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Abstract: In this paper, an algorithm based on local binary pattern (LBP) is proposed to obtain
clear remote sensing images under the premise of unknown causes of blurring. We find that LBP
can completely record the texture features of the images, which will not change widely due to the
generation of blur. Therefore, LBP prior is proposed, which can filter out the pixels containing
important textures in the blurry image through the mapping relationship. The corresponding
processing methods are adopted for different types of pixels to cope with the challenges brought by
the rich texture and details of remote sensing images and prevent over-sharpening. However, the
existence of LBP prior increases the difficulty of solving the model. To solve the model, we construct
the projected alternating minimization (PAM) algorithm that involves the construction of the mapping
matrix, the fast iterative shrinkage-thresholding algorithm (FISTA) and the half-quadratic splitting
method. Experiments with the AID dataset show that the proposed method can achieve highly
competitive processing results for remote sensing images.

Keywords: blind image deblurring; image restoration; LBP prior; remote sensing image

1. Introduction

Affected by many factors, such as the imaging environment and camera shake, an
acquired image may face the problems of image quality degradation and loss of important
details caused by blurring during the imaging process. Therefore, it is necessary to study
how to restore the image without prior knowledge, i.e., blind image deblurring. Ideally,
the image quality degradation model can be expressed as:

G = H ∗U + N (1)

where G, H, U, and N represent the blurry image, the blur kernel, original clear image, and
noise, respectively. ∗ represents convolution operator. Obviously, this is a typical ill-posed
problem with countless conditional solutions. In order to find the optimal solution, we need
to use the image feature information to change an ill-posed equation into a benign equation.
Traditional image deblurring algorithms are generally divided into two parts: blind image
deblurring algorithm, which can estimate an accurate blur kernel, and non-blind image
deblurring that uses the estimated blur kernel to obtain a clear image.

Early image restoration algorithms used parameterized models to estimate blur
kernels [1,2]. Still, the real blur kernels rarely follow the parameterized models, which
leads to the lack of universality of such methods. After the total variation model proposed
by Rudin et al. [3] in 1992, the theory of partial differential equations has become more and
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more popular in blind image restoration algorithms. Since then, researchers have designed
two algorithmic frameworks based on theories of probability and statistics: Maximum a
posteriori (MAP) [4–7] and Variational Bayes (VB) [8–12]. Although VB-based algorithms
have good stability, their rapid development is permanently restricted by the complexity
and vast calculation. On the contrary, MAP-based methods are relatively simple. However,
Levin et al. [13] pointed out that the naive MAP approach, which is based on the sparse
derivative prior, cannot achieve the expected effect. Therefore, it is necessary to introduce
an appropriate blur kernel prior and delay the blur kernel normalization. Analyzing proba-
bility, the issue is recovering the clear image U and the blur kernel H simultaneously. This
is equivalent to solving the standard maximum posterior probability. It can be expressed as:

(U, H) = arg max P(U, H|G) ∝ arg max P(G|U, H)P(U)P(H) (2)

where P(G|U, H) is the noise distribution; P(U) and P(H) are the prior distributions of the
latent clear image and blur kernel, respectively. After taking the negative logarithm of each
item in (2), it is equivalent to the following regular model:

(U, H) = arg min ψ(G− H ∗U) + αΦ(U) + βΨ(H) (3)

where ψ(:) is the fidelity term, Φ(U) and Φ(H) are regularization functions about U and
H. α and β are the corresponding parameters.

Under the MAP framework, some algorithms seek the optimal solution by utilizing
sharp edges. However, when sharp edges are missing in some images, solving the problem
requires prior knowledge that can distinguish between clear images and blurry images.
Pan et al. [14] noted the difference in dark channel pixel distribution between the clear
and blurry images. They proposed the dark channel prior, which performed well in
processing natural, text, facial, and low-light images. To avoid the algorithm failure
caused by insufficient dark channel pixels in the image, Yan et al. [15] introduced both
dark channels and bright channels into the image-blind deblurring model. Ge et al. [16]
pointed out that the above two methods will fail when there are insufficient extreme pixels.
Therefore, they constructed a non-linear channel (NLC) prior and introduced it into a blind
images deblurring algorithm. However, these methods may not perform well in processing
remote sensing images.

In this paper, we notice that the similarity of LBP for clear and blurry images can be
applied to blind image deblurring. A new optimization algorithm is proposed, inspired
by algorithms based on extreme channels and local priors. We use the local binary pattern
(LBP) [17] as the threshold to filter critical pixels containing texture features by establishing
their mapping relationship to the image, the intensities of which will be accumulated by
the strong convex L1-norm. The gradients of different types of pixels will be processed
correspondingly using the L0-norm and L2-norm. It is complicated to solve the restoration
model directly, so the original problem needs to be decomposed into multiple sub-problems
using the half-quadratic splitting method to facilitate results. In addition, we indirectly
optimize the LBP prior by constructing a linear operator and adopt fast iterative shrinkage-
thresholding algorithm (FISTA) [18] to solve the related equations. The contributions of
this paper are as follows:

(1) We note that LBP can completely extract the texture features of the images, which
will not change significantly due to the presence of blur. Therefore, the LBP of the
image can be used to locate the pixels that contain important texture information in
the image by mapping.

