UAV Swarm Scheduling Method for Remote Sensing Observations during Emergency Scenarios
Abstract
:1. Introduction
2. Requirements Analysis
3. Scheduling Method
3.1. Task Formulation
3.2. Task Decomposition
3.3. Task Set Decomposition
3.3.1. Number of Task Subsets
3.3.2. Clustering of Task Subsets
3.3.3. Location Selection of the UAV Takeoff and Landing Points
3.3.4. Feasibility Analysis of the Decomposition Scheme
3.3.5. Formation of Task Subset Decomposition Scheme
3.4. Task Allocation
3.4.1. Scheduling Scheme
3.4.2. Scheduling Objective Function
3.4.3. Scheduling Constraints
3.4.4. Particle Swarm Optimization
- Basic algorithm
- Algorithm workflow
- Step 1:
- particles were randomly generated and initialized with their positions and velocities; each particle represented a task allocation scheme.
- Step 2:
- The initial task allocation scheme was determined based on the initialized positions.
- Step 3:
- Using O5 as the objective function, the corresponding adaptation value (fitness) of the task allocation scheme was calculated and obtained.
- Step 4:
- The first-particle best position and the global best position were determined based on fitness.
- Step 5:
- The fitness obtained for the first time was considered the optimal fitness of each particle; the optimal fitness (the smallest) among the fitness values of all particles was selected as the global optimal fitness.
- Step 6:
- The velocity and position of each particle were updated according to the particle’s best position and global best position.
- Step 7:
- The fitness was calculated based on the new position.
- Step 8:
- The particle best and global best were updated again.
- Step 9:
- The best solution for this round was determined based on the best particle and global best.
- Step 10:
- Above process was continued until results converge to form the final scheme.
4. Simulation Experiment
4.1. Data and Materials
4.2. Task Decomposition Results
4.3. Task Set Decomposition Results
4.4. Scheduling Scheme Results
4.5. Comparison Results with the Manual Scheduling Method
4.6. Comparison Results with the Direct Allocation Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. Hyogo Framework for Action: Building the Resilient of Nations and Communities to Disaster. In Proceedings of the World Conference on Disaster Reduction, Kobe, Japan, 18–22 January 2005. [Google Scholar]
- Alexander, D. Natural Disasters; Routledge: Oxfordshire, UK, 2018. [Google Scholar]
- Toya, H.; Skidmore, M. Economic Development and the Impacts of Natural Disasters. Econ. Lett. 2007, 94, 20–25. [Google Scholar] [CrossRef]
- Van, C. Remote Sensing for Natural Disaster Management. Int. Arch. Photogramm. Remote Sens. 2000, 33 Pt 7, 1609–1617. [Google Scholar]
- Poursanidis, D.; Chrysoulakis, N. Remote Sensing, Natural Hazards and the Contribution of Esa Sentinels Missions. Remote Sens. Appl. Soc. Environ. 2017, 6, 25–38. [Google Scholar] [CrossRef]
