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Abstract: Extreme rainfall, induced by severe weather events, such as hurricanes, impacts wetlands
because rapid water-depth increases can lead to flora and fauna mortality. This study developed
an innovative algorithm to detect significant water-depth increases (SWDI, defined as water-depth
increases above a threshold) in wetlands, using Sentinel-1 SAR backscatter. We used Hurricane
Irma as an example that made landfall in the south Florida Everglades wetlands in September 2017
and produced tremendous rainfall. The algorithm detects SWDI for during- and post-event SAR
acquisition dates, using pre-event water-depth as a baseline. The algorithm calculates Normalized
Difference Backscatter Index (NDBI), using pre-, during-, and post-event backscatter, at a 20-m SAR
resolution, as an indicator of the likelihood of SWDI, and detects SWDI using all NDBI values in a
400-m resolution pixel. The algorithm successfully detected large SWDI areas for the during-event
date and progressive expansion of non-SWDI areas (water-depth differences less than the threshold)
for five post-event dates in the following two months. The algorithm achieved good performance in
both ‘herbaceous dominant’ and ‘trees embedded within herbaceous matrix’ land covers, with an
overall accuracy of 81%. This study provides a solution for accurate mapping of SWDI and can be
used in global wetlands, vulnerable to extreme rainfall.

Keywords: significant water depth increase; SAR backscatter; wetlands; normalized difference
backscatter index (NDBI); Everglades; Hurricane Irma

1. Introduction

Wetlands are productive ecosystems that provide various services, including habitats
for many plant and animal species, water supply and purification, carbon sequestration,
coastal protection, and outdoor recreation. Hydrology is the most important abiotic fac-
tor controlling wetland functions [1]. For many wetlands, hydrological conditions vary
seasonally, but occasionally, water levels can rise rapidly due to extreme precipitation
events, associated with tropical cyclones or other extreme weather events. Anomalous
water depth with an extended duration can significantly increase water discharge, transport
large amounts of sediments and nutrients, cause flora and fauna mortality, and change
plant community compositions and species richness in the long term [2–5]. It is expected
that the frequency and magnitude of extreme precipitation events will increase with global
warming [6]. Therefore, detecting and monitoring significant water-depth increases (SWDI)
due to extreme precipitation events becomes important for wetland management.

Remote sensing observations, such as Synthetic Aperture Radar (SAR) backscatter and
optical data, are sensitive to changes in the surface hydrological conditions of wetlands [7].
However, SAR backscatter is more useful than optical observations in hydrological applica-
tions on vegetated areas, because microwave energy transmitted by SAR is characterized
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by a higher degree of transmission through canopies. SAR backscatter observations were
widely and successfully used to map flooded extents in wetlands and floodplains [8–10],
forests [11–13], and agricultural lands [14–17]. However, these studies only detected the
transition from unflooded to flooded conditions, not considering the transition from shallow
to deep water depths.

Previous studies have successfully applied SAR backscatter to map water depths, but
those studies are limited to river flood events associated with floodplains [18–24]. Water
depth mapping was often conducted using a three-stage procedure, including (1) using
backscatter to determine flood extent, (2) calculating the ground elevation of flood extent
boundary with Digital Terrain Model (DTM) data, and (3) mapping water depths. However,
since these studies focused on floodplains with limited vegetation land covers, they often
assume that flooding only induces backscatter decreases, which is not valid at forested and
dense herbaceous areas [1]. Furthermore, the studies relied on DTM data, and water depth
estimation accuracies depended on the quality of the DTM product, which is often worse
in vegetated wetlands.

For wetlands with dominant vegetation and significant seasonal water depth varia-
tions, previous studies have found SAR backscatter’s sensitivity on changes in water depth.
Studies have shown that both L-band HH (horizontal transmit and horizontal receive) and
C-band VV (vertical transmit and vertical receive) polarization data are strongly correlated
with water depths, for forested, medium- and sparse-herbaceous vegetation, with different
types of linear relationships [1,25–30], whereas C-band VH data have only shown strong
correlations with changes in water depths for sparse herbaceous vegetation [25]. Though
a limited number of studies successfully discovered that backscatter is correlated with
water depth variations in vegetated wetlands, no study has applied backscatter to monitor
regional water depth changes for vegetated wetlands.

Interferometric SAR (InSAR) techniques have been used successfully in estimating
water-depth changes in wetlands and floodplains [30–39]. However, InSAR studies can
only achieve reliable water-depth change estimates when the level of coherence between
two SAR acquisitions is high, e.g., larger than 0.5 [39]. Significant and rapid water-depth
changes in wetlands, caused by tropical cyclones under high-wind conditions, result in
interferometric decorrelation and, therefore, no information of water-depth changes can
be obtained.

This study aimed to develop a SAR backscatter-based algorithm to detect SWDI,
defined as water-depth increases above a specified threshold. We focused on the effects
of the 2017 Hurricane Irma that induced excessive precipitation and caused regional
SWDI, with extended duration (two months) in large parts of the Everglades wetland,
in south Florida. The algorithm is based on linear relationships between the backscatter
coefficient (σ◦) and water depths (dw), which exist in different vegetation types (discussed
in Section 2.1). The algorithm detected the areas of SWDI and non-SWDI (water-depth
increases less than the threshold) for one during-event and five post-event dates with SAR
acquisitions. We compared the accuracy of SWDI detection between ‘herbaceous dominant’
and ‘trees within herbaceous matrix’ land cover types.

2. Background
2.1. SAR Backscatter in Wetlands

SAR backscatter acquired over wetlands is affected by vegetation biophysical parame-
ters and hydrological conditions. Previous studies have found that C-band co-polarized
backscatter changes, over time, often reflect seasonal hydrological variations [1,25,28,29].
The relationships between C-band backscatter and water depth were described using dif-
ferent types of linear models, according to vegetation characteristics [1,25–30,40]. This
section introduces the current knowledge of C-band backscatter behavior, in response to
changes in water depths, for three major wetland vegetation types: open-canopy woody,
medium-dense herbaceous, and sparse herbaceous (Figure 1). Woody and herbaceous
vegetation with dense canopies are not discussed because backscatter is insensitive to
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changes in hydrological conditions of the ground substrate, and only a small portion of
C-band microwave energy can be transmitted through the canopies.
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types. For open-canopy woody vegetation, water-depth increase enhances double-bounce 

Figure 1. Schematic illustrations showing C-band backscatter (σ◦) changes in response to water-
depth (dw) variations for three vegetation types. The second (a,e,i) and third (b,f,j) columns present
microwave energy-water-vegetation interactions under the conditions of shallow and deep-water
depths, respectively. The fourth column (c,g,k) shows linear relationships between co-polarized σ◦

and dw according to [25]. The dashed line in (c) represents a weaker correlation than those in (g,k).
The last column (d,h,l) shows water-depth increases (∆dw) resulting in changes in backscatter (∆σ◦).
The green and red dots in (d,h,l) represent pre- and post- rainfall event observations, respectively, and
cyan dashed lines show water-depth increases and changes in backscatter. This figure is a modified
version of Figure 2 in [25].
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Figure 2. (a) Map of the study area in the Everglades according to the extent of EDEN water surface 
products, including four hydrological units (polygons with white boundaries). The red frame shows 
a Sentinel-1 SAR footprint. (b) The land cover map of the Everglades is derived from the South 
Florida Water Management District (SFWMD) Land Cover Use map for 2014–2016 (https://geo-
sfwmd.hub.arcgis.com/datasets/sfwmd::sfwmd-land-cover-land-use-2014-2016/about, last ac-
cessed on 1 November 2021, with details provided in Supplementary Material Note 1). Red dots 
mark the locations of three selected EDEN water gauges presented in Section 5.1. (Background of 
both maps is the optical base map provided by ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, 
CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community). 
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Figure 2. (a) Map of the study area in the Everglades according to the extent of EDEN water
surface products, including four hydrological units (polygons with white boundaries). The red frame
shows a Sentinel-1 SAR footprint. (b) The land cover map of the Everglades is derived from the
South Florida Water Management District (SFWMD) Land Cover Use map for 2014–2016 (https:
//geo-sfwmd.hub.arcgis.com/datasets/sfwmd::sfwmd-land-cover-land-use-2014-2016/about, last
accessed on 1 November 2021, with details provided in Supplementary Material Note 1). Red dots
mark the locations of three selected EDEN water gauges presented in Section 5.1. (Background of
both maps is the optical base map provided by ESRI, DigitalGlobe, GeoEye, Earthstar Geographics,
CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community).

