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Abstract: Mobile laser scanning (MLS) point cloud registration plays a critical role in mobile 3D
mapping and inspection, but conventional point cloud registration methods for terrain LiDAR
scanning (TLS) are not suitable for MLS. To cope with this challenge, we use inertial measurement
unit (IMU) to assist registration and propose an MLS point cloud registration method based on an
inertial trajectory error model. First, we propose an error model of inertial trajectory over a short
time period to construct the constraints between trajectory points at different times. On this basis, a
relationship between the point cloud registration error and the inertial trajectory error is established,
then trajectory error parameters are estimated by minimizing the point cloud registration error
using the least squares optimization. Finally, a reliable and concise inertial-assisted MLS registration
algorithm is realized. We carried out experiments in three different scenarios: indoor, outdoor and
integrated indoor–outdoor. We evaluated the overall performance, accuracy and efficiency of the
proposed method. Compared with the ICP method, the accuracy and speed of the proposed method
were improved by 2 and 2.8 times, respectively, which verified the effectiveness and reliability of
the proposed method. Furthermore, experimental results show the significance of our method in
constructing a reliable and scalable mobile 3D mapping system suitable for complex scenes.

Keywords: mobile laser scanning (MLS); point cloud registration; inertial measurement unit (IMU);
light detection and ranging (LiDAR)

1. Introduction

Large-scene 3D point cloud data acquisition is one of the foundations of 3D mapping
and inspection [1], and mobile LiDAR scanning (MLS) technology provides an accurate and
efficient way to obtain large-scene 3D point cloud data [2]. MLS technology uses LiDAR
installed on a mobile platform to scan the environment. Due to the limited scanning range
of a single LiDAR frame, it is necessary to convert the scan frames at different positions
into a unified coordinate system to merge a large-scene 3D point cloud. This registration
process plays a critical role in MLS data processing [3]. Traditional MLS technology uses
a GNSS/INS system to obtain the pose of the carrier. Position and attitude in the unified
mapping frame are given to each laser point according to the sampling time to realize
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the registration of MLS point clouds. When GNSS is denied or disturbed, the GNSS/INS
trajectory error will rapidly increase, leading to an increase in the registration error and
resulting in ghosting or deformation. With the increasing demand for 3D mapping and
inspection in complex scenes, such as indoor and underground spaces, the development of
MLS registration methods independent of GNSS systems has become a research hotspot [4].

A conventional point cloud registration method generally needs to first identify the
correspondences between scan frames and then estimate their transformation model [5].
These “LiDAR-only” methods focus on the characteristics of point cloud data without the
assistance of auxiliary information. They are generally designed for point clouds using
fixed-station LiDAR, and the motions between different stations are rigid transformation
models [6–8]. However, for MLS data in complex environments, conventional point cloud
registration methods are affected by unfavorable conditions, such as motion, homogeneous
features and occlusion, making it difficult to achieve robust 3D reconstruction.

To improve the robustness and reliability of registration for the MLS point clouds in
complex scenes, auxiliary sensors (such as IMUs, GNSS or cameras) are usually used to
measure and compensate for irregular motion [9,10]. These methods [11–15] use visual
features and GNSS absolute pose to assist point cloud registration, but they have limita-
tions in complex environments, visual features are prone to degradation in weak texture
environments, and GNSS fails in GNSS-denied environments. Unlike the above auxiliary
sensors, IMU provides accurate pose over a short time and is environment-independent, so
IMU and LiDAR have good complementarity [16]. However, existing studies [17,18] do
not consider long-term IMU error drift, and they fail to construct rigorous optimization
models using the correlation between IMU and point cloud data, so their robustness is poor
in complex environments.

The fusion of LiDAR and IMUs has been extensively studied in the field of simulta-
neous localization and mapping (SLAM). LiDAR-inertial SLAM is dedicated to obtaining
large-scene 3D maps and trajectories, so it also needs to solve the MLS registration problem.
In these SLAM methods, IMU and LiDAR measurements are optimized in different ways
to obtain high-precision motion estimation [19,20]. Compared with inertial-assisted regis-
tration methods [17,18], the SLAM-based methods adopt a complex optimization model
and loop-detection process to optimize error. Although their accuracy is improved, the
system is complex [21] and is difficult to extend, so it is not suitable for diversified task
requirements in complex environments.

In short, a conventional static registration method [6] cannot guarantee robustness, due
to fast motion, environmental occlusion and repetitive structures in complex environments.
Existing multisensor fusion-based MLS registration methods [17,18] do not establish a
rigorous optimization model for the correlation of multisource measurements, resulting in
poor accuracy and reliability. SLAM methods are complex and difficult to extend, which is
not conducive to practical application.

Aiming at the problem of MLS point cloud registration in complex environments, we
propose an inertial-aided MLS point cloud registration method. We propose a new error
model of inertial trajectory over a short time period to form constraints between LiDAR
scan frames, then we optimize the inertial trajectory error and point cloud registration
errors at the same time using least squares optimization. Finally, we achieve multi-frame
MLS point cloud registration. The proposed method not only realizes high precision and
reliability, but also constructs a concise LiDAR-inertial fusion model, which is easy to imple-
ment, apply and extend. Compared with conventional registration methods, our method
shows accuracy improvement with the assistance of IMU; our method also outperforms
existing IMU-aided registration methods, which benefit from the proposed error model.
Furthermore, our proposed registration framework utilizes least squares to jointly optimize
IMU and point cloud errors, thereby skipping the complex back-end optimization of SLAM,
so it has better simplicity and extendibility than SLAM-based methods. Therefore, our
method shows superiority in approaching the MLS registration problem.
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The main contributions of this paper are as follows. (1) We propose a new inertial
trajectory error model, which constructs constraints between LiDAR scan frames in a short-
time window, and at the same time avoids the effect of long-term IMU drift on registration
accuracy. (2) We propose a new inertial-aided MLS point cloud registration framework,
which optimizes the inertial trajectory error model parameters and point cloud registration
errors at the same time using least squares optimization, and achieves continuous LiDAR
scan frame registration. The proposed registration framework has the characteristics of
high precision, simplicity and extendibility. (3) A continuous cross-matching strategy is
proposed to ensure high-overlap between LiDAR scan frames and effectively improve the
reliability of registration.

The rest of this paper is arranged as follows. Section 2 introduces the related works.
Section 3 introduces detailed technical route of this method, and Section 4 verifies the
effectiveness of this method through experiments. Section 5 discusses the characteristics,
applicable scenarios and limitations of this method. Finally, we summarize the content of
this paper in Section 6.

