their coefficients determine the objective to be achieved
during processing [27], in which this filtering process causes a degradation of the resolution
of the final images.

In turn, image processing in the wavenumber domain is usually performed through
three basic steps: (a) the image is transformed from the spatial domain to the wavenumber
domain (two-dimensional spectrum), using Fourier transform; (b) operations are per-
formed on this new image; (c) the inverse process is performed, in which the image in the
wavenumber domain is transformed to the spatial domain (inverse Fourier transform) [27].

The 2-dimensional discrete Fourier transform, which converts image from the spatial
domain to the wavenumber domain, can be expressed by:

F(u, v) =
1

NM

M−1

∑
x=0

N−1

∑
y=0

f (x, y)e−j2π( ux
M +

vy
N ) (2)

where f (x,y) is the image in the spatial domain; F(u,v) is the processed image in the
wavenumber domain; and N and M are the size of the image.

The image filtered in the spatial domain can be expressed by:

G(u,v) = F(u,v) H (u,v) (3)

where G(u,v) is the image filtered in the spatial domain; F(u,v) is the original image pro-
cessed in the wavenumber domain; H(u,v) is the filter function.

In turn, the application of filtering in the two-dimensional spectrum allows great
flexibility in removing elements from the image with characteristics that are predominant,
so that after removing a characteristic, the inverse Fourier transform is applied, recovering
the image and eliminating the unwanted spectrum component but preserving resolution.

The inverse Fourier transform can be expressed by:

f (x, y) = ∑M−1
u=0 ∑N−1

v=0 G(u, v)e j2π( ux
M +

vy
N ) (4)

where f(x,y) is the image in the spatial domain; G(u,v) is the filtered image in the wavenum-
ber domain; N and M are the size of the image.

Figure 2a shows the two-dimensional spectrum of an image, and Figure 2b shows the
regions of the two-dimensional spectrum that correspond to the low-, medium-, and high-
frequency components of the original image [28,29]. The magnitude of the vector (u,v) gives
a frequency, and its direction gives an orientation in the two-dimensional spectrum. The
function is a sinusoid with this frequency along the direction, and constant perpendicular
to the direction. So, if there is a periodic characteristic in a direction in the original image,
its response in the wavenumber domain will be a spectral streak in the orthogonal direction
in the two-dimensional spectrum, as illustrated below.

The ALOS PALSAR-1 and ALOS/PALSAR-2 satellites operate in L-band (~20 cm
wavelength) and their images acquired in the equatorial zones are susceptible to the effect
of ionospheric bubbles, which cause regular patterns in the images, difficult to remove
by spatial filtering due to the patterns not being in alignment with the image orientation,
which changes as the satellite travels in orbit. By analyzing the images in the wavenumber
domain, it is possible to locate the spectral streaks corresponding to these regular patterns,
orthogonal to the stripes observed in the original image, and by eliminating the energy from
the crests through filtering windows, the noise can be removed. After these procedures, the
filtered image can be transformed back to the spatial domain, recovering the backscatter
image without the noise.
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Figure 2. (a) Two-dimensional spectrum of an image; (b) location of the low-, medium-, and high-
frequency components of the two-dimensional spectrum.

The data flow diagram in Figure 3 describes the method through which the ALOS/
PALSAR satellite image was initially prepared by SNAP-v 8.0 software [12]. This initial
processing was responsible for making the pixels regular by the multilooking technique
(2 looks for azimuth and 1 look for range), applying the Lee Speckle filter with a 7×7 window
size, and finally converting the complex data to sigma naught based on Shimada et al. [30].
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Figure 3. Processing steps.

For the conversion of sigma naught images to the wavenumber domain using fast
Fourier transform (FFT), we used Environment for Visualizing Images (ENVI) and Interac-
tive Data Language (IDL) version 5.4 software.

With the sigma naught images converted in the two-dimensional spectrum, the fil-
tering window in the wavenumber domain was defined (band-stop filter) in the desired
spectral streaks. Next, this filtering was performed. Finally, reverse Fourier transform was
carried out, generating a new sigma naught image (filtered image) without the pattern
caused by the ionospheric bubbles.