The types of linear relationships between C-band σ◦ and dw vary among vegetation
types. For open-canopy woody vegetation, water-depth increase enhances double-bounce
scattering (Figure 1a,b), resulting in linearly increasing backscatter (Figure 1c) [1,25]. For
medium-dense herbaceous vegetation, under the condition of shallow water depths, rel-
ative to plant heights, backscatter increases with water depth, due to enhanced double-
bounce (Figure 1e) [41]. However, after water depth reaches a certain level, backscatter
decreases with increasing water depth, because an increasing portion of the microwave
energy scatters away from the satellite (Figure 1f). Consequently, the σ◦-dw relationship
is a combined positive and negative linear relationship (Figure 1g) [25]. For sparse herba-
ceous vegetation, increasing water depth leads to decreased backscatter because emergent
vegetation volume decreases (Figure 1i,j), resulting in negative linear relationships between
σ◦ and dw (Figure 1k) [25,28,29].

The linear σ◦-dw relationships provide the foundation for backscatter-based SWDI
detection, which assumes that change in water-depth is the main factor for backscatter
variations for a given vegetation type. The difference between pre-event and post-event
backscatter values depends on the magnitude of changes in water depth. Reliable SWDI
detection requires pre-event conditions to be characterized by standing water because, if
unflooded, backscatter is mainly determined by other parameters, such as soil moisture [28].
In addition, pre-event water depths should not be higher than the plants because backscatter
from fully submerged vegetation is insensitive to further water-depth increases due to
specular reflection. Under shallow water-depth conditions, relative to plant heights, i.e.,
with a portion of plant volume emerging from water surfaces, backscatter is likely sensitive
to water-depth increases. Additionally, if a SAR observation is acquired during a hurricane
event, winds could change the horizontal and vertical plant structure, and it is important
to evaluate wind effect on backscatter changes.

Our SWDI detection only relied on the negative and combined positive–negative
σ◦-dw linear relationships for herbaceous vegetation, assuming that backscatter decreases
in response to water-depth increases (Figure 1h,l). Note that, in the cases of combined linear
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relationships, this assumption is valid only when the pre-event water depth is around
the ‘hinge’ area, where the positive and negative linear relationships transition or the
water depth is even deeper and corresponds to the negative linear trend (Figure 1h). The
SWDI detection did not rely on the positive σ◦-dw linear relationships for woody vegetation
because C-band energy is less sensitive to changes in hydrologic conditions than herbaceous
vegetation [7,25]. The low sensitivity is attributed to the low transmission of microwave
energy through woody canopies [25].

2.2. Study Area

Our study area is a part of the greater Everglades wetland ecosystem in south Florida
(Figure 2a). The greater Everglades ecosystem is characterized by a small topographic gradi-
ent of 2 cm per kilometer [7] and is subject to subtropical climate, with seasonal rainfall. The
study area was set to the extent of water surface maps, generated by the Everglades Depth
Estimation Network (EDEN), as reference data for validating SWDI detection. The study
area consists of hydrologically controlled- and natural-flow units (Figure 2a). The hydrolog-
ically controlled areas include two Water Conservation Areas (WCA3A and WCA3B), and
the natural flow areas include Everglades National Park (ENP) and Big Cypress National
Preserve (BCNP). The vegetation types in WCAs and ENP are dominated by herbaceous
marshes and prairies, sloughs, and woodlands with trees and shrubs (Figure 2b) [42]. BCNP
is dominated by ‘trees embedded in herbaceous matrix’ land cover, representing areas with
sparse to dense tree covers, mainly bald cypress (Taxodium distichum), within the matrix of
herbaceous species that often form the understory [43]. Around one-quarter of BCNP is
covered with treeless wet prairies and marshes (Figure 2b) [43].

2.3. Hurricane Irma

Hurricane Irma was one of the strongest hurricanes to hit the eastern US coast on
record. It made landfall in the southern Florida Keys, on 10 September 2017, as a catas-
trophic hurricane category four on the Saffir–Simpson hurricane wind scale, with maximum
sustained winds of ~58 m/s, continued northward as a category three hurricane, arrived
near Naples, Florida, later, on the same day, with maximum sustained wind speed of
~51 m/s [44,45]. The strongest observed wind gust was 64 m/s, which was recorded near
Naples [46]. Hurricane Irma produced heavy precipitation, resulting in an extensive, rapid,
and significant water-depth increase for the Everglades wetlands. The hurricane caused
significant damage to vegetation canopies of the coastal mangrove forests along the west
coast of the Everglades (not included in the area of interest for this study), whereas the
impact on the eastern inland wetlands was not significant [47,48]. After Hurricane Irma’s
occurrence, until the end of November, the intensity of occasional rainfall events was
much weaker than the rainfall induced by Hurricane Irma, and according to water gauge
measurements, water depth gradually decreased to the pre-event levels.

3. Data and Data Preprocessing

This study relied on two multi-temporal datasets: a satellite-based SAR dataset and a
ground-based hydrological dataset. The satellite-based dataset consisted of C-band SAR
backscatter observations, acquired by the satellite, Sentinel-1A. The hydrological dataset
consisted of gauge measurements of water depths from the EDEN network and interpolated
water surface maps [49,50].

3.1. SAR Data and Pre-Processing

Sentinel-1A data were consistently acquired for the Everglades, with 51 scenes, from
September 2016 to September 2018 (one year before and one year after Hurricane Irma),
from the same ascending path 48 (European Space Agency-https://scihub.copernicus.eu/
dhus/#/home, last accessed on 12 December 2021). SWDI detection used a total of nine
acquisitions in the year 2017: three pre-event ones, acquired on 24 July, 17 and 29 August,
one during-event, on 10 September, and five post-event ones, on 4, 16, 28 October, and 9

https://scihub.copernicus.eu/dhus/#/home
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and 21 November. The three pre-event SAR dates formed a baseline to capture the rapid
water-depth increase induced by Hurricane Irma, with their water-depth maps presented
in Section 5.2. The rest of the SAR data were used to illustrate the σ◦-dw relationships
(Section 5.1).

This study used Sentinel-1 Level-1 high-resolution Ground Range Detected (GRD)
Interferometric Wide (IW) mode products that included C-band VV and VH data (C-VV
and C-VH), with a spatial resolution of 20 m and 22 m in range and azimuth directions,
respectively. Sentinel-1A data processing used the Sentinel Application Platform (SNAP),
provided by ESA. The processing included thermal noise removal, radiometric calibration,
speckle filtering, and terrain correction using the 3-arcsecond Shuttle Radar Topography
Mission (SRTM) DTM. Backscatter was expressed as sigma naught (σ◦) in decibel (dB)
units and resampled to 20-m pixel spacing using bilinear interpolation. This procedure
generated two co-registered stacks of backscatter time series in C-VV and C-VH, respec-
tively. However, this study does not emphasize the C-VH data because of noisy pre-event
backscatter and anomalous during-event backscatter values, possibly due to backscatter
from waves induced by winds.