2. Related Work

Identifying the correspondences is the key to conventional static point cloud registra-
tion, and methods for finding correspondences can be divided into two main categories:
one type is based on the nearest neighbor relationship, such as ICP and its extended ver-
sions [6,22–25], which requires accurate initial estimation of the transformation. The other
type is the feature-based matching method, whose performances are influenced by the
geometric characteristics of point clouds, such as fast point feature histograms (FPFHs) [26],
rotated projection statistics (RoPS) [27], signatures of histograms of orientations (SHOT) [28]
and four-point congruent sets (4PCs) [7]. In addition to these two categories, deep learning
methods have emerged in recent years, such as PointNet and its extended versions [8,29,30],
which directly learn features using neural networks. For MLS data, conventional point
cloud registration methods have the following problems. (1) Due to the movement of the
carrier platform, the motion between LiDAR scan frames may not be a rigid transformation,
which can greatly affect the precision of a registration method based on a rigid motion
model. (2) When there is large angular motion, the difference between adjacent frames is
large, so it is difficult to identify correspondences through a nearest neighbor search. As a
result, ICP-based methods tend to fail without accurate initial values. (3) For scenes with
repetitive or homogeneous structures (such as long corridors), mismatches will increase
due to the ambiguity of features.

For multi-sensor-aided registration methods, the auxiliary sensors include camera,
GNSS and IMU. Images usually contain a variety of visual information. The 2D features
extracted from images can be mapped to 3D space to assist with point cloud feature
extraction, which improves the reliability and robustness of feature-based point cloud
registration [11–13]. However, visual features will be affected by lighting conditions
and image textures, and may fail in complex environments. GNSS provides an absolute
position and can also assist in eliminating registration error [14], but in urban and indoor
environments, GNSS signals are denied [15]. An IMU provides accurate pose (especially
rotation) over a short time and is environment independent, but drift will occur over long
periods of time. LiDAR provides accurate and stable distance observations, but the MLS
point cloud will be distorted because of the motion of the carrier. Therefore, IMU and LiDAR
have good complementarity [16]. Some professional mobile mapping systems (MMSs) use
IMUs to provide accurate initial estimations [9] for ICP. The studies [17] and [18] proposed
trajectory-based MLS registration methods, which use a trajectory estimated using MMS
to assist with point cloud registration. In [17], the researchers used MMS equipped with
GNSS/INS to first estimate the initial trajectory, divided the trajectory into local areas
for local point cloud registration, and then optimized the trajectory by performing least
squares optimization. Finally, the overall point cloud was optimized globally based on the
optimized trajectory. The study [18] extended [17] by introducing the minimum distance
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between a point and surface into the ICP algorithm and introducing rotation restriction
to further improve registration accuracy. However, the studies in [17,18] only treated
the trajectory as a prior estimation to assist registration. Since the influence of long-term
IMU error drift and GNSS failure on MMS trajectory estimation was not considered and
the correlation between IMU and point cloud data was not used to construct a rigorous
optimization model, the robustness is poor in complex environments. Recently, the IMU
pre-integration model proposed by [31,32] improved the accuracy and efficiency of IMU-
LiDAR fusion. The study [33] adopted the time information provided by multi-sensors
to assist the registration, which further improves the effect of point cloud registration,
but [32,33] used tightly coupled optimization method, and inevitably needed much more
space for online processing. Our proposed IMU error model is inspired by [31] and we
adopt IMU pre-integration, but our optimization process is more concise and efficient.

In recent years, SLAM-based LiDAR-inertial fusion methods have been extensively
studied. However, in this paper we only focused on the point cloud registration part of
the front-end, and we did not describe the back-end optimization part in detail. Existing
LiDAR-inertial odometers usually use IMU motion estimation as an initial value to assist
LiDAR scan matching, such as the representative LOAM [34]. IN2LAMA [35] performs
IMU pre-integration and up-sampling so that the time frequency of the up-sampled IMU
measurements is the same as that of the LiDAR. Finally, the pre-integrated IMU value
and LiDAR are fused for registration. The registration part of the loosely-coupled SLAM
algorithm [34,35] only treats the IMU as auxiliary assistance, and the correlation between
IMU error and point cloud registration error is not analyzed, resulting in poor robustness in
complex environments. Tightly coupled methods [36–38] consider the correlation between
the IMU and point cloud measurements, and usually add a step to optimize IMU estimation,
using feedback from point cloud registration results. LVIO [39] estimates motion through
visual-inertial odometry, then carries out LiDAR scan matching with the assistance of visual-
inertial estimation and feeds back the matching results for further iterative optimization.
LVI-SAM [16] uses IMU estimation as an initial value for scan matching, and then the result
of a LiDAR-inertial odometer is fed back to correct the IMU error, which improves the
accuracy and robustness of point cloud registration. The registration part in the above
SLAM methods usually uses IMU estimation as a prior to assist registration, then optimizes
state estimations through an optimization framework, such as Kalman filtering or bundle
adjustment, and uses loop detection to reduce accumulated errors. Compared with inertial-
assisted registration methods [17,18], their fusion method between IMU and LiDAR is
similar, but a complex optimization model and loop detection process are added to optimize
error. Although the positioning accuracy is improved, the system is complex [21] and
is difficult to extend, so it is not suitable for diversified task requirements in complex
environments. Compared with these SLAM-based methods, we optimized IMU error
and point cloud registration errors at the same time using least squares, and the proposed
registration framework has the characteristics of high precision, simplicity and extendibility.

3. Methods

The research object of this paper is a measurement system composed of a multiline
LiDAR and an IMU, in which the LiDAR and IMU are fixedly connected. The system can
realize the synchronous measurement of the geometric features of environment (LiDAR)
and the motion information (IMU) of the carrier (Figure 1).