- Römer, H.; Kersten, J.; Kiefl, R.; Plattner, S.; Mager, A.; Voigt, S. Airborne Near-real-time Monitoring of Assembly and Parking Areas in Case of Large-scale Public Events and Natural Disasters. Int. J. Geogr. Inf. Sci. 2014, 28, 682–699. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Wu, F.; Zhang, B.; Tang, Y.; Wu, H.; Wen, X.; Yan, D. Disaster Phenomena of Wenchuan Earthquake in High Resolution Airborne Synthetic Aperture Radar Images. J. Appl. Remote Sens. 2009, 3, 31690. [Google Scholar] [CrossRef]
- Nex, F. UAV Photogrammetry for Mapping and 3d Modeling–current Status and Future Perspectives. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38, 25–31. [Google Scholar]
- Bonet, I.; Caraffini, F.; Pena, A.; Puerta, A.; Gongora, M. Oil Palm Detection Via Deep Transfer Learning. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Yao, H.; Qin, R.; Chen, X. Unmanned Aerial Vehicle for Remote Sensing Applications—A Review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Liu, J.; Ni, W.; Sun, G.; Zhang, Z.; Liu, Q.; Wang, Q. Estimation of Forest Leaf Area Index Using Height and Canopy Cover Information Extracted from Unmanned Aerial Vehicle Stereo Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 471–481. [Google Scholar] [CrossRef]
- Liao, X.; Zhang, Y.; Su, F.; Yue, H.; Ding, Z.; Liu, J. UAVs Surpassing Satellites and Aircraft in Remote Sensing Over China. Int. J. Remote Sens. 2018, 39, 7138–7153. [Google Scholar] [CrossRef]
- Boccardo, P.; Chiabrando, F.; Dutto, F.; Tonolo, F.G.; Lingua, A. UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications. Sensors 2015, 15, 15717–15737. [Google Scholar] [CrossRef] [Green Version]
- Zohdi, T.I. Multiple UAVs for Mapping: A Review of Basic Modeling, Simulation, and Applications. Annu. Rev. Environ. Resour. 2018, 43, 523–543. [Google Scholar] [CrossRef] [Green Version]
- Xiaoning, Z. Analysis of Military Application of UAV Swarm Technology. In Proceedings of the 2020 3rd International Conference on Unmanned Systems (ICUS), Harbin, China, 27–28 November 2020; pp. 1200–1204. [Google Scholar]
- Campion, M.; Ranganathan, P.; Faruque, S. UAV Swarm Communication and Control Architectures: A Review. J. Unmanned Veh. Syst. 2018, 7, 93–106. [Google Scholar] [CrossRef]
- Sanders, A.W. Drone Swarms; US Army School for Advanced Military Studies Fort Leavenworth United States: Fort Leavenworth, KS, USA, 2017. [Google Scholar]
- Duan, H.; Shao, S.; Su, B.; Zhang, L. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle. Sci. China Technol. Sci. 2010, 53, 2025–2031. [Google Scholar] [CrossRef]
- Yu, J. When UAVs Have Swarm Intelligence. People’s Dly. 2017, 7, 1. [Google Scholar]
- Zang, C.; Zang, S. Mobility Prediction Clustering Algorithm for Uav Networking. In Proceedings of the 2011 IEEE Globecom Workshops (GC Wkshps), Houston, TX, USA, 5–9 December 2011; pp. 1158–1161. [Google Scholar]
- Edison, E.; Shima, T. Integrated Task Assignment and Path Optimization for Cooperating Uninhabited Aerial Vehicles Using Genetic Algorithms. Comput. Oper. Res. 2011, 38, 340–356. [Google Scholar] [CrossRef]
- Casbeer, D.W.; Holsapple, R.W. Column Generation for a UAV Assignment Problem with Precedence Constraints. Int. J. Robust Nonlinear Control 2011, 21, 1421–1433. [Google Scholar] [CrossRef]
- Bektas, T. The Multiple Traveling Salesman Problem: An Overview of Formulations and Solution Procedures. Omega 2006, 34, 209–219. [Google Scholar] [CrossRef]