3.2. Hydrologic Data and Digital Terrain Model

Hydrologic data, including water gauge measurements and water surface maps, and
DTM data, were provided by EDEN (https://sofia.usgs.gov/eden/, last accessed on 16
November 2021). Daily median water gauge measurements were used to relate to the
daily interpolated surface maps. For 10 September 2017, during the passage of Hurricane
Irma over south Florida, hourly water level data were used because of rapid water-level
increases, induced by heavy rainfall. The hourly water level measurements were from
19:00–20:00 Eastern Standard Time (or UTC 23:00–24:00), corresponding to the Sentinel-1
acquisition time (UTC 23:27). We subtracted the ground elevation value from water level
measurements for each water gauge to calculate the water depth time series.

EDEN daily water surface maps represent median water levels, with a vertical accuracy
of 3.3 cm, and align with the same grid, with a 400 m × 400 m resolution [49,50]. We
obtained daily median water surface maps, corresponding to eight of the nine Sentinel-1
acquisition dates (three pre-event and five post-event) used for SWDI detection, and, for
the during-event date, the hourly water surface map for UTC 23:00–24:00, interpolated by
hourly water gauge measurement [51], was used because of rapid water-depth increases
during Hurricane Irma. The hourly surface interpolation method was the same as other
daily median maps, using the radial basis function (RBF) and multi-quadric method [49–52].
Similarly, the EDEN DTM map was subtracted from water surface maps to generate water-
depth maps.

4. Methodology

We developed an SWDI detection algorithm that classifies SWDI and non-SWDI
areas with respect to baseline hydrological conditions for each of the six target SAR dates
(one during- and five post-event). The algorithm classifies 400-m resolution pixels of the
regular EDEN grid into three classes ‘SWDI’, ‘Non-SWDI’, and ‘Uncertain’. This section
mainly describes the backscatter-based SWDI detection algorithm consisting of three stages
(Figure 3, Section 4.1). Section 4.2 describes the selection of values for threshold parameters
used in the algorithm.

https://sofia.usgs.gov/eden/
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Figure 3. (a) Flow chart of the three-stage Significant Water-Depth Increase (SWDI) detection and vali-
dation algorithm. Rectangles with a green boundary represent data; rectangles with a black boundary
represent analyses; rectangles with a red boundary represent products and results. (b) Illustration of
20 × 20 co-registered SAR pixels within an EDEN cell. (c) Decision tree of SWDI detection for EDEN
cells based on Normalized Difference Backscatter Index (NDBI) values of SAR pixels. Diamonds
denote criteria for n, i.e., the percentage of SAR pixels with NDBI < −nth.

4.1. SWDI Detection Methodology

Our SWDI detection was based on two assumptions: (1) water depth is the factor con-
trolling most of the variations in backscatter, and (2) SWDI leads to backscatter decreases
for herbaceous wetlands because they are characterized by negative or combined σ◦-dw
linear relationships depending on vegetation density (Figure 1). The first assumption is
valid for major vegetation types in the Everglades under flooded conditions [25], whereas
it may not hold under unflooded (groundwater) conditions. We, therefore, examined the
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flooding conditions for the selected SAR dates, especially for three pre-event dates when
water levels are lower than the during- and post-event dates (Section 5.2). In addition,
we evaluated Hurricane Irma’s wind impact on backscatter values by selecting 135 water
gauges, for which water depth measurements were available for the period of interest
(September 2016–September 2018) to calculate σ◦-dw linear models based on the methodol-
ogy described by Zhang et al. [25]. For each water gauge, the during-event backscatter’s
deviation from the linear model was calculated (Figure S1a,b) and compared to the Mean
Absolute Error (MAE) of the linear model, which is the average absolute deviation value
for all SAR observations used for the linear model.

The second assumption does not hold for combined σ◦-dw linear relationships if pre-
event water depths are shallow relative to plant heights when SWDI leads to backscatter
increase instead of decrease (Figure 1h). To verify the second assumption, we classified
EDEN water gauge pixel locations into four classes (positive, combined positive–negative,
negative (each with strong correlations with R2 > 0.5 and p-value < 0.04), and weak linear
σ◦-dw relationships) by applying the classification method provided by Zhang et al. [25]
on the two-year backscatter and water depth time series. For the gauge pixels with a
combined positive–negative linear relationship, their relative pre-event water depths were
investigated and are shown in Figure S2.

If both assumptions are verified, SWDI detection mainly uses a Normalized Difference
Backscatter Index (NDBI) that calculates mean and standard deviation values for pre-event
backscatter [10,53]. The SWDI detection algorithm consists of a data preparation step and
three stages (Figure 3a): NDBI calculation and thresholding (Stage 1), SWDI detection and
validation using candidate sets of thresholds (Stage 2), and detailed validation of SWDI
detection resulting from the selected set of thresholds (Stage 3).

Data Preparation. The SWDI detection unit was set to the EDEN water surface maps’
400 m × 400 m grid cell. The 20-m SAR pixels were co-registered to fit into the EDEN grid
(Figure 3b) by first resampling the EDEN grid into a 20-m resolution grid as an intermediate
product and then resampling the nine selected SAR images to this grid. As a result, each
400-m EDEN cell contained 400 (20 × 20) co-registered SAR pixels (Figure 3b).

Stage 1 includes NDBI calculation (Stage 1a) and thresholding to select SAR pixels
likely to have SWDI (Stage 1b). The analysis is conducted at a 20-m SAR pixel scale.

Stage 1a calculates NDBI for each SAR pixel with Equation (1) using three pre-event
and one target date (during or post-event) backscatter values. NDBI is the normalized
difference value between target and pre-event mean backscatter.

NDBI =
σ◦

t − σ◦
p

SDp
(1)

where σ◦
t denotes backscatter for a target image pixel, σ◦

p denotes the average of three pre-

event backscatter values as backscatter baseline, SDp =
√

1
3 ∑3

i=1
(
σ◦

pi − σ◦
p
)2

denotes the
standard deviation of the pre-event backscatter, with σo

pi denoting a pre-event backscatter.
Based on the linear σ◦-dw relationships described in Section 2.1, differences between

σ◦
t and σ◦

p are proportional to changes in water depths. SDp accounts for pre-event
backscatter variations, and large SDp reduces the confidence of SWDI detection.

Stage 1b thresholds NDBI values using a criterion of NDBI < -nth, with the rationale
that water-depth increase leads to backscatter decrease because of negative or combined
σ◦-dw linear relationships for herbaceous vegetation. Significant water-depth increase
leads to negative NDBI values with large magnitudes. For example, using an nth of 3, i.e.,
a threshold criterion as NDBI < −3, indicates that the normalized change between the
baseline and target backscatter is more negative than −3. Based on the NDBI threshold
nth, we determine the SWDI detection threshold as nth times the pre-event water-depth
standard deviation (Figure 3a), according to the linear σ◦-dw relationships.

We mapped the NDBI with three classes: NDBI < −nth, −nth <= NDBI <= nth, and
NDBI > nth to spatially investigate the pixels that were likely to have SWDI. Though the
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algorithm does not use positive NDBI values as an indicator for SWDI, i.e., NDBI > nth, due
to weak correlations between σ◦ and dw for woody vegetation (Section 2.1), we mapped this
class to further justify that the NDBI > nth criterion should not be used in SWDI detection.