Due to IMU device error and measurement noise, the trajectory error of IMU integra-
tion alone will diverge with time, so the trajectory of IMU integration cannot be directly
used for the registration of sequence point clouds over a long time period (Figure 2). There-
fore, we first analyze the error sources of IMU integration in detail and then construct an
inertial trajectory error model, which can describe the error regularity of an IMU integration
trajectory over a short time period and form a constraint between trajectory points at differ-
ent times. Furthermore, we analyze the relationship between the point cloud registration
error and inertial trajectory error and construct an inertial-assisted MLS registration method
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based on least squares optimization. We propose a cross-matching strategy to pre-associate
scan frames and finally achieve accurate parameter estimation of the trajectory error model
and registration of point clouds.
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We first define notations and coordinate frames that we use throughout the paper.
The coordinate systems include the body frame (b-frame), navigation frame (n-frame),
computer frame (c-frame) and LiDAR frame (l-frame). The body frame is fixedly connected
with the IMU; its origin is the center of the IMU, its X-axis points to right, its Y-axis points
forward, and its Z-axis, X-axis and Y-axis form a right-handed orthogonal frame (Figure 1).
The navigation frame is a global coordinate frame referring to the reference frame where
the state of the navigation system is located; its X-axis points east, its Y-axis points north,
and its Z-axis points up along the gravity direction. Navigation states and gravity are
expressed in the navigation frame. The origin of the computer frame is the starting point of
the navigation trajectory, and the attitude of the coordinate axis is the attitude calculated
by the system. There is an attitude error angle between the c-frame and n-frame (Figure 2),
denoting by φ. The LiDAR frame is the coordinate where the original LiDAR measurements
are located. In the following sections, scalars are denoted in lowercase letters, vectors are
denoted in lowercase bold letters, and matrices are denoted in uppercase bold letters.
In general, the superscript letters of a variable indicate the frame in which the variable
is located. A transformation from the a-frame to the b-frame is represented by Cb

a. A
calculated value of variable x is represented by x̂, and a measured value of x is represented
by x̃.
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3.1. Short Time Period Inertial Trajectory Error Model
3.1.1. Analysis of the Inertial Trajectory Error

For the analysis of the inertial trajectory error over a short time period, we select a time
window [t0, t0 + ∆T]. According to the principle of inertial navigation (see Appendix B),
the position and attitude errors at a certain time t (t = t0 + ∆t) mainly come from two parts:
(A) the state error of the inertial navigation system at initial time t0, denoted as δx(t0),
including navigation state error and inertial device error; and (B) the error caused by IMU
measurement noise integration. Therefore, the inertial trajectory error over a short time
period can be expressed as follows:

δT (t) = [φ(t), δr(t)]T = f(δx(t0), ∆t) + n(∆t) (1)

where δT (t) is the inertial trajectory error at time t and [φ(t), δr(t)]T are the attitude error
and position error, respectively, f(δx(t0), ∆t) represents the system state error model, δx(t0)
is the system state error at t0, ∆t is the time interval, and n(∆t) is the integration error of
random noise.

To analyze the local inertial navigation state error, we first derive the inertial navi-
gation equation in the c-frame. The simplified navigation equations in the c-frame are as
follows [40]:

.
C

c
b= Cc

b

(
ωb

ib×
)

.
vc
= Cc

bfb + gc

.
rc
= vc

(2)

where Cc
b is the attitude matrix, representing the transformation between the b-frame and

c-frame,
.
vc is the velocity in the c-frame,

.
rc represents the position of the IMU in the c-frame,

ωb
ib represents the angular velocity, (×) means a skew-symmetric matrix, fb is the inertial

specific force, and gc represents the gravity acceleration vector in the c-frame.
In Equation (2), the relationship between variables in the c-frame and variables in the

n-frame is as follows:
Cc

n = I− [φ(t0)]×
gc = Cc

ngn

vc = Cc
nvn

(3)

where φ(t0) is the error angle between the n-frame and c-frame at time t0, and Cc
n represents

the transformation matrix from the n-frame to the c-frame.

3.1.2. Inertial Trajectory Error Model over a Short Time Period

Since the drift noise of a high-precision IMU is small, the bias of a high-precision IMU
over a short time period can be regarded as a random constant. (See Appendix A. Note that
“short time period” is related to the accuracy of the IMU. In this paper, since the LiDAR
frequency used in the experiment is 10 Hz and the time interval of the scanning frames
is 0.1 s, the minimum value of “short time period” can be regarded as 0.1 s. According
to the performance of the IMU used in this paper (KVH DSP-1750 fiber optic IMU), the
maximum value of “short time period” can achieve 8 s. Generally, the “short time period”
in our method and experiment can be regarded as 0.1 s). In a short time window, gyro bias
bg is modeled as a random constant. According to the definition of the c-frame, the initial
attitude error of the navigation system at time t0 in the c-frame is zero, so IMU attitude
error θ(t) at time t in the c-frame can be expressed as follows:

θ(t) = −
∫ t

t0

Cc
b(τ)bgdτ −

∫ t

t0

Cc
b(τ)εg(τ)dτ (4)

where εg is IMU gyro noise.
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We model the acceleration bias in a short time window ba as a constant, and the
velocity and position in the c-frame can be expressed as:

vc(t) = vc(t0) + gc∆t + sv(t)
rc(t) = rc(t0) +

∫ t
t0

vc(τ)dτ

= rc(t0) + vc(t0)∆t + 1
2 gc∆t2 + sr(t)

(5)

where sv(t), sr(t) are intermediate variables of integration, and their detailed expression is
shown in Equation (6):

sv(t)=
∫ t

t0

Cc
b(τ)

(̃
f
b
(τ)− ba(τ)− εa(τ)

)
dτ

sr(t)=
∫ ∫ t

t0

Cc
b(τ)

(̃
f
b
(τ)− ba(τ)− εa(τ)

)
dτ

C2(t)=
∫ ∫ t

t0

Cc
b(τ)dτ =

∫ t

t0

(τ − t0)Cc
b(τ)dτ

(6)

where f̃
b

represents the measurement value of a specific force and εa represents accelerome-
ter measurement noise.

After perturbation analysis of Equation (5), we obtain a model of the IMU relative
position error over a short time period as it changes with time:

δrc(t) = δrc(t0) + ∆tδvc(t0) +
1
2

∆t2δgc − C2(t)ba +
∫ ∫ t

t0

Cc
b(τ)εa(τ)dτ (7)

where δrc(t0) is the position error at time t0, δvc(t0) is the velocity error at time t0, δgc is
the gravity decomposition error caused by the attitude angle error φ(t0) at time t0, ba is the
uncompensated accelerometer bias, and C2(t) is the quadratic integral component of the
attitude matrix at time t. Equation (7) shows that the position error over a short time period
is mainly caused by the initial velocity error, horizontal attitude angle error, accelerometer
bias and noise. Specifically, the position error caused by velocity error increases linearly
with time. The horizontal attitude angle error causes gravity decomposition error, and the
position error increases quadratically with time. The position error caused by acceleration
bias increases quadratically with time and is also related to the attitude of the carrier.

3.2. Parameter Estimation of the Inertial Trajectory Error Model

To estimate the parameters of the IMU trajectory error model, we first establish a
function between the point cloud registration error and inertial trajectory error, and then
the trajectory error parameters are estimated by minimizing the registration error using
least squares optimization. Through the above process, the corrected IMU trajectory and
the registered point clouds are obtained.