- Gendreau, M.; Laporte, G.; Potvin, J. The Vehicle Routing Problem; SIAM: Philadelphia, PA, USA, 2002; pp. 129–154. [Google Scholar]
- Schumacher, C.; Chandler, P.R.; Pachter, M.; Pachter, L.S. Optimization of Air Vehicles Operations Using Mixed-integer Linear Programming. J. Oper. Res. Soc. 2007, 58, 516–527. [Google Scholar] [CrossRef]
- Shima, T.; Rasmussen, S.J.; Sparks, A.G.; Passino, K.M. Multiple Task Assignments for Cooperating Uninhabited Aerial Vehicles Using Genetic Algorithms. Comput. Oper. Res. 2006, 33, 3252–3269. [Google Scholar] [CrossRef]
- Hu, X.; Ma, H.; Ye, Q.; Luo, H. Hierarchical method of task assignment for multiple cooperating UAV teams. J. Syst. Eng. Electron. 2015, 26, 1000–1009. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant Colony Optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Mirjalili, S. Evolutionary Algorithms and Neural Networks; Springer: Berlin/Heidelberg, Germany, 2019; pp. 43–55. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the Icnn’95-Onternational Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Van laarhoven, P.J.; Aarts, E.H. Simulated Annealing: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 1987; pp. 7–15. [Google Scholar]
- Li, Q.; Liu, X.; Li, R.H.; Feng, Z.; Li, Z.; Zhao, H. Networking Remote Sensing Simulation Track Planning Based on Field Station. J. Geo-Inf. Sci. 2021, 23, 948–957. [Google Scholar]
- Yasin, J.N.; Haghbayan, M.H.; Yasin, M.M.; Plosila, J. Swarm Formation Morphing for Congestion-aware Collision Avoidance. Heliyon 2021, 7, e07840. [Google Scholar] [CrossRef] [PubMed]
- Yasin, J.N.; Mahboob, H.; Haghbayan, M.H.; Yasin, M.M.; Plosila, J. Energy-efficient Navigation of an Autonomous Swarm with Adaptive Consciousness. Remote Sens. 2021, 13, 1059. [Google Scholar] [CrossRef]
- Malinen, M.I.; Fränti, P. Balanced K-means for Clustering. In Proceedings of the Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), Joensuu, Finland, 20–22 August 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 32–41. [Google Scholar]
- Vardi, Y.; Zhang, C. The Multivariate L1-median and Associated Data Depth. Proc. Natl. Acad. Sci. USA 2000, 97, 1423–1426. [Google Scholar] [CrossRef] [Green Version]
- Miranda, V.; Fonseca, N. Epso-evolutionary Particle Swarm Optimization, a New Algorithm with Applications in Power Systems. In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition, Yokohama, Japan, 6–10 October 2002; pp. 745–750. [Google Scholar]
ID | Coordinates (x, y) | Operational Flight Range (km) |
---|---|---|
1 | (391627.43, 3216722.76) | 17.877 |
2 | (393200.29, 3216500.85) | 22.062 |
3 | (393429.07, 3216077.63) | 16.632 |
4 | (393769.86, 3215704.21) | 16.598 |
5 | (390551.33, 3215573.01) | 16.675 |
6 | (388607.24, 3215290.34) | 17.97 |
7 | (390289.9, 3215285.95) | 22.147 |
8 | (394529.83, 3215146.78) | 19.351 |
9 | (394805.65, 3215115.4) | 20.749 |
10 | (392566.27, 3215001.11) | 20.766 |
11 | (393607.01, 3214848.79) | 16.768 |
12 | (390328.54, 3214777.59) | 43.553 |
13 | (392722.96, 3214702.06) | 17.97 |
14 | (392992.89, 3214581.23) | 17.118 |