Stage 2 consists of SWDI detection (Stage 2a) and validation (Stage 2b), and it is
conducted at a 400-m EDEN cell scale. Stage 2a describes the SWDI detection algorithm,
and Stage 2b describes the metrics for validating SWDI detection results.

Stage 2a analyzes NDBI values resulting from Stage 1 to classify each EDEN cell
into one of three classes: ‘SWDI’, ‘Non-SWDI’, and ‘Uncertain’ (Figure 3c). ‘SWDI’ class
indicates that water-depth increase relative to the baseline is higher than the SWDI detection
threshold (determined in Stage 1b); ‘Non-SWDI’ class indicates that water-depth increase
is less than the threshold; ‘Uncertain’ class indicates that the status of water-depth change
could not be determined.

The algorithm first calculates a term n, the percentage of SAR pixels contained in an
EDEN cell with NDBI < -nth, meaning, for that SAR pixel, the backscatter change from
baseline to the target, after normalization (see Equation (1)), is more negative than -nth.
The algorithm then compares n to two threshold parameters: nNon-SWDI and nSWDI, (with
nNon-SWDI ≤ nSWDI). The EDEN cell is classified as ‘SWDI’ when n > nSWDI; ‘Non-SWDI’
class when n < nNon-SWDI; ‘Uncertain’ class when nNon-SWDI ≤ n ≤ nSWDI. (For example,
nNon-SWDI = 10% and nSWDI = 20%; the rationale for searching of optimal values is explained
later in Stage 2b). The EDEN cell would be classified as ‘SWDI’ when n > nSWDI, meaning if
there is a high percentage of SAR pixels with NDBI < -nth, it is likely for SWDI to occur at that
EDEN cell. On the other hand, the EDEN cell would be classified as ‘Non-SWDI’ class when
n < nNon-SWDI. When a low percentage of SAR pixels satisfy NDBI < −nth, the observed
NDBI values are assumed to primarily come from noisy backscatter values, and it is inferred
that SWDI does not occur in that pixel (non-SWDI). Finally, when nNon-SWDI ≤ n ≤ nSWDI,
the pixel would be classified as ‘Uncertain’ class.

Stage 2b systematically validates SWDI detection resulting from candidate values
of nSWDI and nNon-SWDI to select the set of thresholds that yields the best performance on
detection. We systematically tested nSWDI and nNon-SWDI candidates with a range from 0%
to 100% (note that nNon-SWDI ≤ nSWDI) and an increment of 5%. Detection results were com-
pared to reference water-depth increase maps produced for each target date by subtracting
the baseline from a target water surface, with each reference map including ‘SWDI’ and
‘Non-SWDI’ classes determined by the SWDI detection threshold (Figure 3a). For each set
of candidate thresholds, metrics were calculated, including overall accuracy (OA), Kappa
coefficient [54], and the average percentage of the ‘Uncertain’ class for six target dates as a
whole, to select the set with high accuracy but low ‘Uncertain’ class percentage.

Stage 3 is a detailed validation for SWDI detection resulting from the selected set of
thresholds with the best performance. We generated an evaluation map for each target SAR
date with five classes, including correctly classified (‘True SWDI’ and ‘True Non-SWDI’),
incorrectly classified (‘False SWDI’ and ‘False Non-SWDI’), and ‘Uncertain’. Evaluation
metrics were tabulated, including the percentage of each class, OA, Kappa coefficient,
user’s and producer’s accuracy (UA and PA) for ‘SWDI’ and ‘Non-SWDI’ classes. We also
compared OA among different land covers for each target date.

4.2. Selection of Threshold Values

An initial threshold nth of 3 was used to classify NDBI values based on previous
studies using a similar technique for hydrological applications [10,17]. A sensitivity test
was conducted using nth of 2 and a corresponding SWDI detection threshold of 8 cm
(2 × 4 cm) to investigate SWDI detection accuracy. SWDI detection threshold is nth times
the pre-event water-depth standard deviation. The standard deviation map showed a range
of 4 ± 2 cm for most of the study area (84%, Section 5.2) and, therefore, we used the spatial
mean value of standard deviations, 4 cm, to represent the standard deviation for the study
area, resulting in an SWDI detection threshold as nth × 4 = 12 cm. Another sensitivity test
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was conducted using different values ranging from 2 to 6 cm to represent the pre-event
water-depth standard deviation for the entire study area.

5. Results

This section includes three parts. The first section presents the three types of σ◦-dw
linear relationships (Section 5.1), which serves as foundations for SWDI detection. The
second section presents pre-event hydrologic conditions (Section 5.2). Finally, Section 5.3
consists of three subsections, following three stages of the algorithm.

5.1. Backscatter Behavior in Response to Variations in Water Depth for Three Selected
Water Gauges

Three representative gauges were selected to illustrate the three types of σ◦-dw lin-
ear relationships (Section 2.1); ‘BCA4’, ‘EDEN_9’, and ‘NP201’ (Figure 4). Gauge ‘BCA4’
was located within cypress swamps in BCNP, and ‘EDEN_9’ and ‘NP201’ were located in
graminoid marshes in WCA-3A and ENP, respectively (Figure 2b). The water gauges exem-
plified positive, combined positive–negative, and negative σ◦-dw relationships, respectively.
The presented backscatter values were obtained by using the SAR pixel containing the
gauge location.
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Figure 4. Backscatter changes in response to variations in water depths for three selected water gauges.
Three rows represent water gauges ‘BCA4’, ‘EDEN_9’, and ‘NP201’, respectively. (a,d,g) Temporal
changes in backscatter and water depths from September 2016 to September 2018. Small blue dots
represent daily water depth; black and grey dots represent SAR backscatter values under flooded
and unflooded conditions, respectively; green, red, and purple dots represent pre-, during-, and
post-event backscatter, respectively. The x-axes represent time in decimal year format. Water depth
measurements under unflooded conditions (negative values) were excluded. (b,e,h) Zoomed-in
view for the period from July to November 2017, highlighting pre-, during-, and post-event data.
(c,f,i) Scatter plots of backscatter and water depth under flooded conditions from September 2016 to
September 2018 with red lines representing least-squares best-fitting models.

For water gauge ‘BCA4’, backscatter was in phase with water-depth variations (Figure 4a).
The positive linear σ◦-dw relationship was weak (R2 = 0.04, Figure 4c). During-event
backscatter was higher than all pre- and post-event backscatter values, and the during-
event water depth was also higher than the other dates (Figure 4b).
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For water gauge ‘EDEN_9’, backscatter was in phase with water-depth variations at
low water depths (Figure 4d). However, backscatter was out of phase with water-depth
variations during the highlighted period with high water depths (Figure 4e). The scatter
plot of backscatter and water depth showed a combined positive and negative σ◦-dw
linear relationship (R2 values are 0.68 and 0.91, respectively, Figure 4f). The during-event
backscatter was lower than the pre-event backscatter values, whereas the during-event
water depth was higher (Figure 4e). Post-event SAR dates showed gradually decreasing
water depths and increasing backscatter values.

For the ‘NP201’ water gauge, backscatter and water-depth variations were out of
phase for the entire time series (Figure 4g). The scatter plot of backscatter and water depths
showed a negative σ◦-dw linear relationship with an R2 of 0.62 (Figure 4i). The during-event
date showed a higher water depth and lower backscatter value than the pre-event ones.
Post-event backscatter increased as water depths decreased (Figure 4h).