The trajectory point (rc, Cc
b) obtained by inertial integration in a short time window is

used to convert the point cloud pb measured by LiDAR in the b-frame to the c-frame, so we
obtain the point cloud in the c-frame pc:

pc = rc + Cc
bpb = r̂c + Ĉc

bp̂b︸ ︷︷ ︸
p̂c

−

δrc − [θ]×ĈC
b p̂b + Ĉn

b δpb︸ ︷︷ ︸
δpC

 (8)

where p̂c represents the coordinates of the point cloud calculated in the c-frame, δpc is the
coordinate error, Ĉc

b and r̂c represent the calculated pose, p̂b is the coordinates of the point
cloud calculated in the b-frame, δpb is its coordinate error, and θ represents the attitude
error in the c-frame at the LiDAR scanning time.
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According to Equation (8), the error of the MLS point cloud is mainly caused by local
trajectory error (position and attitude error). Note that the attitude error is in the c-frame.
Equation (4) shows that the attitude error over a short time period is mainly caused by gyro
bias and measurement noise. The attitude error generated by a 15◦/h gyro bias in 1 s is
4.85× 10−5 rad, and the error for a point 50 m away is 3.6 mm, which is small for a LiDAR
with centimeter-level measurement noise. Therefore, in Equation (8), −[θ]×Ĉc

bp̂b and Ĉn
b δpb

can be combined and considered as random error. Since there is generally high overlap in
an MLS point cloud over a short time period, the overlap can be used to construct relative
constraints between trajectory points at different times. Therefore, after the continuous
MLS point clouds are registered, the correspondence (p, q) in the overlapping area of point
clouds is obtained, and the registration error of correspondence (p, q) can be expressed as
the difference between pc and qc, which is shown in Equation (9):

pc − qc = (p̂c − q̂c)−
(
δrc(tp

)
− δrc(tq

))
= (p̂ c − q̂c)−

(
∆tp − ∆tq

)
δvc(t0)− 1

2

(
∆t2

p − ∆t2
q

)
δgc

+
(

C2(tp
)
− C2(tq

))
δba

(9)

where p̂c and q̂c represent the measured coordinates of correspondence (p, q) and δrc(tp
)

and δrc(tq
)

are LiDAR position errors at measurement times tp and tq. Substituting
Equation (7) into Equation (9), the registration error can be expressed as a function of
IMU error (δvc, δgc, δba). Equation (9) establishes the relationship between the point cloud
registration error and the parameters of the inertial trajectory error model.

To estimate the parameters of the trajectory error model, we first describe the point
cloud registration error. After registration, the point-to-surface distance between correspon-
dences can be expressed as Equation (10):

ek = nT
k (p

c
k − qc

k) + εk (10)

where k represents the k-th correspondence and nk is a vector normal to point qc
k. The

weight of each correspondence is determined by the thickness of the point cloud surface
and the LiDAR ranging error, as shown in Equation (11):

εk = 1/(σ2
ρ + λ2

1)
−1

(11)

Finally, the parameters of the inertial trajectory error model are estimated by minimiz-
ing the overlap point cloud registration error over a short time period, and the objective
function to be optimized is shown in Equation (12).

xc = [δgc, δvc(t0), ba]
T = argmin

K

∑
k=1

eTPe (12)

where e is the registration error vector (e = [e1, e2, . . . , eK]
T), P is the registration constraint

weight, and P = ppT , p = [ε1, ε2, . . . , εK]. We use the least squares method to minimize the
registration error, and then we can accurately estimate the inertial trajectory error model
parameters xc.

It should be emphasized that we do not directly optimize the 6-DOF (degree of
freedom) pose (rotation and translation) between point cloud frames. The optimization
function constructed in this paper minimizes the point cloud registration error using the
least squares method and updates the inertial trajectory using the estimated parameters
of the inertial trajectory error model. Then, we can optimize the point cloud registration
iteratively through the above process.
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3.3. MLS Registration Algorithm Based on the Inertial Trajectory Error Model

We design the technical route of the IMU-aided MLS registration algorithm. Our
algorithm is mainly divided into four steps. (1) Construct an inertial trajectory over a
short time period through inertial integration and convert the MLS point cloud to the
c-frame. (According to the description in Section 3.1.2, “short time period“ here is treated as
0.1 s.) (2) Construct point cloud correspondences based on the inertial trajectory constraints.
(3) By minimizing the point cloud registration error through the least squares method, we
realize the registration of multi-frame point clouds, and we obtain the IMU trajectory error
model parameters to correct the trajectory. (4) Judge whether the algorithm converges.
If not, proceed with the next iteration. Finally, a locally-optimal IMU trajectory and a
locally-consistent point cloud map are obtained. The algorithm flow chart is shown in
Figure 3.
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Identifying correspondences is the key to realizing MLS registration. For this problem,
the advantage of feature-based registration methods is that they do not need initial esti-
mates, but they are sensitive to environmental characteristics. The advantage of ICP-type
method lies in its high accuracy and robustness, but it needs accurate initial estimates. For
point cloud registration in a short time window, there is high overlap between adjacent
frames, and the point cloud frames after coordinate transformation using the initial value of
the inertial trajectory are close to the optimal state, which satisfies the assumption of nearest
neighbor research. Therefore, we adopt the nearest neighbor method to find correspon-
dences. In fact, the nearest neighbor search method used in our method is essentially the
ICP algorithm without the optimization part. The difference between our method and the
ICP algorithm is: After finding correspondences, ICP utilizes iteration to find the optimal
transformation between point cloud frames; Instead, we use the least squares to optimize
point cloud registration error, then obtain parameters of IMU trajectory error model, finally
we get the optimal IMU trajectory and optimal point cloud map.