(2) A new remote sensing image deblurring algorithm based on LBP prior is proposed,
which can remove the blur in the image and prevent over-sharpening by classifying
all pixels and processing them in different ways.

(3) As shown in the results, our proposed method, which has good stability and conver-
gence, achieves extremely competitive results for remote sensing images.
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The outline of the paper is as follows: Section 2 summarizes the related work in the
field of image deblurring in recent years. Section 3 introduces the LBP prior and establishes
the image-blind deblurring model and the corresponding optimization algorithm. Section 4
is the display of algorithm processing results. Section 5 makes a quantitative analysis of
the performance of the proposed algorithm and discusses our algorithm after sufficient
analysis and obtaining experimental results. Section 6 is the conclusion of this article.

2. Related Work

Blind image deblurring is now roughly divided into three categories: edge selection-
based algorithms, image prior knowledge-based algorithms and deep learning-based algo-
rithms. This part summarizes the achievements of blind image restoration in recent years.

2.1. Edge Selection-Based Algorithms

As one of the key features of recorded image information, edge information is widely
used in image deblurring. Joshi et al. [19] used sub-pixel differences to locate important
edges to estimate the blur kernel. Cho and Lee [20] proposed bilateral filters and impulsed
filters to extract edge information in images. Xu and Jia [21] found that when the size
of the edge is smaller than the blur kernel’s, it will affect the estimation of the kernel.
Therefore, they proposed a new two-stage processing scheme based on the edge selection
criteria. Sun et al. [22] used a patch method to extract edge information. However, this
algorithm has a lot of calculation and time-consuming image processing. When there are
insufficient sharp edges in an image, edge selection-based algorithms will fail. However,
in the algorithms based on prior knowledge, the image edge information does not disappear,
which is hidden in the regular term or prior knowledge, i.e., the low-rank characteristics of
the gradient [23], L0-norm of the gradient of the latent image [24] and the local maximum
gradient prior [25], etc. In the restoration of hyperspectral images, gradient information
has also received much attention. Yuzuriha et al. [26] took into account the low-rank
nature of the gradient domain into the restoration model to make it better able to deal with
anomalous variations.

2.2. Image Priors-Based Algorithms

Observing the clear and blurry images, much prior conducive to image restoration is
applied to the algorithm. Shan et al. [27] used a probability model to process natural images
with noise and blur. Krishnan et al. [28] proposed the L1/L2 norm with sparse features after
analyzing the statistical characteristics of the image. Levin et al. [10] designed the maximum
a posterior (MAP) framework based on the characteristics of image pixel distribution.
Kotera et al. [29] improved the MAP method using image priors, which are heavier tail than
Laplace, and applied a method of augmented Lagrangian. Michaeli and Irani [30] used the
recursive characteristics of image patches at different scales to restore images. Ren et al. [23]
adopted a method of minimizing the weighted nuclear norm, which combined the low rank
prior of similar patches the blurry image and its gradient map, to enhance the effectiveness
of the image deblurring algorithm. Zhong et al. [31] proposed a high-order variational
model to process blurred images with impulse noise. After Pan et al. [14] used a dark
channel prior for image deblurring and achieved excellent results, the sparse channel has
attracted much attention in blind image deblurring. Yan et al. [15] combined dark channel
and bright channel and designed an extreme channel prior algorithm. Since then, Yang [32]
and Ge [16] have made further improvements to the problems faced by the extreme channel
prior algorithms. At the same time, the blind image deblurring algorithms, based on local
prior information, have also made significant achievements, i.e., the method based on the
local maximum gradient (LMG) prior proposed by Chen et al. [25] and the method based
on the local maximum difference (LMD) prior proposed by Liu et al. [33]. The algorithm
we proposed also belongs to this category. Recently, Zhou et al. [34] established the image
deblurring model of the luminance channel in YCrCb colorspace based on the dark channel
prior, which expands a new idea for better processing color images. The image deblurring
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algorithm proposed by Chen et al. [35], which takes advantage of both saturated and
unsaturated pixels in the image, effectively removes the blur of night scene images and has
excellent inspiration for the processing of night remote sensing images.The restoration of
hyperspectral images generally uses low-rank priors [26,36,37].