5.2. Pre-Event Hydrological Conditions

We investigated pre-event hydrological conditions to verify the first assumption, that
water depth is the factor controlling most of the variations in backscatter from vegetated
wetlands, which is not valid under unflooded conditions. The water-depth maps, derived
from EDEN’s water surface maps, for the three pre-event SAR acquisition dates (24 July,
17 and 29 August in 2017), revealed that most of the study area was flooded with water
depths of less than 100 cm (Figure 5a–c). Though water-depth maps were missing for
the northwestern BCNP, due to the lack of DTM, EDEN water gauges in BCNP indicated
flooded conditions during the pre-event dates. Because the study area mainly consists of
woody vegetation in BCNP and herbaceous vegetation, dominated by tall species (e.g.,
Cladium jamaicense, with heights over 160 cm) in WCAs and ENP [55,56], a significant
portion of plant volume emerged above the water surface. Consequently, the pre-event
dates were characterized by flooded conditions, and soil moisture makes little contribution
to backscatter, supporting the first assumption that changes in backscatter are mostly
controlled by water-depth variations.

During-event backscatter’s deviations from linear models were compared to MAE
for 135 selected water gauges, and most of the gauges showed during-event backscatter
deviations were at a similar level to the MAE, i.e., less than 2 dB (Figure S1), indicating
that the hurricane’s wind did not have a significant impact on the during-event backscatter
values. Therefore, the first assumption proved to be valid. Details of evaluating Hurricane
Irma’s impact on during-event backscatter values is presented in Note 2.

To verify the second assumption, that SWDI leads to backscatter decreases for medium–
dense herbaceous vegetation, characterized by combined σ◦-dw linear relationships, we
classified σ◦-dw relationships for water gauges and selected eleven gauges as combined
positive–negative relationships (Figure S2). Their pre-event water depths were either
located in the “hinge” area or along with the negative linear trend on the σ◦-dw scatter
plots (Figures S2 and 4f). The eleven selected water gauges are widely distributed in
WCAs and ENP and, therefore, well represent the medium–dense herbaceous vegetation
(Figure S3). The results verified the second assumption of backscatter decreases in response
to SWDI for medium–dense herbaceous vegetation.
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Figure 5. (a–c) Pre-event water-depth maps for the three selected SAR dates in 2017. Negative water
depths (red areas) represent unflooded conditions, and positive water depths (blue areas) represent
flooded conditions. (d) Pre-event water-depth mean map as the baseline for SWDI detection. (e) Pre-
event water-depth standard deviation map, with each pixel representing the standard deviation of
three water-depth values for the pre-event SAR dates. Most study areas show standard deviations
between 2 and 6 cm, and the spatial mean value of standard deviations is 4 cm.

5.3. Results of SWDI Detection and Validation
5.3.1. NDBI Maps for the During- and Selected Post-Event SAR Dates

NDBI maps were generated for the Everglades wetlands, including BCNP, WCAs, and
ENP (Figure 2a). Though the proposed SWDI methodology cannot be applied to forested
vegetation, we included the BCNP region, where cypress trees are often embedded within
the herbaceous vegetation matrix. Because we used a 400-m scale SWDI detection unit, the
herbaceous vegetation could provide useful NDBI values for the SWDI detection.

We selectively present three NDBI maps, resulting from methodology stage 1, includ-
ing the during-event and two post-event dates (4 October and 21 November) (Figure 6).
The rest of the post-event NDBI maps are presented in Supplementary Material Figure S4,
which look similar to the November 21 map in Figure 6c. The during-event NDBI values
were less than −3 (nth = 3) for most of WCAs and ENP (blue areas in Figure 6a), whereas
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NDBI values were larger than 3 for BCNP (red areas) and boundary area between WCA-3A
and 3B.
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Figure 6. (a) NDBI map for the during-event (10 September) SAR acquisition with three cyan frames
denoting local areas with a contrast NDBI pattern and a white frame denoting the boundary area
between WCA-3A and 3B. (b,c) NDBI map for post-event SAR dates October 4 and November 21,
respectively. (a1–a6) Zoomed-in views of three exemplary areas with (a1,a3,a5) displaying classified
NDBI values and (a2,a4,a6) displaying the corresponding optical images. The figures are similar to
the results reported in our previous study [57].

The NDBI map of the first post-event date, 4 October, was similar to the during-event
map, showing most ENP and WCAs with NDBI values less than −3, whereas, for BCNP, the
areas with NDBI values larger than 3 were much smaller than during-event. The boundary
area between WCA-3A and 3B showed negative NDBI values. The NDBI map of the last
post-event date showed that WCAs and north ENP were dominated by NDBI values less
than 3, whereas BCNP was dominated by NDBI values larger than 3.

To illustrate the contrast pattern of NDBI values between woody and herbaceous
vegetation, we selected three local areas for the during-event day under SWDI conditions
(Figure 6(a1–a6)). The first area, located in WCA-3B, was characterized by tree islands and
surrounding sloughs with sparse sawgrass (Figure 6(a1,a2)); the second area, located in
BCNP, was characterized by mixed tree species forests (Figure 6(a3,a4)); the third area was
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pine rockland, with elevated ground surfaces (Figure 6(a5,a6)). All three areas showed that
woody vegetation had positive NDBI values, whereas surrounding herbaceous vegetation
had negative values.

5.3.2. SWDI Detection and Validation Using Candidate Sets of nSWDI and
nNon-SWDI Thresholds

SWDI detection and validation were conducted based on NDBI values, using the meth-
ods described in stage 2 of the Methodology section. SWDI validation metrics, resulting
from candidate sets of threshold parameters nSWDI and nNon-SWDI, were sorted according to
the Kappa coefficient (Table 1). Further, nSWDI values higher than 45% were removed from
Table 1 because of high ‘Uncertain’ class percentages. The top candidate set had nSWDI of
45% and nNon-SWDI of 10%, resulting in a Kappa coefficient of 0.59, an overall accuracy of
0.8, and an ‘Uncertain’ class percentage of 30% (Table 1). The top seven candidate sets had
the same nNon-SWDI value of 10%, and the five following sets had a value of 15%. The set
with nSWDI of 20% and nNon-SWDI of 10% resulted in the lowest ‘Uncertain’ class percentage
and moderate overall accuracy and Kappa coefficient. Considering the trade-off between
accuracy and ‘Uncertain’ class percentage, we selected the optimal set with nSWDI = 20%
and nNon-SWDI = 10% for further analyses.

Table 1. SWDI detection candidate sets of thresholds and three validation metrics. The row in bold
font indicates the optimal set of thresholds.

nSWDI (%) nNon-SWDI (%) Overall
Accuracy

Kappa
Coefficient

Average Uncertain
Pixels Percentage

45 10 0.81 0.60 0.30

40 10 0.81 0.60 0.27

35 10 0.81 0.60 0.24

50 10 0.80 0.60 0.32

30 10 0.81 0.59 0.21

25 10 0.81 0.58 0.17

20 10 0.81 0.57 0.13

35 15 0.78 0.55 0.17

40 15 0.78 0.55 0.20

45 15 0.77 0.54 0.22

30 15 0.78 0.54 0.14

50 15 0.77 0.54 0.25

We tested using the ‘NDBI > nth or NDBI < −nth’ criterion for SWDI detection and
validation, which resulted in lower accuracy than the ‘NDBI < −nth’ criterion (Table S1).
In addition, a sensitivity test was conducted using nth of 2 with a corresponding SWDI
detection threshold of 8 cm, resulting in similar accuracy to nth of 3 (with the detection
threshold of 12 cm), and the selected set (nSWDI = 20% and nNon-SWDI = 10%) also achieved
a high accuracy and low percentage of ‘Uncertain’ class (Table S2). We also present the
validation metrics resulting from C-VH data (Table S3), which had lower Kappa coefficients
than those of C-VV.