As the format of the SNAP images differs from that of ENVI/IDL in the Windows
environment, it was necessary to apply a program for compatibility between the Windows
data format and the IEEE format, which corresponded to the inversion of the most signifi-
cant bytes with the least significant ones (MSB–LSB), using the swap_endian function of
the IDL language, generating a new image called a filtered image (IEEE).

This new image was geocoded in SNAP using the Range Doppler Terrain Correction
option. For this procedure, the SRTM (30 m) was used as the DEM, the DATUM WGS84 was
chosen in order to use the same DATUM as the field campaign, carried out for identifying
the regions of interest (ROIs); the sampling was nearest neighbor, and the final pixel spacing
was 8.24 m.

To evaluate the filtering effect, the images were classified using the random forest (RF)
classifier algorithm for land use land cover (LULC) classification. We chose this algorithm
because it provides good classification results to discriminate land use and land cover
dynamics in rainforests for SAR data [31–33]. In this study, we used the Random Forest
package available in he R (v.4.01) software [34].

Basically, the RF classifier consists of an ensemble of decision trees, where each tree
contributes with just a vote for the assignment of the most frequent class to the input data
set, whose final classification result is determined by the most votes of all forest trees. The
algorithm uses bagging (bootstrap) and random samples from training sets for tree building
with replacement from the original training set [35]. Considering our RF classification, a
total of 500 trees were considered. For the RF model training, we used 75% of the samples
and 25% for validation, corresponding to 120 well-distributed samples and 39 independent
samples, respectively.

3. Results
3.1. Image Processing

For this study, an image from the ALOS/PALSAR-2 satellite, in dual mode (polarizations
HH and VV), of the region of the Tapajós National Forest (TNF) with an evident effect of
scintillation was used. The description of the ALOS/PALSAR-2 image used is shown in Table 1.

As shown in Figure 4a, the sigma naught image of ALOS/PALSAR-2, polarization HH,
has harmonic stripes across it (NNW to SSE direction), being more noticeable in regions
with greater anthropization, and less in water areas.
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Table 1. SAR image used.

Image Orbit Date Polarization

ALOS2187487120-171112 Ascending 12 November 2017
HH

HV
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Figure 4. (a) ALOS/PALSAR-2 scene, HH polarization, image with stripes; (b) 2D image spectrum
image; (c) 2D image spectrum with the corresponding stop-band filtering window in red.

Performing the fast Fourier transform (FFT) of the image, in the 2D image spectrum,
we verified the presence of streaks corresponding to the scene details, as well as the noise
of ionospheric scintillation (Figure 4b), orthogonal to the stripes’ orientation (WSW to
ENE direction), mainly in the low-frequency region of the 2D spectrum. To avoid edge
effects in the Fourier transforms, the image was padded in both dimensions, which caused
a specific streak in the 2D image spectrum; thus, this signature could be ignored during
the processing [26].

In this way, the stop-band filter polygon to remove this streak [25] was defined by
visual inspection in the 2D spectral images, using the ENVI Annotation function [36], ana-
lyzing the orientation of the streak and its position in the 2D spectrum. So, the entire streak
was covered by this polygon and the stop-band filter was able to remove the scintillation
noise streak.

Following removal of scintillation noise by the stop-band filter, the inverse FFT trans-
formation was performed to restore the sigma naught image (HH) filtered (Figure 5a).

In turn, to confirm if the polygon of stop-band filter was in the correct position on the
scintillation noise streak of the ALOS/PALSAR-2 image (Figure 4b), a pass-band filter using
the same polygon of the stop-band was applied on the original image to allow isolating the
scintillation noise. We noticed that the noise extracted (Figure 5b) had the same orientation
as the stripes observed in the original image (Figure 4a), confirming that the polygon was
positioned in the correct streak.
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Figure 5. (a) ALOS/PALSAR-2 scene, HH polarization, after stripes removed; (b) stripes image
obtained by the pass-band filtering and inverse FFT.