For the registration method based on nearest neighbor search, the initial estimates
and overlap degree directly determine the convergence speed and robustness. Before
registration, we use the inertial trajectory as the initial estimates, and then transform the
point cloud in the l-frame at different times to the c-frame using the trajectory, so that the
distance between initial correspondences is as close as possible, and the iteration times
will be effectively reduced. In the registration process, we propose the cross-matching
strategy. As shown in Figure 4, in the time period [tk, tk+n], the point cloud scan frames
(as shown in “LiDAR frames” in the figure) are divided into P and Q according to equal
time intervals (0.1 s), which are represented by orange and green respectively. However,
during registration process, since the LiDAR is constantly moving, adjacent P and Q may
not have a high overlap rate, resulting in registration failure. In order to ensure a high
overlap rate during registration, as shown in the “Matching frames” in the figure, P and
Q are re-synthesized into new point clouds, one of which contains P and Q in time period
[tk, tk+n−1], and the other frame contains P and Q in time period [tk+1, tk+n]. Through this
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cross-registration strategy, a high overlap rate between two matching frames is achieved,
so that the ICP algorithm can be used to find correspondences. This strategy can ensure
that the scan frames to be registered have high overlap in any scene and at any time, so
the robustness of matching can be guaranteed. Since the scenes in P and Q are similar,
the overlap can achieve 90%, and we usually regard 20% correspondences with the largest
distance as outliers and discard them. Furthermore, the correspondences whose distance
exceeds a certain threshold (we set to 2 m) are eliminated.
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The inertial-aided MLS registration algorithm based on the IMU trajectory is summa-
rized as Algorithm A1. Due to the length of the algorithm, we list it in Appendix D.

4. Results
4.1. Equipment and Experimental Data

For large-scale 3D mapping applications in GNSS-denied environments, we develop a
multisensor 3D MLS backpack mapping system (Figure 5). The system can collect high-
precision time-synchronized IMU-LiDAR measurements. The system includes a KVH
DSP-1750 fiber optic IMU and a Velodyne VLP-16 multiline LiDAR, and the sensors are
integrated using an acquisition board to ensure time synchronization. The KVH DSP-1750
IMU is composed of three fiber optic gyroscopes and three MEMS accelerometers, and
its sampling frequency is 250 Hz, so it can effectively capture the high-frequency motion
of the carrier platform. The VLP-16 LiDAR scans the surrounding 360◦ environment at a
frequency of approximately 10 Hz. In this paper, the point cloud obtained by a complete
360◦ scan is called a scan frame.
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To verify the effectiveness of our method, we obtain the MLS measurement of the
campus environment and buildings at Shenzhen University using a backpack system, and
the test data include three different scenes: indoor, outdoor, and indoor-outdoor integrated.
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Our method is compared with the classic ICP, NICP [25] and IMU-aided ICP. The overall
performance, accuracy and efficiency of our method are tested, which verifies the accuracy
and reliability of our method.

4.2. Experimental Results
4.2.1. Indoor-Outdoor Mapping Application

Three typical scenes were selected: indoor, outdoor, and indoor-outdoor. Specifically,
the indoor scene is an office building, the walking trajectory is from the 16th to 14th floors,
and the indoor scene has many stairs. The outdoor scene walks around the office building,
during which the surveyor passes through a lychee forest. In the indoor-outdoor scene, we
start from the ground, pass through an underground parking lot, and then return to the
starting point. The three scenes are shown in Figure 6.
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Before data collection, the mapping system is static for 1–3 min, which is used for
initialization. After data collection, a static alignment algorithm [40] is used to initialize
the inertial navigation system, and then the proposed registration method is performed.
Finally, the trajectory and point cloud map of the entire scene are obtained.
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4.2.2. Mapping Accuracy

To verify the mapping accuracy, a typical indoor parking lot scene (approximately
100 m × 50 m) (in the indoor-outdoor integrated data) is selected and scanned with a
high-precision ground scanner (Z+F5010 scanner). The range resolution of this scanner is
0.1 mm, and the range accuracy of the 50 m range is better than 2.2 mm. After multi-station
scanning, the point cloud data are stitched and taken as ground-truth (Figure 7).
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We first obtain a point cloud map using the proposed method, and then ICP registra-
tion is performed between the ground-truth and map of our method, thereby comparing
the overall translation and rotation difference between them. A part of the wall distance
is manually selected for plane accuracy comparison, and a part of the ground and ceiling
feature points are selected for elevation accuracy comparison. The accuracy comparison is
shown in Tables 1 and 2. We select 7 wall distances and 7 points for accuracy verification,
dours and hours represent the plane and elevation results of our method, dZ+F and hZ+F
represent the ground-truth, and ed and eh represent the error. The results indicate that
the plane accuracy of our method for the 100 m × 50 m indoor parking lot can reach
3 cm (1σ), and the elevation accuracy is approximately 2 cm (1σ), which meets the accuracy
requirements of indoor 3D mapping.

Table 1. Plane accuracy comparison.

Verification Distance dours/m dZ+F/m ed/m

d1 46.05 46.08 −0.03
d2 14.7 14.65 0.05
d3 67.96 67.99 −0.03
d4 22.52 22.54 −0.02
d5 48.33 48.34 −0.01
d6 90.86 90.89 −0.03
d7 36.35 36.36 −0.01

RMSE 0.029

Table 2. Elevation accuracy comparison.

Verification Point hours/m hZ+F/m eh/m

p1 −1.95 −1.92 −0.03
p2 −1.93 −1.92 −0.01
p3 −1.95 −1.93 −0.02
p4 −1.91 −1.95 0.04
p5 −1.93 −1.93 0.00
p6 −1.94 −1.95 0.01
p7 −1.93 −1.94 0.01

RMSE 0.021
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4.2.3. Registration Algorithm Parameter Settings

In the proposed method, the key parameters are the number of scan frames in the
point cloud window (window length, abbreviated as w) and the point cloud grid density
(grid size, abbreviated as g). These two parameters directly affect the calculation efficiency.
To test the influence of different parameters on the final generated map, four typical scenes
were selected for the experiment (Figure 8), among which scene 1 was an indoor-outdoor
transitional scene, scene 2 was an open indoor scene, scene 3 was an indoor scene in a
narrow corridor, and scene 4 was an outdoor open scene.
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By setting different parameters, submaps and trajectories within different periods of
time can be obtained. We evaluated the influence of different parameters by comparing
the trajectory difference after submap registration. As shown in Figure 9a, the maximum
influence of parameter g on the trajectory is approximately 1.5 cm. Therefore, our method
is insensitive to the choice of point cloud density. When accuracy requirement is not high,
the density of the point cloud can be reduced to increase calculation speed.