2.3. Deep Learning-Based Deblurring Methods

With the development of deep learning technology, related image deblurring algo-
rithms have also been developed. Early learning networks, such as those proposed by
Sun et al. [38] and Schuler et al. [39], were still designed based on the alternating direc-
tions method of multipliers used in traditional algorithms. Li et al. [40] combined deep
learning networks with traditional algorithms, which use neural network learning priors to
distinguish images. However, it is inferior when dealing with some complex and severely
motion-blurred images. Some methods do not need to estimate the blur kernel, which
can obtain clear images directly through training. For example, Nah et al. [41] trained a
multi-scale convolutional neural network (CNN). Cai et al. [42] introduced the extreme
channel prior to CNN. Zhang et al. [43] and Suin et al. [44] use multi-patch networks to
improve performance. In order to reduce the computational complexity of the algorithm
and obtain sufficient image information, the feature pyramid has become the focus of
multi-scale learning. Lin et al. [45] proposed a feature pyramid network (FPN) that can
fuse mapping information of different resolutions. In the field of deep learning, new net-
works are constantly being proposed to deal with different imaging situations and take
shorter processing time, i.e., GAMSNet [46], ID-Net [47], DCTResNet [48] and LSFNet [49].
However, these methods have many model parameters and require a large number of data
sets for long-term training to achieve good processing results.

3. Local Binary Pattern Prior Model and Optimization

In this part, we briefly introduced the local prior, i.e., LBP, and constructed an opti-
mization model based on the LBP prior for blind image deblurring.

3.1. The Local Binary Pattern

LBP, the characteristics of intensity and rotation invariance, can extract local texture
features in an image. Its principle is shown in Figure 1. In a window with the size of 3 × 3,
the center pixel is compared with its 8-neighbor pixels. When a peripheral pixel is smaller
than the center pixel, the location of the peripheral pixel is marked as 0; otherwise, it is
recorded as 1. After that, we encode the 8-bit binary number generated to obtain the LBP
value corresponding to the center pixel of the window.

Figure 1. Schematic diagram of LBP feature extraction principle.

Its formula is expressed as:

LBP(ac, bc) =
7

∑
p=0

2ps(gp − gc) (4)
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where (ac, bc) is the center pixel, gc is the intensity of the central pixel, gp is the intensity of
the peripheral pixel, s(t) is the sign function.

s(t) =
{

1,
0,

t ≥ 0
t < 0

(5)

3.2. The Local Binary Pattern Prior

By observing the histogram of the LBP distribution of the clear image and the blurred
image, it can be noticed that the blur does not change the distribution of the LBP value in
an extensive range. Thus, LBP can be used to get the key pixels in the image restoration
process. Different types of pixels will be processed accordingly to sharpen the image and
remove fine textures (Figure 2).

For the key pixels, we use the convex L1-norm for accumulation and define the LBP
prior as:

ϕ(U) = ||L(U)||1 (6)

At the same time, as shown in Formula (7), we constrain the gradient of key pixels
with the L0-norm and use the L2-norm to constrain the gradients of other pixels,

φ(∇U) =

{
||∇U||0,
||∇U||22,

TL < LBPU < TM
otherwise

(7)

where TL and TM are the upper and lower limits of the threshold, respectively, LBPU is
the LBP value of the image and ∇ is the gradient operator.

(a) (b) (c)

Figure 2. Top: A blurry image, corresponding LBP map and LBP normalized distribution histogram.
Bottom: The clear image, corresponding LBP map and LBP normalized distribution histogram.
(a) Image pair [50]; (b) LBPs; (c) LBP normalized distribution histograms.

According to the above analysis, we use MAP as the framework and introduce LBP
prior to design an effective optimization algorithm. The optimization function is defined as:

min
H,U
||H ∗U − G||22 + α||L(U)||1 + βφ(∇U) + γ||H||22 (8)

where α, β and γ are the weights of the corresponding regularization terms. The items in the
objective function are the fidelity term, the related term of the LBP prior, the image gradient
regular term and the constraint term to keep the blur kernel H smooth. The projected
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alternating minimization (PAM) algorithm is used to decompose the objective function into
sub-problems to solve the clear image U and the blur kernel H.

min
U
||H ∗U − G||22 + α||L(U)||1 + βφ(∇U) (9)

min
H
||H ∗U − G||22 + γ||H||22 (10){

H(i, j) ≥ 0
∑
Ω

H(i, j) = 1 (11)

where (i, j) represents the coordinates of the blur kernel element. Note that all elements of
h are greater than zero and sum to 1. After iteratively estimating the blur kernel, we can
restore a clear image through the existing non-blind restoration methods.

3.3. Estimating the Latent Image

Because of LBP prior and regularization term φ(∇U), it is necessary to decompose (9)
into three sub-problems by half-quadratic splitting method, which can be expressed as:

min
U,w,z

||H ∗U − G||22 + α||w||1 + βϕ(z) + λ1||L(U)− w|||22 + λ2||∇U − z|||22 (12)

ϕ(z)=
{
||z||0,
||z||22,

TL < LBPU < TM
otherwise

(13)

where λ1 and λ2 are the penalty parameters, w and z are auxiliary variables. When λ1 and
λ2 tends to infinity, (9) and (12) are equivalent. First, we solve the parameter w via:

min
w

α||w||1 + λ1||L(U)− w|||22 (14)

where L(U) is a non-linear operator, which cannot be directly solved linearly. Therefore,
we need to construct a sparse mapping matrix C from key pixels to the original image,
which is defined as:

C(i, j) =
{

1,
0,

TL < |LBPU(i, j)| < TM
otherelse

(15)

Same as [16], C will be calculated explicitly, and (14) is equivalent to the following formula:

min
w

α||w||1 + λ1||CU − w|||22 (16)

This is a classic convex L1-regularized problem, which can be solved by FISTA [18].
The contraction operator is defined as:

De(w) = sgn(w)max(|w− e|, 0) (17)

The solution process is shown in Algorithm 1.
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Algorithm 1: Solving auxiliary variables w.