Figure 6a shows the sigma naught image of ALOS/PALSAR-2 for the HV polarization,
with a similar ionospheric harmonic stripes effect observed in HH polarization. The streak
of ionospheric scintillation noise, orthogonal to the stripes’ orientation, is shown in the 2D
image spectrum in Figure 6b, as well as the padded values streak. Similar to the HH image,
the streaks of the scintillation concentrated on the low frequencies (Figure 6b), which were
responsible for the oscillation image values.
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The sigma naught L-band image, HV polarization, showed stripes with NNW to SSE
direction, similar to the HH image. So, the same filtering procedure performed for HH
polarization image was applied to the HV image. The stop-band filtering was defined
by visual analysis in order to cover the entire streak orthogonal to the stripes’ orientation
(WSW to ENE direction) and disregarding the padded streak. The result of the processing
is shown in Figure 7a.
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Figure 7. (a) ALOS/PALSAR-2 scene, HV polarization, with scintillation noise removed; (b) scintillation
noise extracted by pass-band filtering and inverse FFT.

In order to verify if the polygon of the stop-band filter was positioned in the correct
streak (noise streak), the same polygon was applied for the pass-band filter. Figure 7b
shows the result of pass-band filtering, where the noise stripes have the same orientation as
the original image stripes (Figure 6a), showing that the polygon of filtering was positioned
on the correct streak, and it was able to extract the scintillation noise stripes.

After noise removal processing of the images with HH and HV polarizations in ENVI,
the IDL routine described in the methodology was used to allow importing them into
SNAP for geocoding (range Doppler terrain correction).

The original and filtered images (HH and HV) with terrain correction were recombined
using the RStudio environment, with the HV composition for the red channel and HH for
the green channel; the blue channel was not filled (Figure 8). These compositions were
necessary for the classification process using random forest.

3.2. Random Forest Classification

The classification result for scenes with scintillation noise and with scintillation noise
removal are shown in Figure 9. A body water mask was used in order to not confuse the
LULC classification and thus obtain the best results. The regions of interest (ROIs) for the
classification were based on the data collected during the field work in the TNF.

For the classification performed, the classes Primary Forest (PF), Advanced Secondary
Succession (SS3), Intermediate Secondary Succession (SS2), Initial Secondary Succession
(SS1), Poorly Managed Pasture (PP), Well Man-aged Pasture (WP), Cropland (CR), De-
graded Forest (DF), and Bare Soil/Fallow (BS) were analyzed based on the field surveying
carried out at the test site in September 2016, that categorized these classes of landscape [12].
Table 2 describes the LULC classes analyzed.
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Comparing the performance tables of the scenes’ classifications for the filtered and non-
filtered images, some LULC classes were changed, as in the case of PP class improvement
as well as the DF, SS2, and WP classes. This can also be seen by the Kappa index, which
was higher for the filtered images (0.51), as presented in the Table 3 footer, than for the
original images (0.48) in the Table 4 footer. The overall accuracy (OA) of RF classification
showed a better value for the filtered scenes (0.6) than the original scenes (0.57).
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Table 2. Land use and land cover classes.

Class Description Class Description

DF
Forests that suffered a slight loss of

density due to indiscriminate logging
and/or burning activities

CR Agricultural crops throughout the
phenological development phase

PF Forests without anthropogenic change BS Temporary agricultural rest areas
between growing seasons

SS3 Natural regeneration over 15 years WP Well-managed pastures with few
invasive species

SS2 Natural regeneration from 5 to 15 years PP Pastures with the presence of species
shrub weeds, babassu and/or inajá

SS1 Natural regeneration under 5 years – –

Table 3. Performance of the RF algorithm for the scenes after filtering.

Classes PF SS3 SS2 SS1 PP WP CR DF BS
PF 0 1 0 0 0 0 0 2 0

SS3 1 2 2 0 0 0 0 5 0
SS2 0 3 10 4 3 1 2 8 0
SS1 3 0 3 11 12 2 6 10 0
PP 0 0 10 22 121 33 11 5 0
WP 0 0 0 2 17 54 2 0 3
CR 0 2 1 3 5 11 70 1 2
DF 12 14 11 10 7 0 5 98 0
BS 0 0 0 0 1 1 4 0 24

*Kappa: 0.51; overall accuracy (OA): 0.60

Table 4. Performance of the RF algorithm for the original scenes without filtering.