5.3.3. SWDI Validation Using the Selected Set of Thresholds

SWDI validation maps and EDEN reference maps are presented for each of the six
target dates (Figure 7a–l), resulting from the selected set of thresholds (nSWDI = 20% and
nNon-SWDI = 10%). The validation map for the during-event date showed ‘True SWDI’ areas
for most ENP and WCAs and ‘False Non-SWDI’ areas in BCNP (Figure 7a). Boundary areas
between WCA-3A and 3B showed a mix of true and false classifications.
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The post-event dates featured large areas of true classifications, for both SWDI and non-
SWDI classes, including northern ENP, WCA-3A, and 3B with dominant SWDI class, and
progressive expansion of non-SWDI extents from BCNP to northwestern ENP (Figure 7c–l).
Another noticeable feature was the expansion of non-SWDI extents at the southern tip of
ENP for the last three target dates. However, an extensive eastern part of the study area
showed false classification for the last date, November 21 (Figure 7k).

Temporal variations of the percentages of SWDI and non-SWDI classes were highly
consistent between classification and reference data (Figure 7m). For the during-event
day, the SWDI percentage was the highest, and the non-SWDI percentage was the lowest.
For the post-event days, SWDI percentages progressively decreased, and non-SWDI areas
increased. For the last post-event date, the non-SWDI percentage exceeded the SWDI
percentage, for both classification and reference data.

Daily evaluation metrics (Table 2) showed that the ‘True SWDI’ class percentage
decreases with time, whereas the ‘True Non-SWDI’ percentage increases with time. False
classes had low percentages for all dates, except for the ‘False Non-SWDI’ class in the
during-event date (26%). Percentages of the ‘Uncertain’ class were less than 20% for each
target date. Overall accuracies were above 80% for all post-event dates, but only 69% for the
during-event date. Similarly, Kappa coefficients were around 0.6 for the last four post-event
dates, but only 0.03 and 0.33 for the first two dates, respectively. The first two dates showed
user’s and producer’s accuracies for the non-SWDI class no greater than 0.5. In contrast,
the remaining post-event dates showed high user’s and producer’s accuracies, for both
SWDI and non-SWDI classes.

Table 2. SWDI validation metrics based on the selected set of thresholds with nSWDI = 20% and
nNon-SWDI = 10%. ‘Uncertain’ class was not taken into account when calculating other accuracy
metrics. The percentages of the first four classes (True SWDI, False SWDI, False Non-SWDI, and True
Non-SWDI) add up to 100%.

Date True
SWDI

False
SWDI

False Non-
SWDI

True Non-
SWDI Uncertain OA Kappa

SWDI Non-SWDI

UA PA UA PA

20170910 0.67 0.05 0.26 0.02 0.12 0.69 0.03 0.94 0.72 0.08 0.50

20171004 0.79 0.06 0.09 0.06 0.11 0.84 0.33 0.92 0.89 0.38 0.47

20171016 0.61 0.02 0.13 0.24 0.10 0.84 0.64 0.96 0.82 0.64 0.91

20171028 0.61 0.07 0.09 0.23 0.13 0.84 0.63 0.90 0.87 0.72 0.77

20171109 0.47 0.03 0.13 0.37 0.12 0.84 0.67 0.94 0.77 0.73 0.93

20171121 0.35 0.06 0.14 0.45 0.18 0.80 0.59 0.84 0.71 0.76 0.88

We compared the overall accuracies between ‘herbaceous dominant’ and ‘trees embed-
ded in herbaceous matrix’ (Table 3). The herbaceous area had high accuracy throughout the
time series, whereas ‘trees embedded in herbaceous matrix’ land cover had low accuracy
for the during-event date but higher accuracy for the post-event dates. In addition, SWDI
detection results, using C-VH data with the selected set of thresholds (nSWDI = 20% and
nNon-SWDI = 10%) (Table S4), showed lower accuracy than C-VV for all six dates. The
sensitivity test using different values (2 to 6 cm) to represent the study area’s pre-event
water-depth standard deviation showed that the initial chosen value of 4 cm achieved the
best overall accuracy for SWDI detection (Table S5).
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Table 3. Overall accuracy of SWDI detection for two major land cover types.

September 10 October 4 October 16 October 28 November 9 November 21

Herbaceous dominant 0.79 0.94 0.92 0.89 0.85 0.75

Trees embedded in
herbaceous matrix 0.40 0.61 0.68 0.75 0.82 0.90

6. Discussion

This study developed a backscatter-based algorithm to map SWDI and non-SWDI
areas associated with severe rainfall events in wetlands. We tested the algorithm using the
Everglades wetlands as an example, which experienced heavy rainfall and rapid water-
depth increase during the passage of Hurricane Irma, in September 2017. We used pre-event
water surface as a baseline, one during-event, and five post-event SAR dates as targets.
The algorithm was conducted at a 400-m scale and classified EDEN cells into three classes:
‘SWDI’, ‘Non-SWDI’, and ‘Uncertain’, which were validated using EDEN’s water-surface
products as reference. The algorithm accurately detected extensive SWDI areas during the
event and progressive expansion of non-SWDI areas where water depths dropped close to
pre-event conditions within two months.

This section consists of three subsections. Section 6.1 evaluates the performance
of the SWDI detection method, based on the results from each stage of the methodology.
Section 6.2 discusses the conditions and limitations of the algorithm applications. Section 6.3
compares this study to previous SAR and InSAR-based studies that detect changes in
hydrological conditions.

6.1. Evaluation of SWDI Detection Algorithm Performance

Section 6.1 includes three parts, according to three stages of the methodology: (1) eval-
uating NDBI thresholding; (2) discussing the selection of thresholds nSWDI and nNon-SWDI;
(3) evaluating SWDI performance, based on validation results generated from the selected
set of thresholds.

6.1.1. NDBI Thresholding for SAR Pixels

The first step of the SWDI detection algorithm is to threshold NDBI values at the
SAR-pixel scale, which used the criterion of ‘NDBI < −nth’ (nth was initially set as 3) by
assuming that SWDI results in backscatter decrease for herbaceous vegetation. The re-
sults (Figure 6a–c) indicated that for the during- and selected post-event dates, areas
with NDBI < −3 were correctly classified as SWDI, according to the validation maps
(Figure 7a,c,k). Hence, we concluded that the ‘NDBI < −3’ criterion correctly represents
the status of SWDI.

Though positive σ◦-dw relationships have been found for woody wetlands in previ-
ous studies [1,25], this study indicates that NDBI > nth criterion is unreliable for SWDI
detection. Although the during-event NDBI map showed extensive areas in BCNP with
NDBI > 3 (Figure 6a), correctly represented SWDI conditions according to the reference
map (Figure 7b), NDBI > 3 areas in the last post-event date map (Figure 6c) corresponded
to non-SWDI conditions (Figure 7l). Adding the criterion of ‘NDBI > nth’ improved the
accuracy for the during-event date but significantly reduced the accuracy for all post-event
dates, because of the high ‘False SWDI’ class percentage (Table S1). We attribute it to the
weak σ◦-dw linear relationships for woody vegetation, as evidenced by the first water
gauge example ‘BCA4’ (Figure 4c), which indicate that biophysical parameters (e.g., canopy
cover) can also significantly influence backscatter values, and the assumption that water
depth is the main controlling factor on backscatter is not valid.