…… | ||
50 | (393902.99, 3210969.76) | 20.664 |
51 | (393121.04, 3213700.23) | 17.97 |
52 | (392496.85, 3212429.06) | 17.629 |
ID of Task Subset | Operation Flight Range of The Generic K-Means (km) | Variance | Operation Flight Range of the Task-Balanced Restricted K-Means (km) | Variance |
---|---|---|---|---|
1 | 116.59 | 46.66 | 161.9 | 6.55 |
2 | 115.91 | 157.3 | ||
3 | 113.05 | 151.94 | ||
4 | 176.19 | 141.02 | ||
5 | 217.58 | 147.21 | ||
6 | 102.33 | 145.9 | ||
7 | 213.82 | 150.91 | ||
8 | 150.63 | 149.92 |
ID of Task Subset | ID of UAV | Task Execution Sequence | Operation Flight Range (km) | Transit Flight Range (km) | Total Flight Range (km) | Flight Time (h) | Average Flight Time (h) |
---|---|---|---|---|---|---|---|
1 | UAV1 | (0, 22, 5, 24, 20, 10, 0) | 33.18 | 1.46 | 34.64 | 0.96 | 0.96 |
UAV2 | (0, 23, 21, 14, 8, 9, 0) | 33.22 | 1.92 | 35.14 | 0.98 | ||
UAV3 | (0, 7, 1, 6, 13, 3, 0) | 31.19 | 1.9 | 33.09 | 0.92 | ||
UAV4 | (0, 19, 25, 2, 11, 12, 0) | 33.26 | 2.69 | 35.95 | 0.99 | ||
UAV5 | (0, 17, 15, 4, 18, 16, 0) | 31.05 | 1.99 | 33.04 | 0.92 | ||
2 | UAV1 | (0, 8, 1, 9, 14, 3, 0) | 29.3 | 1.41 | 30.71 | 0.85 | 0.92 |
UAV2 | (0, 17, 5, 18, 12, 13, 0) | 30.41 | 1.24 | 31.65 | 0.88 | ||
UAV3 | (0, 10, 23, 21, 15, 19, 0) | 32.53 | 1.58 | 34.11 | 0.95 | ||
UAV4 | (0, 2, 7, 22, 4, 6, 0) | 32.53 | 1.68 | 34.21 | 0.95 | ||
UAV5 | (0, 11, 24, 25, 16, 20, 0) | 32.53 | 1.8 | 34.33 | 0.95 | ||
3 | UAV1 | (0, 11, 18, 5, 17, 24, 0) | 29.56 | 2.49 | 32.05 | 0.89 | 0.90 |
UAV2 | (0, 12, 3, 7, 1, 8, 0) | 29.73 | 1.9 | 31.63 | 0.88 | ||
UAV3 | (0, 14, 16, 13, 4, 15, 0) | 32.35 | 0.67 | 33.02 | 0.92 | ||
UAV4 | (0, 20, 19, 21, 2, 9, 0) | 32.89 | 2.18 | 35.07 | 0.97 | ||
UAV5 | (0, 10, 23, 6, 22, 0) | 27.41 | 2.88 | 30.29 | 0.84 | ||
4 | UAV1 | (0, 16, 3, 17, 22, 6, 0) | 29.4 | 3.8 | 33.2 | 0.92 | 0.85 |
UAV2 | (0, 23, 13, 2, 14, 19, 0) | 29.64 | 4.13 | 33.77 | 0.94 | ||
UAV3 | (0, 20, 5, 21, 10, 12, 0) | 29.61 | 0.98 | 30.59 | 0.85 | ||
UAV4 | (0, 7, 1, 9, 8, 0) | 25.56 | 0.75 | 26.31 | 0.73 | ||
UAV5 | (0, 15, 18, 4, 11, 0) | 26.81 | 3.24 | 30.05 | 0.83 | ||
5 | UAV1 | (0, 12, 2, 11, 1, 10, 0) | 28.78 | 2.57 | 31.35 | 0.87 | 0.90 |
UAV2 | (0, 9, 15, 4, 16, 17, 0) | 30.27 | 3.97 | 34.24 | 0.95 | ||
UAV3 | (0, 18, 19, 5, 7, 22, 0) | 29.42 | 2.77 | 32.19 | 0.89 | ||
UAV4 | (0, 20, 6, 21, 23, 8, 0) | 31.54 | 2.3 | 33.84 | 0.94 | ||
UAV5 | (0, 24, 14, 3, 13, , 0) | 27.2 | 3.94 | 31.14 | 0.87 | ||
6 | UAV1 | (0, 11, 3, 12, 10, 2, 0) | 30.02 | 1.76 | 31.78 | 0.88 | 0.88 |
UAV2 | (0, 7, 1, 8, 9, 6, 0) | 32.16 | 3.3 | 35.46 | 0.99 | ||
UAV3 | (0, 23, 16, 4, 15, 17, 0) | 31.98 | 3.07 | 35.05 | 0.97 | ||
UAV4 | (0, 13, 14, 19, 18, 0) | 25.74 | 2.24 | 27.98 | 0.78 | ||
UAV5 | (0, 20, 5, 21, 22, 0) | 26 | 1.81 | 27.81 | 0.77 | ||
7 | UAV1 | (0, 18, 5, 17, 19, 14, 0) | 29.07 | 2.98 | 32.05 | 0.89 | 0.93 |
UAV2 | (0, 23, 7, 22, 13, 3, 0) | 30.76 | 3.27 | 34.03 | 0.95 | ||
UAV3 | (0, 12, 2, 16, 4, 25, 0) | 29.83 | 4.35 | 34.18 | 0.95 | ||
UAV4 | (0, 11, 15, 8, 24, 10, 0) | 31.91 | 3.99 | 35.9 | 0.99 | ||
UAV5 | (0, 9, 1, 21, 6, 20, 0) | 29.34 | 2.45 | 31.79 | 0.88 | ||