To find the optimal setting of w, we select different window lengths for the IMU-LiDAR
data fusion and obtain trajectories of different lengths. Taking the trajectory of the 80-frame
window as a benchmark, we calculate the distance between trajectories of different window
lengths and the benchmark, and the maximum difference is shown in Figure 9b. The
trajectory error of different window lengths is stable within a certain parameter range,
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generally approximately 2 cm, and the maximum trajectory difference is 4 cm, which is
equivalent to the range accuracy of the LiDAR, so the results indicate that the registration
error is sensitive to different scenes rather than parameter settings.
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To find the optimal setting of w, we select different window lengths for the IMU-
LiDAR data fusion and obtain trajectories of different lengths. Taking the trajectory of the 
80-frame window as a benchmark, we calculate the distance between trajectories of dif-
ferent window lengths and the benchmark, and the maximum difference is shown in Fig-
ure 9b. The trajectory error of different window lengths is stable within a certain parame-
ter range, generally approximately 2 cm, and the maximum trajectory difference is 4 cm, 
which is equivalent to the range accuracy of the LiDAR, so the results indicate that the 
registration error is sensitive to different scenes rather than parameter settings. 

4.2.4. Registration Performance 
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4.2.4. Registration Performance

Our method is compared with 3 methods to verify the registration accuracy and
reliability: (1) The traditional ICP method. (2) NICP [25], an improved version of ICP
that achieves state-of-the-art performance. (3) IMU-aided ICP, which also uses IMU to
initially align point clouds, but then uses the ICP algorithm instead of our optimization
model. The IMU-aided ICP experiment is used to illustrate the accuracy improvement of
ICP with the assistance of IMU, and we can also compare the ICP iteration accuracy with
the optimization accuracy of our method when both methods use IMU. Through the NICP
experiment, it is shown that in the MLS registration task in complex environments, the
proposed IMU-assisted registration method is more accurate than “LiDAR-only” regis-
tration method. Five typical scenes are selected from the indoor-outdoor integrated data
for the experiment, among which scene 1 is an open indoor scene (41 frames), scene 2 is
an underground passage indoor-outdoor scene (36 frames), scene 3 is a narrow corridor
indoor scene (36 frames), scene 4 is a building outdoor scene (21 frames), and scene 5 is an
outdoor open scene (100 frames). In the experiment, the outlier removal ratio [41] of the
ICP method was set to 0.2. The meaning of this parameter is to reject a given percentage of
the worst point pairs based on their Euclidean distance.

The evaluation metrics we chose referred to [9]. The most intuitive metric for point
cloud registration is visual evaluation. For data with ground-truth such as control points
or true poses, the errors of control points coordinates are compared, or the rotation error
and translation error between scan frames are calculated. However, in some real-world
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mapping tasks, it is difficult to obtain ground-truth, which makes it impossible to use the
above metrics based on the ground-truth. In this case, without a ground-truth, the root
mean square (RMS) of the correspondence distance is usually used as a metric.

In this paper, we select RMS as the evaluation metric for registration accuracy, and
we use visual evaluation of the registration result as a supplement. In addition, through
comparison of the operating time, we test the efficiency and practicability of our method.

1. Registration accuracy

We first compare the registration accuracy between two adjacent frames. In the above
five scenes, two adjacent frames of the point clouds are selected for registration, and the
RMS is calculated (Equations (13) and (14)). It should be noted that in the traditional ICP
method, the error is large without providing initial estimates, and the ICP method fails to
converge. In contrast, our performance is good due to the assistance of the IMU. Due to
the above situation, to make a quantitative comparison, we use the initial IMU integration
trajectory as the initial estimates for the ICP method and then compare the ICP method
with accurate initial estimates and our method.

RMS =

√
∑N

i=1[d(pi, qi
′)]2

N
(13)

d
(
pi, qi

′) = ‖pi − (R·qi + T)‖ =
√(

xpi − x′qi

)2
+
(

ypi − y′qi

)2
+
(

zpi − z′qi

)2
(14)

where pi, qi are correspondences obtained by registration between scan frames (p, q), (R, T)
represents the estimated relative pose after registration and d(pi, qi) represents the Eu-
clidean distance between correspondences. The results of registration accuracy are shown
in Table 3.

Table 3. Registration accuracy comparison.

Method Scene 1 RMS Scene 2 RMS Scene 3 RMS Scene 4 RMS Scene 5 RMS

ICP 0.272 m 0.164 m 0.586 m 0.671 m 0.692 m
NICP 0.206 m 0.154 m 0.470 m 0.453 m 0.526 m

IMU-aided
ICP 0.177 m 0.134 m 0.193 m 0.289 m 0.405 m

Our method 0.155 m 0.123 m 0.178 m 0.258 m 0.367 m

By comparing the RMS of the same scene, it can be seen that the accuracy of our method
is superior to other 3 methods. Compared with the IMU-aided ICP, our method achieves
higher accuracy. The comparison with ICP and NICP methods further demonstrates
the improvement of the registration accuracy with the assistance of the IMU. Through
the comparison between different scenes, the indoor RMS error is better than outdoor
scenes. On the one hand, indoor scenes have richer structures and features, and objects
in outdoor scenes contain homogeneous structures. In addition, obstacles such as trees
will cause occlusion, which affects the registration accuracy. On the other hand, a point
cloud is relatively sparse in an outdoor scene, so the distance between correspondences
will increase accordingly. As a result, the RMS based on distance will be relatively large.

2. Visual evaluation of local submaps

After continuous registration, the sequence point cloud is fused with the estimated
trajectory to generate a submap, and then we compare the visual performance of the
submap based on point cloud registration. This comparison aims to verify the reliability of
our method for continuous registration. The results of the submaps show that there are
obvious dislocations in the ICP submaps, especially in outdoor scenes 4 and 5, such as trees,
roads and buildings, and the submaps of our method are significantly better than those of
the ICP method.
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By visually comparing the submaps, the superiority of our method in sequence point
cloud registration is demonstrated, and the accuracy and robustness of our method in
a variety of complex scenarios are proven. Figure 10 shows the overall performance of
the 5 scenes. In Figure 11, local areas in scene 5 with obvious contrast are selected for
magnification to visually demonstrate the superiority of our method.
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3. Efficiency

For real-world 3D mapping tasks, efficiency is also a key metric. By counting the
operating time for the sequence registration of 300 scan frames, we compare the efficiency
of our method with other 3 methods. The average number of points per point cloud frame
is 13,886. The code of the methods are all MATLAB versions, and the experiment runs on
a laptop equipped with an Intel i7-10875H CPU. To finish the registration of 300-frame
sequence point clouds, the ICP method takes 80.54 s, the NICP method takes 63.25 s, the
IMU-aided ICP takes 22.86 s, and our method takes 28.05 s. The running time of the ICP
method is approximately 3 times that of our method.