6.1.2. Selection of SWDI Detection Thresholds

The second step of the methodology conducts SWDI detection using candidate sets
of nSWDI and nNon-SWDI values and evaluates the detection results on the basis of three
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metrics: overall accuracy, Kappa coefficient, and the average percentage of ‘Uncertain’ class
pixels. The result (Table 1) showed that the threshold nNon-SWDI must remain at a low level
(e.g., 10%) to achieve high accuracy, because high nNon-SWDI significantly increased the
percentage of ‘False Non-SWDI’ class, i.e., classifying an SWDI class pixel into non-SWDI.
Consequently, we selected the optimal nNon-SWDI value of 10% for detecting non-SWDI class.

For the top ten candidate sets in Table 1, with a fixed value of nNon-SWDI, higher nSWDI
values (e.g., 45% in Table 1) resulted in higher Kappa Coefficients and larger percentages
in the ‘Uncertain’ class. Higher nSWDI led to greater confidence for classifying an EDEN
cell as ‘SWDI’ class, but also widened the gap between nSWDI and nNon-SWDI values and,
therefore, increased the ‘Uncertain’ class percentage. As nSWDI decreases from 45% to
20%, the ‘Uncertain’ class percentage significantly dropped from 30% to 13%, with little
compromise in the Kappa coefficient (Table 1). Considering this trade-off, we selected
an nSWDI of 20% for SWDI detection to achieve high accuracy and a reduced ‘Uncertain’
class percentage.

6.1.3. Evaluating SWDI Performance Based on Validation Results

SWDI validation maps, resulting from the selected set of nSWDI and nNon-SWDI thresh-
olds, showed most of the study area was correctly classified for each target SAR date
(Figure 7), but with some false classifications at local-scale areas. The false classifications
were concentrated at (1) BCNP for the during-event, (2) boundary areas between WCA-
3A and 3B for the during-event date, and (3) eastern and northern parts of the study
area for the last post-event date. This section explains the reasons for the three types of
false classifications.

The first false classification case. For the during-event, a large extent of ‘trees within
herbaceous matrix’ land cover in BCNP was classified into the ‘False Non-SWDI’ class
(Figure 7a), indicating SWDI condition was incorrectly classified as non-SWDI because
the algorithm does not consider positive NDBI values as SWDI. High NDBI values are
attributed to deep water surfaces, submerging most of the understory herbaceous vegeta-
tion, resulting in significant double-bounce scattering from water surfaces and trunks. The
misclassification decreases the user’s and producer’s accuracies for the non-SWDI class
(Table 2).

However, the algorithm achieved better performance for the post-event dates in BCNP,
since it successfully detected extensive non-SWDI areas with high accuracy (Figure 7c–l,
Table 2). Water depths gradually dropped to the pre-event level, and the herbaceous
vegetation emerged from water surfaces. The successful detection of non-SWDI areas relies
on the herbaceous vegetation within 400-m resolution pixels that provide useful backscatter
information for SWDI detection.

Cypress trees in BCNP vary with stature and canopy cover in space, and about half
of the cypress swamps consist of open-stand, small cypress trees, embedded in seasonally
flooded grassland [43]. A previous study [28] found that open-stand miniature growth
cypress sites within the herbaceous matrix in BCNP showed a strong negative correlation
(R2 = 0.45) between backscatter and water depth, at a 200 m resolution, in contrast to the
weak positive σ◦-dw correlations from the ‘BCA4’ water gauge pixel at a 20 m resolution
(Figure 4c). Consequently, we suggest that the high SWDI detection accuracy is attributed
to the large extents of open-stand small cypress within the herbaceous matrix. However,
the water gauges sparsely located in BCNP are not enough to fully evaluate the algorithm’s
performance in different characteristics of cypress trees, which can be achieved using a
high spatial resolution vegetation map of BCNP in future studies.

The second false classification case. This occurred along the WCA-3A and 3B boundary
areas (Figure 7a) for the during-event day. This area is characterized by deep water depths
and sparse emergent plants. The results showed positive NDBI values (Figure 6a) because
waves induced by the hurricane’s strong winds increased backscatter, which did not reflect
variations in water depths. For post-event dates with no strong winds, the algorithm
correctly classified this area as the ‘True SWDI’ class. We suggest that the algorithm should
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not be used on low-cover herbaceous wetlands, under high-wind conditions, because
backscatter is primarily affected by scattering from waves.

The third false classification case. ‘False Non-SWDI’ class occurred in the northern
and eastern parts of the study area (orange patches in Figure 7k) for the last post-event date.
The reference maps showed small ‘Non-SWDI’ areas in both regions (Figure 7l), indicating
that water depths dropped close to the baseline level (water-depth increases relative to
the baseline are less than 12 cm). A quantitative investigation of the EDEN water surfaces
showed that ‘False Non-SWDI’ areas had slightly higher water-depth increases than the
SWDI threshold of 12 cm (most of them had less than 17 cm). We suggest that the limited
degree of water-depth increase is the main reason for the false classification.

6.2. Conditions and Limitations in Applications of the SWDI Detection Algorithm

The innovative backscatter-based SWDI detection algorithm could be applied to heavy
rainfall events in the Everglades, or other wetlands, worldwide. This section discusses the
conditions and limitations of the algorithm application.

6.2.1. Conditions of Land Cover Selection

Future studies should mask open water before applying the algorithm because the
first assumption, that water depth is the main factor controlling variations in backscatter,
does not hold. In addition, the criterion of ‘NDBI < −nth’ could not be used on forests,
though it works with the land cover of trees embedded in the herbaceous vegetation matrix.
To monitor ground surface hydrological status for forests, we recommend using L-band
backscatter, which is characterized by a higher degree of canopy transmission [1,7], and
has been proven to have strong positive linear correlations with water depths in previous
studies [26,30].

6.2.2. Conditions of Pre-Event Baseline Data Selection

Previous studies detecting flooded conditions in wetlands often selected many baseline
acquisitions for assessing non-flooded conditions [10,17]. In this study, however, the
selection of baseline data is more restrictive, because the goal is to separate SWDI and non-
SWDI classes, and it should consider flooded conditions, water-depth standard deviations,
and relative water depths to plant heights.

First, pre-event baseline selection should avoid unflooded conditions. Backscatter
may vary significantly under unflooded conditions due to variations in soil moisture [28].
The first assumption, that only water depth is the main factor controlling variations in
backscatter, may not hold under unflooded conditions.

Second, the water-depth standard deviation of the selected pre-event dates should
be less than the water-depth increase, induced by the rainfall event of interest, which
could be estimated based on water gauge measurements. This study selected three pre-
event dates with water-depth standard deviations of about 4 cm (Figure 5e), which is
less than the water-depth increase induced by Hurricane Irma, more than 12 cm in most
areas (Figure 7b). Significant pre-event water-depth variations result in large variations in
backscatter, due to linear relationships between the two variables, and reduce the sensitivity
of SWDI detection.

However, under the condition of limited water-depth standard deviation, the number
of pre-event SAR acquisitions should be as high as possible, because the backscatter mean
(σ◦

p) and standard deviation (SDp) are less susceptible to speckle noise. A large number of
pre-event SAR acquisitions could improve SWDI detection performance.

Third, the selection of pre-event dates should examine relative water depths using
water gauges with combined positive-negative σ◦-dw linear relationships to verify the
second assumption of backscatter decrease in response to SWDI. We systematically evalu-
ated all water gauges in the Everglades with combined linear relationships and found that
pre-event water depths were located in the ‘hinge’ area, or along with the negative linear
models (Figure S2). Similarly, before applying the SWDI detection algorithm, future studies
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could investigate σ◦-dw relationships for gauge locations using the method provided by
Zhang et al. [25] and check the relative water depths for the selected pre-event dates, if
combined positive–negative relationships are found.