Input: a1 = ones(size(U)), a2 = sparse(a1), A = diag(a2), B = CU, α, λ1.
t = max(eig(AT A)), m = 1, and q1 = 1.
Maximum iterations M, initialize y1 = s0.
While m < M

sm = Tα/λ1
(ym − tAT(Aym − B)).

qm+1 =
1 +

√
1 + 4q2

m

2
.

ym+1 = sm +
qm − 1
qm+1

(sm − sm−1).

m = m + 1.
End while
w = AsM.

The next step is to solve for z:

min
z
||H ∗U − G||22 + βϕ(z) + λ2||∇U − z|||22 (18)

When ϕ(z) = ||z||0, then

z =

{
0
∇u,

|∇u|2 < β/λ2
otherwise

(19)

When ϕ(z) = ||z||22, then

z =
λ2∇u
β + λ2

(20)

Given w and z, we finally solve U by the following formula:

min
U
||H ∗U − G||22 + λ1||CU − w|||22 + λ2||∇U − z|||22 (21)

Although (21) is a least-squares problem, we cannot directly solve it by using Fast
Fourier Transform (FFT). Therefore, it is necessary to introduce a new auxiliary variable d:

min
U
||H ∗U − G||22 + λ1||Cd− w|||22 + λ2||∇U − z|||22 + λ3||U − d||22 (22)

where λ3 is a penalty parameter. The alternating directions method of multipliers is used
to decompose (22) into two sub-problems:

min
d

λ1||Cd− w|||22 + λ3||U − d||22 (23)

min
U
||H ∗U − G||22 + λ2||∇U − z|||22 + λ3||U − d||22 (24)

Both (23) and (24) have closed-form solutions. The solution of (23) is as follows:

d =
λ1CTw + λ3U
λ1CTC + λ3

(25)

We can use FFT to solve Equation (24):

U = F−1
(

F̄(H)F(G) + λ2 F̄(∇)F(z) + λ3F(d)
F̄(H)F(H) + λ2 F̄(∇)F(∇) + λ3

)
(26)

where F, F̄ and F−1 represent the FFT, the complex conjugate operator of FFT and the
inverse FFT, respectively.

The process of solving U is shown in Algorithm 2.
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Algorithm 2: Estimating the latent image.

Input: Blurry image G and blur kernel H.
Initialize λ1, U ← G.
For i← 1 to 5

Solve w using Algorithm 1.
Initialize λ3.

For j← 1 to 4
Solve d using Equation (23).
Initialize λ2.
While λ2 < λmax

2
Solve z using Equation (18).
Solve U using Equation (26).
λ2 ← 2λ2.

End while
λ3 ← 4λ3.

End for
λ1 ← 4λ1.

End for
Output: latent image U.

3.4. Estimating the Blur Kernel

Referring to a variety of restoration algorithms [14–16,24,25,38], we replace the image
intensities in (10) with the image gradients to make the estimated blur kernel more accurate.
The formula for solving the blur kernel is:

min
H
||H ⊗∇U −∇G||22 + γ||H||22 (27)

The blur kernel can be obtained by using FFT:

H = F−1
(

F̄(∇U)F(∇G)

F̄(∇U)F(∇U) + γ

)
(28)

After obtaining the blur kernel, it needs to be non-negative and normalized:{
H(i, j) = 0, i f H(i, j) < m ·max H(i, j)

∑
Ω

H(i, j) = 1 (29)

where m is the weight. The solution process of the blur kernel is shown in Algorithm 3.
Figure 3 is a brief flow-chart of this algorithm.

Algorithm 3: Estimating the blur kernel.

Input: Blurry image G.
Initialize H with results from the coarser level.
While i ≤ maxiter do

Solve U using Algorithm 2.
Solve H using Equation (28).

End while
Output: Blur kernel H and intermediate latent image U.
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Figure 3. A brief flow-chart of this algorithm.

3.5. Algorithm Implementation

This section describes the relevant details that need to be paid attention to in the
implementation of this algorithm. In order to get a more accurate blur kernel, we construct
a multi-scale image pyramid from coarse-to-fine with a down-sampling factor of

√
2/2,

and the total number of cycles of each layer of the pyramid is 5. After estimating the
potential clear image U and the blur kernel H, we up-sample the blur kernel H and pass
it to the next layer. We usually set α = 0.004− 0.012, β = 0.004− 0.014, γ = 2, ThL = 0.5,
ThM = 1 and m = 0.8. The number of iterations of the FISTA algorithm is empirically set
to 500. These parameters can be adjusted as needed. Finally, a clear image can be obtained
after applying the obtained blur kernel to the existing non-blind deblurring method.

