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Abstract: The visible and infrared scanning radiometer (VIRR) onboard the Fengyun-3C (FY-3C)
meteorological satellite has 11 µm and 12 µm channels, which are capable of sea surface temperature
(SST) observations. This study is based on atmospheric radiative transfer modeling (RTM) by applying
Bayesian cloud detection theory and optimal estimation (OE) to obtain sea surface skin temperature
(SSTskin) from VIRR in the Northwest Pacific. The inter-calibration of FY-3C/VIRR 11 µm and 12 µm
brightness temperature (BT) is carried out using the Moderate Resolution Imaging Spectroradiometer
(MODIS) as the reference sensor. Bayesian cloud detection and OE SST retrieval with the calibration
BT data is performed to obtain SSTskin. The SSTskin retrievals are compared with the buoy SST with
a temporal window of 1 h and a spatial window of 0.01◦. The bias is −0.12 ◦C, and the standard
deviation is 0.52 ◦C. Comparisons of the retrieved SSTskin with the AVHRR (Advanced Very High
Resolution Radiometer) SSTskin from European Space Agency Sea Surface Temperature Climate
Change Initiative (ESA SST CCI) project show the bias of 0.08 ◦C and the standard deviation of
0.55 ◦C. The results indicate that the VIRR SSTskin are consistent with AVHRR SSTskin and buoy SST.

Keywords: FY-3C/VIRR; radiative transfer modeling; optimal estimation; Bayesian cloud detection;
sea surface skin temperature

1. Introduction

Sea Surface Temperature (SST) is one of the critical indicators that characterizes
changes in the marine environment and climate. Many ocean dynamic processes are
related to SST; thus, SST has been widely used in ocean dynamics research and air–sea in-
teractions, such as studying El Niño and La Niña phenomena and the analysis of Kuroshio
and Gulf Streams [1,2]. SST is an important indicator of climate change and has been
applied to climate change monitoring [2]. SST has also been used for weather forecast [3],
marine fishery monitoring [4], etc. Most satellite SST data are required for an accuracy of
about 0.5 ◦C when applied at high spatial resolution (0.5~10 km) [5]. The SST data used to
study climate change requires higher accuracy of about 0.1 ◦C [6].

The operational infrared SST observation has a history of four decades. The Ad-
vanced Very High Resolution Radiometer (AVHRR) is onboard the National Oceanic and
Atmospheric Administration (NOAA, Washington, DC, USA) and MetOp (Meteorological
Operational) series meteorological satellites, and the Nonlinear SST (NLSST) algorithms
have been used to retrieve SST [7]. The result of comparing MetOp-A/AVHRR operational
SST with buoy SST shows that the bias during the day is 0.05 ◦C and the standard deviation
is 0.61 ◦C; the bias of night data is −0.03 ◦C, and the standard deviation is 0.48 ◦C [8]. The
Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satel-
lites is an essential sensor for observing SST. Its operational SST algorithm is also NLSST [9].
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The result of comparing MODIS SST with buoy SST from 2002 to 2011 shows that the bias
of the two is −0.13 ◦C, and the standard deviation is 0.58 ◦C [10]. The Visible Infrared
Imaging Radiometer Suite (VIIRS) is a mid-resolution visible infrared imager, it uses the
NLSST algorithm for SST retrieval during the day and the Multi-Channel SST retrieval
Algorithm (MCSST) at night [11]. According to the evaluation of the VIIRS SST with the
buoy SST on the NOAA SQUAM (SST Quality Monitor) [12], the 2016 Suomi-NPP/VIIRS
SST has a bias of 0.04 ◦C and a standard deviation of 0.37 ◦C in the daytime and a bias
of 0.07 ◦C and a standard deviation of 0.29 ◦C at night [13]. The Along Track Scanning
Radiometers (ATSRs) are multi-channel sensors; the fourth-generation ATSR series onboard
the Sentinel-3A and Sentinel-3B satellites is Sea and Land Surface Temperature Radiometer
(SLSTR). The SLSTR SST is retrieved by a fitting algorithm using the atmospheric radiative
transfer modeling [14]. Compared with M-AERIs SST from 2017 to 2018, Sentinel-3A SLSTR
SST has a bias of −0.098 ◦C and a robust standard deviation (RSD) of 0.296 ◦C [15].