Classes PF SS3 SS2 SS1 PP WP CR DF BS
PF 1 1 1 0 0 0 0 1 0

SS3 1 6 1 0 0 0 0 5 0
SS2 1 0 5 1 3 1 0 6 0
SS1 5 4 3 18 5 1 5 6 0
PP 2 0 12 18 107 37 13 4 6
WP 0 0 1 1 31 48 9 0 3
CR 1 0 5 1 12 16 70 0 8
DF 9 11 12 9 4 0 0 94 0
BS 0 0 0 0 1 1 4 0 22

*Kappa: 0.48; overall accuracy (OA): 0.57

4. Discussion

Some studies reported that scintillation noise causes disturbance in polarimetric
images [21,37]. This was also noticed in our experiment, lowering RF classification perfor-
mance for the original scenes. Our classification performance showed that Kappa and the
OA indexes were improved when noise removal was performed, which presented similar
classification results to those obtained using L-band images without scintillation effect
by [14] using JERS-1 data, and by [38] using ALOS PALSAR, showing that the methodology
used in this study can improve data quality, especially for LULC applications.

A little noise from the remaining scintillation in the Tapajós River region was perceived
in the HH polarization image, since this polarization has a greater response to the surface
of water bodies due to currents and winds. This behavior was also observed by [25]. For
the HV polarization image, this scintillation effect was not noticed in the filtered images.

The positioning of the stop-band filtering windows, by visual analysis, required
some tests until reaching the correct spectral streak (Figures 4b and 6b), corresponding to
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ionospheric scintillation, avoiding the target’s characteristics removal. This outcome was
also observed by [25]. Based on this evidence, it is important to highlight that an automated
or semi-automated process could be applied to make the search faster.

Due to fact that all processing was carried out in the Windows environment, the IDL
routine was necessary to be applied (bytes inversion); if the Linux environment were to be
used, the IDL routine step would not be necessary, which would simplify the processing.
If the SNAP program incorporates FFT filtering tools in the future, the entire processing
chain could be carried out simultaneously, simplifying the execution.

5. Conclusions

The method proposed here was shown to be effective in removing the scintillation
noise from sigma naught ALOS/PALSAR-2 images, improving the classification of different
targets of interest. This methodology can also be applied to data from other L-band sensors,
such as the SAOCOM satellite, over tropical zones, which can be helpful for studies of
historic series of L-band images.

The location of the stop-band filtering in the 2D spectrum band of the images demands
certain effort as well as the definition of the dimensions of the polygon of the filtering
window to cover the spectral streak of the noise. In this way, a need remains for the
development of techniques that can automate this process, avoiding any filtering mistakes.

In case the stripes of the image are perfectly aligned with the image acquisition orien-
tation, it will be difficult to locate the streak of the noise in the 2D spectrum. Therefore, it
would be better, in this case, to average image columns to determine the correction function.

The processing was carried out using ENVI software, a programming routine in
IDL, and SNAP software; other environments and languages can also be used, such as
Python or C++, for instance, but they will demand a greater effort in the development of
programming routines.

Although the Kappa and OA values were not very high after the proposed processing,
there was a substantial visual improvement in the images, as shown in Figure 8b, which
greatly facilitates their interpretation when the noise effect is removed.

In this study, we used sigma naught ALOS PALSAR-2 images, but the same methodol-
ogy may also be applied to amplitude or intensity images; in turn, complex images will
require more studies to determine the effects of scintillation noise in the phase data.

In case of flexibility in the acquisition scheduling of L-band data for tropical regions
close to the equator (±20◦), we suggest avoiding the periods from March to April and
September to October in order to prevent expressive effect of atmospheric scintillation,
especially after sunset, when the phenomenon is more intense.
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Abbreviations

SAR Synthetic Aperture Radar
LULC Land Use Land Cover
FFT Fourier Fast Transform
AGB Aboveground Biomass
OA Overall Accuracy
IDL Interactive Data Language
PALSAR Phased Array L-band Synthetic Aperture Radar
ALOS Advanced Land Observing Satellite
TNF Tapajós National Forest
GNSS Global Navigation Satellite System
RF Random Forest Classifier
SNAP Sentinel Application Platform
ENVI Environment for Visualizing Images
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