4. Experiment Results

In this paper, the experimental results are divided into simulated and real remote
sensing image data. Our method is tested on the AID dataset (http://www.captain-whu.
com/project/AID/, accessed on 26 November 2021). The following shows the comparison
results of our method with four algorithms, which use the heavy-tailed prior (HTP) [29],
the dark channel prior (Dark) [14], L0-regularized intensity and gradient prior (L0) [24] and
the non-linear channel prior (NLCP) [16].

4.1. Simulate Remote Sensing Image Data

AID is an aerial image data set composed of sample images collected from Google
Earth. The data set consists of the following 30 types of aerial scenes, all of which are marked
by experts in the field of remote sensing image interpretation, totaling 10,000 images. In
the test experiment of simulated remote sensing images, we selected four images from
the AID data set to verify the effectiveness of the algorithm, as shown in Figure 4. Taking
into account the types of blur in the actual remote sensing images, we added motion blur,
Gaussian blur, and defocus blur to the image, respectively, and adopted Peak-Signal-to-
Noise Ratio (PSNR), Structural-Similarity (SSIM) [51] and Root Mean Squard Error (RMSE)
as judgment indexes.

http://www.captain-whu.com/project/AID/
http://www.captain-whu.com/project/AID/


Remote Sens. 2022, 14, 1276 10 of 23

(a) (b) (c) (d)

Figure 4. Selected remote sensing image (Simulate).

4.1.1. Motion Blur

We added motion blur with an angle of 0◦ and the displacement of 10 pixels to the
remote sensing images. The processing results of each method are shown in Table 1. HTP
can sharpen the main contour edges of the image very well, but its ability to retain the
details of the image is poor. Furthermore, the images processed by HTP have artifacts
remaining. Dark and L0 use L0-norm processing for the prior items of images, which leads
to the problem of the over-sharpening of the image. This phenomenon is grave when
facing remote sensing images with complex texture details. NLCP and our method use
convex L1-norm accumulation for the prior terms of the image. The processing results have
good visual effects and will not appear to have over-sharpening like Dark and L0, but the
PSNR, SSIM and RMSE of our method are better. However, for Figure 4b with too many
details, NLCP sharpens the tiny details in the image and makes the resulting image quality
degraded. In general, our method performs well in processing remote sensing images with
motion blur. Figures 5 and 6 show representative images of the processing results.

Table 1. Quantitative Comparisons on Remote Sensing Image with Motion Blur.

Method
Figure 4a Figure 4b

PSNR SSIM RMSE PSNR SSIM RMSE

HTP [29] 22.9257 0.7882 1.71× 10−4 15.5394 0.51 1.28× 10−4

Dark [14] 24.9247 0.8343 2.08× 10−4 8.7337 0.1263 5.94 × 10−5

L0 [24] 17.389 0.6035 2.81× 10−4 9.6171 0.2032 7.51× 10−5

NLCP [16] 26.0395 0.8514 1.55× 10−4 10.8196 0.3499 2.67× 10−4

Ours 26.4378 0.8547 6.02 × 10−5 16.096 0.5591 1.71× 10−4

Method
Figure 4c Figure 4d

PSNR SSIM RMSE PSNR SSIM RMSE

HTP [29] 29.8503 0.8088 7.07 × 10−5 4.3138 0.0565 8.78× 10−4

Dark [14] 29.9602 0.8143 2.14× 10−4 17.9493 0.6659 2.19× 10−4

L0 [24] 25.1494 0.7386 2.43× 10−4 14.139 0.534 2.52× 10−4

NLCP [16] 28.9047 0.7755 2.45× 10−4 23.4888 0.8028 1.91× 10−4

Ours 30.1424 0.8163 2.04× 10−4 25.6768 0.8427 2.07 × 10−6



Remote Sens. 2022, 14, 1276 11 of 23

(a) Blurry Image (b) HTP (c) Dark

(d) L0 (e) NLCP (f) Ours

Figure 5. Visual comparison of remote sensing image (Figure 4a) with motion blur processed by
different methods.

(a) Blurry Image (b) HTP (c) Dark

(d) L0 (e) NLCP (f) Ours

Figure 6. Visual comparison of remote sensing image (Figure 4d) with motion blur processed by
different methods.