8 | UAV1 | (0, 16, 3, 15, 24, 5, 0) | 31.13 | 2.17 | 33.3 | 0.93 | 0.89 |
UAV2 | (0, 17, 23, 18, 4, 20, 0) | 31.38 | 2.99 | 34.37 | 0.95 | ||
UAV3 | (0, 22, 21, 19, 10, 9, 0) | 31.88 | 1.62 | 33.5 | 0.93 | ||
UAV4 | (0, 12, 2, 6, 7, 1, 0) | 30.08 | 1.82 | 31.9 | 0.89 | ||
UAV5 | (0, 11, 13, 14, 8, 0) | 25.45 | 1.86 | 27.31 | 0.76 | ||
Total | 1206.1 | 95.92 | 1302.02 | 36.15 | 7.23 |
ID of Task Subset | ID of UAV | Operation Flight Range (km) | Transit Flight Range (km) | Total Flight Range (km) | Flight Time (h) | Average Flight Time (h) |
---|---|---|---|---|---|---|
1 | UAV1 | 260.59 | 34.42 | 295.01 | 8.19 | 7.34 |
2 | UAV2 | 306.91 | 25.36 | 332.27 | 9.23 | |
3 | UAV3 | 217.11 | 20.52 | 237.63 | 6.6 | |
4 | UAV4 | 229.43 | 16.8 | 246.23 | 6.84 | |
5 | UAV5 | 192.07 | 18.34 | 210.41 | 5.84 |
Method | Operation Flight Range (km) | Transit Flight Range (km) | Total Flight Range (km) | Total Sorties | Flight Range (km) | Average UAV Utilization |
---|---|---|---|---|---|---|
The scheduling method | 1206.1 | 95.92 | 1302.02 | 40 | 1440 | 0.9 |
The manual scheduling | 1206.1 | 115.44 | 1321.54 | 61 | 2196 | 0.6 |
Test NO. | Convergence Time of the Direct Allocation Method (s) | Convergence Time of the Scheduling Method (s) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Taskset | Task Subset1 | Task Subset2 | Task Subset3 | Task Subset4 | Task Subset5 | Task Subset6 | Task Subset7 | Task Subset8 | Mean | |
1 | 28.19 | 1.94 | 1.76 | 1.77 | 0.89 | 1.00 | 1.08 | 0.95 | 1.31 | 1.34 |
2 | 22.40 | 1.43 | 0.57 | 1.23 | 1.08 | 1.73 | 1.14 | 1.62 | 1.15 | 1.24 |
3 | 32.27 | 0.87 | 1.42 | 1.55 | 1.36 | 1.95 | 1.04 | 1.48 | 0.66 | 1.29 |
4 | 20.01 | 1.21 | 1.56 | 1.77 | 1.80 | 0.92 | 1.17 | 1.70 | 1.54 | 1.46 |
5 | 23.68 | 1.23 | 0.63 | 1.34 | 1.52 | 1.38 | 1.08 | 1.69 | 1.07 | 1.24 |
6 | 33.99 | 1.85 | 1.18 | 0.83 | 0.61 | 0.55 | 1.43 | 1.11 | 1.34 | 1.11 |
7 | 29.77 | 1.55 | 1.30 | 1.07 | 1.47 | 1.81 | 0.69 | 1.48 | 1.20 | 1.32 |
8 | 30.02 | 1.94 | 1.55 | 0.75 | 1.49 | 1.93 | 1.54 | 1.41 | 0.77 | 1.42 |
9 | 27.97 | 1.17 | 1.71 | 1.52 | 0.98 | 1.28 | 1.87 | 0.85 | 1.40 | 1.35 |
10 | 30.53 | 1.67 | 0.91 | 1.05 | 1.75 | 1.62 | 1.75 | 1.17 | 1.08 | 1.38 |
Mean | 27.88 | 1.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Liao, X.; Ye, H.; Yue, H.; Wang, Y.; Tan, X.; Wang, D. UAV Swarm Scheduling Method for Remote Sensing Observations during Emergency Scenarios. Remote Sens. 2022, 14, 1406. https://doi.org/10.3390/rs14061406
Liu J, Liao X, Ye H, Yue H, Wang Y, Tan X, Wang D. UAV Swarm Scheduling Method for Remote Sensing Observations during Emergency Scenarios. Remote Sensing. 2022; 14(6):1406. https://doi.org/10.3390/rs14061406
Chicago/Turabian StyleLiu, Jianli, Xiaohan Liao, Huping Ye, Huanyin Yue, Yong Wang, Xiang Tan, and Dongliang Wang. 2022. "UAV Swarm Scheduling Method for Remote Sensing Observations during Emergency Scenarios" Remote Sensing 14, no. 6: 1406. https://doi.org/10.3390/rs14061406
APA StyleLiu, J., Liao, X., Ye, H., Yue, H., Wang, Y., Tan, X., & Wang, D. (2022). UAV Swarm Scheduling Method for Remote Sensing Observations during Emergency Scenarios. Remote Sensing, 14(6), 1406. https://doi.org/10.3390/rs14061406