6.2.3. Conditions of Post-Event Dates Selection

This study detected SWDI for five post-event SAR dates, in which the last date
was November 21, when water depths dropped close to the baseline level in most ar-
eas (Figure 7l). We did not apply the detection algorithm on the next SAR date, December
3, when many gauge water-depth measurements were significantly lower than the baseline
(more than 12 cm). NDBI values cannot distinguish water-depth increase and decrease
for the SAR pixels with combined σ◦-dw relationships because significant water-depth
decreases also result in backscatter decreases (Figure 1h). If water gauge measurements are
available for other wetlands, it is essential to roughly estimate the hydrological changes
using those measurements before applying the algorithm.

6.2.4. Conditions of Polarization Selection

This study focused on C-VV data that resulted in better detection performance than
C-VH data. The lower accuracy resulting from C-VH data occurred because of (1) anoma-
lously high backscatter values for the during-event date and (2) large backscatter standard
deviations for pre-event dates in most areas. Investigation of water gauges’ σ◦-dw scatter
plots revealed that during-event C-VH backscatter values were often significantly higher
than linear model predictions (Figure S5), due to additional scattering caused by wind-
induced waves. Furthermore, pre-event C-VH backscatter standard deviations were larger
than C-VV, by as much as 2.5 dB, possibly because of speckle noise. High standard devia-
tions result in smaller NDBI values, reduced sensitivity to SWDI conditions and, therefore,
low SWDI detection accuracy (Table S4).

However, future studies could examine SWDI detection using C-VH data, especially
for sparse herbaceous vegetation, where C-VH σ◦ is more sensitive to variations in water
depths than C-VV [25]. We suggest that future studies select the polarization with smaller
pre-event backscatter standard deviations for SWDI detection.

6.2.5. Limitation of Spatial Resolution

This study detected SWDI at a 400-m resolution of the EDEN water-surface grid cell.
We did not use the 20-m SAR pixel scale as the detection unit, because of highly correlated
water-depth changes in space at a 400-m scale. SWDI detection based on NDBI values
alone for 20-m SAR pixels is unreliable when the σ◦-dw linear relationship is weak. Using a
400 m × 400 m detection unit resulted in much higher accuracies than using the 20-m scale
SAR pixel unit because the algorithm extracts NDBI values from 400 SAR pixels, contained
in an EDEN cell (Figure 3b), which makes the detection less vulnerable to SAR pixels with
noisy backscatter values.

6.3. Comparison with Previous Studies Using SAR and InSAR Observations for
Hydrological Applications

To our knowledge, this study is the first to use SAR backscatter observations. i.e.,
amplitude, to detect SWDI in vegetated wetlands. Previous SAR-based studies that were
successfully used in wetland hydrological applications can be classified into two categories:
(1) using the amplitude observable to detect flooded areas, and (2) using the phase observ-
able with the interferometric (InSAR) technique to detect water-depth differences between
two SAR acquisitions.

Studies in the first category are often based on two fundamental assumptions: (1) backscat-
ter decreases when herbaceous vegetation is flooded, and (2) backscatter increases when
woody vegetation is flooded [8–17]. However, those studies only distinguished between
flooded and non-flooded areas, with no investigation on the degree of water-depth changes.
In comparison, this study detects SWDI using linear relationships between backscatter
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and water depths, which previous studies often did not consider. For wetlands like the
Everglades, SWDI detection is more important than flooding detection because large areas
are characterized by long hydroperiods, with occasionally anomalous high-water sur-
faces, lasting for a prolonged period, which can have a significant ecological impact on
plant communities.

The second category of studies used the InSAR technique to estimate water-depth
changes. The accuracy of the estimates depends on multiple factors, such as temporal
baseline between two SAR dates, coherence level, and interferogram unwrapping pro-
cess [33,34,38]. InSAR-based hydrology studies often use short temporal baselines (e.g.,
12 days for Sentinel-1 datasets) because long temporal baselines (e.g., longer than a month)
result in significant decorrelation [39]. In addition, the coherence level is often low under
windy conditions, resulting in large errors in the results. Interferogram unwrapping meth-
ods often rely on spatial continuity of high-coherence areas and, hence, are not suitable
for wetlands with heterogeneous landscapes, such as the Everglades, where tree islands,
elevated ridges, and open-water sloughs coexist.

In comparison, the backscatter-based SWDI detection algorithm yields reliable re-
sults, even under strong wind conditions (e.g., the during-event result), especially for
the herbaceous wetlands. Since the algorithm is not limited by coherence, it can detect
SWDI between SAR acquisitions with long temporal baselines as months. Furthermore, the
backscatter-based algorithm does not include any unwrapping processes and, therefore, is
more suitable to apply on heterogeneous wetlands than the InSAR approach. However,
the algorithm can only yield categorical results at this stage (‘SWDI’ and ‘Non-SWDI’
classes), rather than numerical estimates on water-depth changes, which will rely on more
systematic analyses on σ◦-dw linear relationships for various vegetation types [25].

7. Conclusions

This study developed a SAR backscatter-based algorithm to detect significant water-
depth increase, or SWDI, in vegetated wetlands, using the Everglades as an example, which
experienced rapid water level increase during the passage of Hurricane Irma in September
2017. The SWDI detection used multi-temporal backscatter from pre-, during-, and post-
event SAR acquisitions. The algorithm, consisting of three stages, classifies each 400-m
scale pixel to one of the three classes: ‘SWDI’, ‘Non-SWDI’, and ‘Uncertain’. The classified
SWDI and non-SWDI areas showed a remarkable agreement with EDEN reference for all
six target dates, accurately representing large SWDI areas during the event and progressive
expansion of non-SWDI areas in the following two months. The algorithm performed well
for both ‘herbaceous dominated’ and ‘trees embedded in herbaceous vegetation matrix’
land covers.

We discussed the conditions and limitations for future algorithm applications, in terms
of selection of land covers, pre- and post-event dates, SAR polarization, and limitations on
spatial resolutions. The SWDI detection algorithm has a great potential to be applied to
other severe rainfall events in the Everglades, and other wetlands, in light of greater SAR
data availability in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14061415/s1. We provided supplementary material in another
word document, including—Note 1: Remapping of the South Florida Water Management District
(SFWMD) Land Cover map; Figure S1: Comparison between during-event backscatter deviations
from linear models to Mean Absolute Errors (MAE) for EDEN water gauges. Note 2. Evaluation of
Hurricane Irma’s wind impact on during-event backscatter values; Figure S2: Water gauges with
combined positive and negative linear σ◦-dw relationships; Figure S3. The locations of the water
gauges with combined positive and negative σ◦-dw relationships shown in Figure S2; Figure S4.
Normalized Difference Backscatter Index (NDBI) for the during-event (September 10) and five post-
event SAR dates; Table S1. SWDI detection parameters and validation metrics with a threshold of
12 cm (nth = 3) using the combined criteria of NDBI > nth or NDBI < −nth; Table S2. SWDI detection
parameters and validation metrics with a threshold of 8 cm (nth = 2); Table S3. SWDI classification
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threshold parameters and validation metrics using C-VH data; Table S4. SWDI validation metrics
using C-VH data based on the optimal set of thresholds: nSWDI = 20%, and nNon-SWDI = 10%; Table S5.
Results of the sensitivity test using different pre-event water-depth standard deviations. Figure S5.
C-VH σ◦-dw scatter plot for EDEN water gauge ‘3B-SE’ characterized by a negative linear relationship.
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