4.1.2. Gaussian Blur

For Gaussian blur, we set its size to 20 × 20 and standard deviation to 0.5. The eval-
uation results of each method are shown in Table 2. Through observation, it can be seen
that the performance of each method in processing Gaussian blur is similar to that in
processing motion blur. The images processed by HTP lack detailed information. Dark and
L0 are more serious damage to images with rich details. NLCP performs well in most cases
and achieves results consistent with the subjective vision of our method. However, when
processing Figure 4b with too many details, it still sharpens the tiny details in the image,
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which greatly reduces the evaluation of visual effects and objective indicators. In general,
in the process of removing the Gaussian blur of the remote sensing image, the restored
images of our method achieve good visual effects and objective indicators. Figures 7 and 8
show representative images of the processing results.

Table 2. Quantitative Comparisons on Remote Sensing Image with Gaussian Blur.

Method
Figure 4a Figure 4b

PSNR SSIM RMSE PSNR SSIM RMSE

HTP [29] 16.0017 0.5744 9.71× 10−4 15.0446 0.5493 2.38× 10−4

Dark [14] 12.0795 0.4805 3.46× 10−4 1.2252 0.0336 4.41× 10−4

L0 [24] 10.3751 0.4253 4.18× 10−4 1.1397 0.0072 4.24× 10−4

NLCP [16] 21.32 0.8159 3.88× 10−4 11.8677 0.4549 4.76× 10−4

Ours 22.4017 0.8094 1.71 × 10−4 16.8765 0.6564 8.93 × 10−5

Method
Figure 4c Figure 4d

PSNR SSIM RMSE PSNR SSIM RMSE

HTP [29] 27.0649 0.7649 7.71 × 10−5 -4.3236 0.0012 5.86× 10−4

Dark [14] 24.927 0.6602 1.55× 10−4 11.4001 0.4046 1.18× 10−4

L0 [24] 14.5766 0.2655 2.11× 10−4 7.5502 0.3127 4.96× 10−5

NLCP [16] 27.4396 0.7738 1.45× 10−4 20.1692 0.7744 3.40× 10−5

Ours 31.1574 0.9026 1.37× 10−5 23.2932 0.8725 2.62 × 10−5

(a) Blurry Image (b) HTP (c) Dark

(d) L0 (e) NLCP (f) Ours

Figure 7. Visual comparison of remote sensing image (Figure 4b) with Gaussian blur processed by
different methods.
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(a) Blurry Image (b) HTP (c) Dark

(d) L0 (e) NLCP (f) Ours

Figure 8. Visual comparison of remote sensing image (Figure 4c) with Gaussian blur processed by
different methods.

4.1.3. Defocus Blur

We added defocus blur with a radius of 2 to the remote sensing image. The evaluation
results of each method are shown in Table 3. Through observation, it can be seen that HTP
cannot retain the detailed information of the image. Except for Figure 4b, the results of
Dark processing have no obvious over-sharpening phenomenon. The result has excellent
evaluation indexes, especially when Dark deals with Figure 4c with scarce detail informa-
tion. The performance of NLCP is very stable and can achieve good results in most cases.
Overall, for processing remote sensing images with defocus blur, the images processed by
our method and NLCP achieve excellent visual effects compared to other methods, but our
method achieves higher objective metrics. Figures 9 and 10 show a representative image of
the processing result.

Table 3. Quantitative Comparisons on Remote Sensing Image with Defocus Blur.

Method
Figure 4a Figure 4b

PSNR SSIM RMSE PSNR SSIM RMSE

HTP [29] 24.5929 0.8585 7.68× 10−5 21.2477 0.7874 1.10× 10−4

Dark [14] 25.7106 0.868 9.54× 10−5 6.528 0.0915 1.55× 10−4

L0 [24] 20.6962 0.759 6.79× 10−5 10.413 0.3589 2.42× 10−4

NLCP [16] 27.2596 0.892 2.45× 10−5 21.3035 0.7968 1.29× 10−4

Ours 27.6087 0.8957 2.40 × 10−5 21.7349 0.8063 1.09 × 10−4

Method
Figure 4c Figure 4d

PSNR SSIM RMSE PSNR SSIM RMSE

HTP [29] 30.548 0.843 9.77 × 10−5 1.7656 0.0195 2.50× 10−3

Dark [14] 31.7588 0.8616 1.60× 10−4 21.7453 0.781 8.82× 10−5

L0 [24] 30.6986 0.8476 1.82× 10−4 16.2103 0.6318 6.96× 10−5

NLCP [16] 30.2685 0.8337 1.39× 10−4 27.5728 0.8918 9.69× 10−5

Ours 32.1723 0.8699 1.73× 10−4 27.8422 0.8991 8.08 × 10−5
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(a) Blurry Image (b) HTP (c) Dark

(d) L0 (e) NLCP (f) Ours

Figure 9. Visual comparison of remote sensing image (Figure 4b) with defocus blur processed by
different methods.

(a) Blurry Image (b) HTP (c) Dark

(d) L0 (e) NLCP (f) Ours

Figure 10. Visual comparison of remote sensing image (Figure 4d) with defocus blur processed by
different methods.