The results of efficiency experiment are shown in Table 4. Compared with ICP and
NICP, the efficiency improvement of our method lies in the assistance of the IMU. Our
method provides a more accurate initial estimation to assist the nearest neighbor search
through the constraints of the short time period inertial trajectory, thereby speeding up
the convergence. Compared with IMU-aided ICP, our method utilizes the IMU assistance
in each loop, which improving the efficiency; while in IMU-aided ICP, the IMU does not
participate in the iterations, so the convergence speed of our method is faster. The results
indicate that our method has good efficiency and practicability in 3D mapping tasks.
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Table 4. Comparison of operating time for 300-frame registration.

Method Running Time/Seconds

ICP 80.54
NICP 63.25

IMU-aided ICP 22.86
Our method 28.05

5. Discussion

In this section, we explain the environmental adaptability of our method and discuss
the practicality and limitations.

In terms of environmental adaptability, our method is suitable for indoor-outdoor
integrated scenes and indoor scenes. In these GNSS-denied scenarios, point cloud reg-
istration is prone to be fragile. Facing this situation, an IMU can provide stable motion
measurements. The proposed inertial trajectory error model builds constraints between
multiple scan frames in a short time window and optimizes multiple frames in the window,
so our method can effectively avoid the impact of matching failures (due to structural
repetition, occlusion or moving objects) and improve the accuracy and robustness of point
cloud registration. In an open outdoor scene, because the GNSS signal is good, it can
provide an absolute position to directly constrain the point cloud, so IMU can be replaced
by GNSS.

In terms of practicality, the main advantage of our method is modularity. Compared
to tightly-coupled LiDAR-IMU methods, our method can serve as a separate registration
submodule and can be easily extended to other multisource navigation frameworks. Instead
of simply using inertial pose as a priori, we establish a model between the inertial error
and point cloud error. On the one hand, we use an error model of an inertial trajectory
over a short time period to constrain the point cloud registration error and optimize it
using the least squares method, which directly improves the accuracy of registration. On
the other hand, the optimization result can be fed back to update the inertial trajectory,
thus establishing a two-way optimization between the IMU and LiDAR. On this basis, by
adding this model to a Kalman filter or optimization-based methods, our method can be
easily extended to a LiDAR-inertial odometer and can further serve as a LiDAR-inertial
submodule for multisource data fusion.

The limitation of our method is that the registration accuracy is affected by the perfor-
mance of the IMU itself, which means that the parameter of time window length (window
length, w) needs to be adjusted according to actual situations. This is because when we
estimate the inertial trajectory error model parameters (Section 3.2), we put forward the

following assumption: in Equation (8), we combine −[θ]×ĈC
b p̂b and Ĉn

b δpb into a random
error. The reason for this assumption is that the attitude error caused by the IMU gyro
bias over a short time period is very small, so it only has a minimal effect on LiDAR with
centimeter-level measurement noise. When the accuracy of the IMU is high, this assump-
tion will be valid in a relatively longer time window, so the window length w can be set
larger. When a low-cost IMU is used, since the IMU error diverges faster, to ensure that
the proposed assumption is valid, a smaller window length w should be set, otherwise
the accuracy will decrease when the IMU gyro bias become large. Due to the limitations
of our experimental conditions, in Section 4.2.3 we only discuss parameter settings of
high-precision IMU, and we do not analyze the situation when using a low-cost IMU.
Therefore, to obtain better performance, we recommend that readers use high-precision
IMU when applying our method. If a low-cost IMU is used, the parameter settings should
be adjusted according to actual situation. In the future, we will continue to research and
optimize the proposed IMU trajectory error model to improve its practicality.
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6. Conclusions

Achieving efficient and reliable MLS point cloud registration in complex environments
is a research hotspot in the fields of 3D mapping and inspection, SLAM and robotics.
Aiming at this problem, we propose an inertial trajectory error model over a short time
period to construct constraints for point cloud registration, minimize the point cloud error
through least squares optimization, and achieve reliable MLS point cloud registration.

The contribution of this paper is mainly reflected in three aspects. (1) We propose an
inertial trajectory error model over a short time period, which constructs motion constraints
between different scan frames in a short time window. (2) An inertial-aided MLS point
cloud registration method is proposed, we optimize the inertial trajectory error model
parameters and point cloud registration errors at the same time, and realize continuous
MLS point cloud registration, which has the advantage of high accuracy, simplicity, and
extendibility. (3) We propose a cross-matching strategy to ensure high-overlap between
point clouds and effectively improve the registration reliability. We develop a multisensor
3D MLS backpack mapping system to collect data in campus environments and conduct
detailed comparative experiments in various scenes. In terms of mapping accuracy, the
RMSE of plane accuracy is 0.029 m, the RMSE of elevation accuracy is 0.021 m. The frame-
to-frame registration accuracy of our method reaches sub-meter, and the running time for
300-frame registration is 28.05 s. The experimental results prove the superiority of our
method in complex environments.

Although our method has the limitation that the registration accuracy is affected by
the device errors of the IMU, it has good practicality for solving 3D mapping tasks. In the
future, we will further research registration methods and try to solve the limitations of this
method. The LiDAR-inertial fusion problem has broad application prospects and room for
improvement, and we hope this article will provide help for future research.
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Appendix A. IMU Measurement Error Model

An inertial navigation system (INS) is an integrated system with inertial sensors as
the basis. According to the composition structure and navigation solution process, INS can
be divided into two types, platform INS and strap-down INS; here we mainly introduce
strap-down INS. Strap-down inertial sensors (also called inertial measurement units, IMU)
include three orthogonal gyroscopes and three orthogonal accelerometers. The gyroscope
can measure the attitude of the carrier based on integration of the measured angular
velocity, thereby maintaining a coordinate reference system in a stable direction. In this
coordinate reference system, we integrate the acceleration to obtain the velocity according
to Newton’s law of motion, and then we integrate the velocity to obtain the position. Finally,
we obtain the complete navigation state, which includes attitude, velocity, and position.
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IMU measurements can be modeled as a function of bias, scale factor, nonorthogonal
coefficient and noise: {

ω̂b = Kgωb + bg + εg

f̂b
= Kafb + ba + εa

(A1)



Kg =

 sg ,x γg ,xy γg ,xz
γg ,yx sg ,y γg ,yz
γg ,zx γg ,zy sg ,z



Ka =

 sa ,x γa ,xy γa ,xz
γa ,yx sa ,y γa ,yz
γa ,zx γa ,zy sa ,z


(A2)

where ωb represents the real angular velocity measured by the IMU, fb represents the real

specific force measured by the IMU, ω̂b, f̂b
represents the measured value of IMU, bg, ba are

the biases of gyroscope and accelerometer respectively, εg, εa are the measurement noise
of the gyroscope and accelerometer respectively, s is a scale factor, γ is the nonorthogonal
coefficient between the sensor axis systems, subscripts g, a indicate that a coefficient belongs
to the gyroscope or accelerometer, respectively, and subscripts xyz indicate the coordinate
axis. Generally, nonorthogonal coefficients have little effect. To simplify the analysis, the
nonorthogonal coefficients are not considered when modeling IMU measurements.