4.2. Real Remote Sensing Image Data

In the real remote sensing images test experiment, we selected four blurry images
from the AID data set (Figure 11a–d) and a target image was taken in the experiment
(Figure 11e), as shown in Figure 11, to test the effectiveness of our algorithm. In this
case, there are no reference images, so we need to apply the no-reference image sharpness
assessment indexes. The evaluation indexes include image Entropy (E) [52], Average
Gradient (AG) and Point sharpness (P) [53]. Through the comparison of Tables 4 and 5,
Figures 12–16, it is clear that HTP restores the overall outline of the image very well but
lacks the ability to retain detailed information. The processing results of Dark and L0
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algorithms face the problem of over-sharpening. When processing Figure 11a,d with very
little texture information, the over-sharpening effect is not obvious, and the resulting
image has good visual effects and objective evaluation indicators. However, this effect is
particularly serious when dealing with images with many details and scenes (Figure 11b,c,e).
The images processed by our algorithm and NLCP can retain more image details, and the
visual effects of them are almost the same. However, our algorithm has achieved higher
objective evaluation indicators.

(a) (b) (c) (d)

(e)

Figure 11. Selected remote sensing image (Real).

Table 4. Quantitative Comparisons on Real Remote Sensing Image.

Method
Figure 11a Figure 11b Figure 11c Figure 11d

E AG P E AG P E AG P E AG P

HTP [29] 6.4787 0.0153 0.1057 6.8137 0.041 0.285 7.1373 0.0357 0.2412 6.9637 0.0224 0.1553

Dark [14] 6.4757 0.0181 0.1263 6.9836 0.0968 0.6781 7.2132 0.0925 0.6286 6.9755 0.0267 0.1833

L0 [24] 6.5899 0.0316 0.2196 6.9261 0.1269 0.8879 7.2365 0.1072 0.7283 6.9977 0.0328 0.2266

NLCP[16] 6.4623 0.0168 0.1156 6.8072 0.0459 0.3182 7.2153 0.0587 0.3963 6.9682 0.0249 0.1715

Ours 6.4846 0.0174 0.1198 6.8149 0.0472 0.3274 7.2242 0.0589 0.3989 6.9865 0.0267 0.1848

Table 5. Quantitative Comparisons on Experimental Target Image.

Method E AG P

HTP [29] 7.2031 0.0352 0.2448

Dark[14] 7.1581 0.0976 0.6845

L0 [24] 7.1004 0.1023 0.7172

NLCP[16] 7.2145 0.0408 0.2828

Ours 7.2286 0.0441 0.3066
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(a) Blurry Image (b) HTP (c) Dark

(d) L0 (e) NLCP (f) Ours

Figure 12. Visual comparison of real remote sensing image (Figure 11a) processed by
different methods.

(a) Blurry Image (b) HTP (c) Dark

(d) L0 (e) NLCP (f) Ours

Figure 13. Visual comparison of real remote sensing image (Figure 11b) processed by
different methods.
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(a) Blurry Image (b) HTP (c) Dark

(d) L0 (e) NLCP (f) Ours

Figure 14. Visual comparison of real remote sensing image (Figure 11c) processed by
different methods.

(a) Blurry Image (b) HTP (c) Dark

(d) L0 (e) NLCP (f) Ours

Figure 15. Visual comparison of real remote sensing image (Figure 11d) processed by
different methods.
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(a) Blurry Image (b) HTP (c) Dark

(d) L0 (e) NLCP (f) Ours

Figure 16. Visual comparison of real remote sensing image (Figure 11e) processed by
different methods.

5. Analysis and Discussion

In this part, we will test the effectiveness of the LBP prior, the influence of hyper-
parameters and the convergence of the algorithm, and discuss our algorithm after sufficient
analysis and obtaining experimental results. In all testing experiments, we used the Levin
dataset [13] containing four images and eight different blur kernels. All blind image
deblurring algorithms, finally, use the same non-blind restoration method to obtain clear
images to ensure the reliability of the experiment. In addition, Error-Ratio [13], Peak-Signal-
to-Noise Ratio (PSNR), Structural-Similarity (SSIM) [51] and Kernel Similarity [54] are used
as quantitative evaluation indicators. All experiments are run on a computer with Intel
Core i5-1035G1 CPU and 8 GB RAM.

5.1. Effectiveness of the LBP Prior

Although the image deblurring algorithm based on LBP prior can effectively obtain
a clear image in theory, it needs to be quantitatively evaluated and verified in the actual
situation. As shown in Figure 17, the proposed algorithm is compared with HTP [29],
Dark [14], L0 [24] and NLCP [16]. The performance of our algorithm in error accumulation
rate is second only to MAP, and it is better than other methods in the two indicators of
average PSNR and average SSIM. Overall, LBP prior can effectively remove the blur in the
image and improve the image quality.