The device errors of an INS, such as the bias and the scale factor error, generally vary
slowly, which can be modeled as a first-order Gauss Markov process:

.
bg = − 1

tbg
bg + εbg

.
ba = − 1

tba
ba + εba

.
sg = − 1

tsg
sg + εsg

.
sa = − 1

tsa
sa + εsa

(A3)

where t is the correlation time, for example, tbg represents the correlation time of the
gyroscope bias and ε is random noise, for example, εbg represents the random noise of
gyroscope bias. For middle- and high-precision IMUs, the correlation time is relatively
long, and the drift noise is relatively small, so the bias over a short time period can be
regarded as a random constant.

Appendix B. IMU Navigation Equation

The inertial navigation equation is the basis of inertial navigation theory. It is con-
structed according to Newton’s law of motion and law of rotation and describes the
principle of inertial navigation. A navigation state is a state vector that describes the
position, velocity, and attitude of a moving object at a certain moment. We use the classic
9-dimensional state xnav to describe the navigation state at a certain moment:

xnav = [Cn
b vn rn] (A4)

where Cn
b is the IMU attitude matrix, which represents the conversion from the b-frame

(where the system is located) to the n-frame, vn is the velocity of the system in the n-frame,
and rn is the position of the system in the n-frame.

The change in the navigation state (attitude, velocity, position) over time is described
by the navigation equation:
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.
C

n
b= Cn

b

(
ωb

ib×
)
− (ωn

in×)Cn
b

.
vn

= Cn
b fb + gn − (ωn

ie + ωn
in)× vn

.
rn
= Mpvvn

(A5)

where ωb
ib is the real angular velocity measured by the IMU, ωb

ib× represents the skew-
symmetric matrix, fb is the true specific force measured by the IMU, ωn

ie is the angular
velocity of the Earth coordinate system relative to the inertial coordinate system, ωn

in is
the angular velocity of the navigation coordinate relative to the inertial coordinate system,
ωn

in = ωn
ie + ωn

en , ωn
en is the rotation produced by the motion of the carrier relative to the

surface of the Earth, and gn is the gravity acceleration vector.
A complete inertial navigation equation is complicated, which is not conducive to

the analysis of time-varying characteristics of inertial error. Generally, a simplified inertial
navigation equation is used, that is, the inertial navigation equation used in Equation (2).

Appendix C. IMU Navigation Error Equation

After introducing the inertial navigation equation, we further describe the inertial
navigation error equation. The error equation is a mathematical model that describes the
change trend of the inertial navigation state error. Taking the error from the navigation
state vector (Equation (A4)), the inertial navigation error state can be obtained:

δxnav = [φ δvn δrn] (A6)

where φ is the IMU attitude angle error, δvn is the IMU velocity error in the n-frame, and
δrn is the position error in the n-frame. By perturbing the navigation state and intermediate
variables in the n-frame, we can obtain:

Ĉn
b = [I− (φ×)]Cn

b (A7)

v̂n = vn + δvn (A8)

r̂n = rn + δrn (A9)

ω̂n
ie = ωn

ie + δωn
ie (A10)

ω̂n
in = ωn

in + δωn
in (A11)

ĝn = gn + δgn (A12)

Substituting these into the inertial navigation equation (Equation (A5)), the inertial
navigation error equation is obtained:

.
φ = −Cn

b δωb
ib −ωn

in × φ + δωn
in (A13)

δ
.
vn

= Cn
b δfb + Cn

b fb × φ− (ωn
ie + ωn

in)× δvn − (δωn
ie + δωn

in)× vn (A14)

δ
.
rn

= δvn (A15)

Equation (A13) is the differential equation of the IMU attitude error; Equation (A14) is
the differential equation of the IMU velocity error; and Equation (A15) is the differential
equation of the IMU position error.

Based on the above theories, the inertial state error and inertial device error of an IMU
can be summarized to obtain the equations in Section 3.1.1.
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Appendix D. MLS Registration Algorithm Based on IMU Trajectory

Algorithm A1: MLS registration algorithm based on IMU trajectory

Input: The time interval [ti, ti+1]; the initial navigation state x(ti); the IMU measurements
Ii = [Ii1 , Ii2 , . . . , Iin ], where n is number of IMU measurements within [ti, ti+1]; LiDAR frames
Sl

i = [Si1 , Si2 , . . . , Siw ], where w is the number of frames.
Output: The convergence state b, IMU trajectory error model parameters xc and its covariance
QxC

, IMU trajectory T i, LiDAR point cloud map Mi.
Initialization:
1. IMU integration: Calculate IMU trajectory T i0 = f (x(ti), Ii), and IMU pre-integration

sv, sr, C2;
2. Point cloud rearrangement: Combine w original frames Sij into m key frames Kij with a

wider scanning range, the number of original frames that each combined key frame contains
is l, l ≤ w/m;

3. for k = 0 : itt do
4. Point cloud calculation: Calculate the point cloud in the c-frame Sc

i = f
(
T ik

, Sl
i

)
, estimate

the point cloud normal vector. Perform grid sampling on point clouds, the sampling grid
point size is d;

5. Find correspondences: Construct high-overlapping key frames sets P ,Q based on

cross-matching strategy, find correspondences (p, q)
∣∣∣p ∈ Kij , q ∈ Kij+1 , j ∈ [1, m] using

nearest neighbor search, and calculate the matching weight εk (Equation (11));
6. Estimate IMU trajectory error model: Minimize the registration error and estimate the

parameters of IMU trajectory error model xck = argmin ∑N
1 eTPe. ( represents the number of

correspondences). Calculate the parameter increment δxck , and its covariance QxC
;

7. Update trajectory: Update parameters of IMU trajectory error model xck+1 = xck + δxck , then
update new IMU trajectory T ik+1

= g
(
T i0 , xck+1

)
, where g(·) is the update function

(Equation (7)).
8. Convergence condition: If the parameter increment δxck is less than 10−4, the iterations

converge and b = 1. Otherwise, b = 0, go to the next iteration. If the maximum number of
iterations itt is exceeded, terminate the loop;

9. end for
10. Output IMU trajectory T i = T ik+1

, LiDAR point cloud map Mi = Sc
i .
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