(a) (b) (c)

Figure 17. Quantitative evaluations on the benchmark dataset [13]. (a) Comparisons in terms of
cumulative Error-Ratio. (b) Comparisons in terms of average PSNR. (c) Comparisons in terms of
average SSIM.
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5.2. Effect of Hyper-Parameters

The objective function (8) proposed in this paper mainly contains five main hyper-
parameters, i.e., α, β, γ, ThL, and ThM. To explore the influence of the five hyper-
parameters on the proposed algorithm, we only changed one parameter at a time, ensuring
that other parameters remained unchanged, and then calculated the kernel similarity
between the estimated blur kernel and the ground truth kernel. Suppose the kernel sim-
ilarity does not change on a large scale with the change of hyper-parameters. In that
case, the estimated blur kernel is relatively stable, i.e., the algorithm is not sensitive to
hyper-parameters. As shown in Figure 18, our method is not sensitive to changes in a wide
range of hyper-parameters.

(a) Effect of α on kernel similarity (b) Effect of β on kernel similarity (c) Effect of γ on kernel similarity

(d) Effect of ThL on kernel similarity (e) Effect of ThM on kernel similarity

Figure 18. Sensitivity analysis of hyper-parameters in the proposed method.

5.3. Convergence Analysis

PAM is widely used in various algorithms as an effective method to make the objective
function converge to the optimal solution. For the convergence of the PAM method
applied to the total variational algorithm, reference [6] gives an explanation of delay scaling
(normalization) in the iterative step of the blur kernel. Our algorithm also applies the PAM
method and uses half-quadratic splitting method to decompose the objective function into
several sub-problems. It is known that each sub-problem has a convergent solution [18,55],
but the overall theoretical research on convergence is minimal. The convergence of the
algorithm can be quantitatively verified by calculating the average energy function (8) and
the average kernel similarity that changes with iteration under the optimal scale of the Levin
dataset. As shown in Figure 19, our method converges after approximately 19 iterations,
and the kernel similarity stabilizes after 40 iterations, proving the method’s convergence.
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(a) (b)

Figure 19. Convergence analysis of the proposed method. (a) The average value of the objective
function (8). (b) Kernel Similarity.

5.4. Run-Time Comparisons

To explore the running efficiency of each algorithm, we tested the average running
time of different restoration algorithms. The test results are shown in Table 6. By compre-
hensively analyzing the data in Table 6 and the conclusions in Section 5.1, it is clear that our
method achieves very competitive processing results while spending relatively less time.

Table 6. Running Time (in second) Comparison.

Method 125 × 125 255 × 255 600 × 600

HTP [29] 78.44 85.62 114.55

Dark [14] 72.84 220.91 870.64

L0 [24] 13.53 40.81 198.82

NLCP [16] 32.44 131.98 570.39

Ours 20.2 70.51 364.37

5.5. Limitations

Although our method excels in processing remote sensing images, it has limitations.
The hyper-parameters used by our algorithm are not fixed due to the introduction of
LBP priors. To achieve the best processing effect, it is necessary to select corresponding
parameters for different processed images. In addition, the presence of noise in the image
will also affect the processing effect. Significant noise, especially the strip noise that often
appears in remote sensing imaging, will make our method misjudge important pixels and
amplify the noise. At the same time, to get a clear image, our algorithm uses PAM, which
includes the half-quadratic splitting method and FISTA, to solve the objective function,
and updates the parameters iteratively. This way of solving will undoubtedly increase
the amount of calculation and make the whole process more time-consuming. Therefore,
for future work, we will focus on exploring the factors affecting the hyper-parameters to
improve the LBP prior further, using the LBP prior to remove noise and blur at the same
time and reducing the amount of calculation to shorten the processing time.

6. Conclusions

Unlike the existing methods dedicated to exploring the prior that can clearly distin-
guish between a clear image and the blurry image, the prior we introduce is used to select
critical pixels to restore images by focusing on the similarities. The proposed algorithm
uses LBP, to filter pixels because of remote sensing images with small scenes and numerous
details. It processes different types of pixels, respectively, to prevent over-sharpening while
restoring the images. By introducing the LBP prior, we established an optimization model
based on PAM, which involves the construction of the mapping matrix, the fast iterative
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shrinkage-thresholding algorithm (FISTA) and the half-quadratic splitting method. It can be
seen that the proposed algorithm has excellent convergence and stability. The experimental
results show that our method is better than the existing algorithms for deblurring remote
sensing images. Moreover, we believe that the proposed algorithm can provide a new idea
for further developing remote sensing image processing.
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The following abbreviations are used in this manuscript:

LBP Local Binary Pattern
PAM Projected Alternating Minimization
FISTA Fast Iterative Shrinkage-Thresholding Algorithm
MAP Maximum A Posteriori
VB Variational Bayes
NLC Non-Linear Channel
LMG Local Maximum Gradient
CNN Convolutional Neural Network
FPN Feature Pyramid Network
PSNR Peak-Signal-to-Noise Ratio
SSIM Structural-Similarity
RMSE Root Mean Squard Error
HTP Heavy-Tailed prior
NLCP Non-Linear Channel Prior
E Entropy
AG Average Gradient
P Point sharpness
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