The Fengyun-3 (FY-3) meteorological satellites are Chinese second-generation polar-
orbiting meteorological satellites. The orbits of polar-orbiting satellites are sun-synchronous
orbits, which means they theoretically pass the equator at the same local time every day [16].
The FY-3A and FY-3B satellites are experimental satellites; they were launched in 2008 and
2010, respectively. FY-3C, launched on 23 September 2013, is the first operational satellite
of the FY-3 series. It passes through the equator at 10:00~10:20 a.m. The VIRR is mounted
on the FY-3C satellite. It has 10 spectral channels, and three channels can be used for
SST retrieval. They are channel 3 in the range of 3.55–3.93 µm, channel 4 in the range of
10.3–11.3 µm, and channel 5 in the range of 11.5–12.5 µm [17]. The operational SST retrieval
algorithm of FY-3C/VIRR is the MCSST algorithm. The MCSST algorithm coefficients are
obtained from the regression analysis of the buoy SST and VIRR infrared channel brightness
temperature (BT). The comparison of operational VIRR SST and buoy SST from May 2014
to June 2014 show that during the day, the bias is −0.26 ◦C and the standard deviation is
0.54 ◦C; at night, the bias is 0.06 ◦C and the standard deviation is 0.56 ◦C [17]. Compared
with the Optimum Interpolation Sea Surface Temperature (OISST), the bias during the
day is −0.33 ◦C, the standard deviation is 0.94 ◦C; the bias at night is −0.10 ◦C, and the
standard deviation is 0.76 ◦C [17]. Comparing the third edition operational SST with the
buoy, the bias during the day and night are 0.17 ◦C and 0.07 ◦C, respectively, and the
standard deviation is less than 0.54 ◦C [18]. The results of comparison between OISST and
the VIRR SST with the highest quality from January to May 2017 show that the bias of the
SST during the day is −0.1 ◦C and the standard deviation is 0.8 ◦C; the bias at night is 0.01
◦C and the standard deviation is 0.78 ◦C [18]. The validation results of FY-3C/VIRR SST
with OISST from January 2015 to December 2019 show that the SST with the highest quality
level has a bias of −0.18 ◦C and a root mean square error of 0.85 ◦C during the day and a
bias of−0.06 ◦C and a root mean square error of 0.8 ◦C at night. The root mean square error
is 0.85 ◦C and 0.8 ◦C, respectively [19]. Monthly NLSST regression coefficients are used to
reprocess FY-3C/VIRR data. Comparing the highest quality SST data of the Western Pacific
in March, May, August, and November 2016 with the buoy, the bias of matchups during
the day is 0.02 ◦C and the standard deviation is 0.62 ◦C; at night, the bias of the matchups
is 0.14 ◦C and the standard deviation is 0.58 ◦C [20].

The sea surface in most cases is warmer than the atmosphere in contact with it, causing
heat to flow from the ocean to the atmosphere [21]. Because the air–sea density difference
and the near-surface viscous layer on the seawater side of the air–sea interface suppresses
turbulent heat transfer, there is a vertical temperature gradient in the water just below
the interface, resulting in a decrease in temperature near the air–sea interface [22]. The
FY-3C/VIRR operational SST is retrieved using coefficients fitted by buoy SST and satellite
observation BT [18]. The depth of obtained SST is close to the buoy, which represents the
bulk temperature [18], while the infrared sensors observe the skin SST with the depth of
10 µm [23]. Merchant proposed an optimal estimation (OE) SST retrieval method in 2008.
The OE SST algorithm obtains sea surface skin temperature (SSTskin) with radiative transfer
modelling [24]. This study intends to obtain the FY-3C/VIRR sea surface skin temperature
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(SSTskin) by atmospheric radiative transfer modelling. In Section 2, data and methods used
in this study are introduced. The methods include the inter-calibration, Bayesian cloud
detection, and OE SST retrieval algorithm. In Section 3, the analysis of results is described.
Sections 4 and 5 are Discussion and Conclusions, respectively.

2. Materials and Methods
2.1. Data Collections
2.1.1. FY-3C/VIRR L1B Data

VIRR has spectral channels, with a spectral coverage range of 0.43 µm to 12.5 µm. The
spectral specifications are shown in Table 1 [25]. Its nadir resolution is 1.1 km, the scan
width is ±55.4◦, and the swath width is 2800 km. The VIRR L1B data is 5-min swath data,
and the data format is HDF5 [25]. This study applies the BT of 11 µm and 12 µm to retrieve
SST. The geographic information includes longitude, latitude, satellite zenith angle, solar
zenith angle, etc. Longitude and latitude are used for geographic correction in subsequent
matching and validation, satellite zenith angle is used for matching with MODIS, and solar
zenith angle is used for judging day or night. The spatial range is 2◦S~46◦N, 121◦E~160◦E.
We selected March, May, August, and November to represent seasonal characteristics in
this region. The VIRR L1B data is distributed by the National Satellite Meteorological
Center (NSMC, China); the data version we used is V1.0.0.

Table 1. FY-3C/VIRR spectrum specifications [25].

Channel Band Range (µm) Noise Equivalent Reflectivity ρ(%) Noise
Equivalent Temperature Difference (300 K) Dynamic Range

1 0.58–0.68 0.10% 0–100%
2 0.84–0.89 0.10% 0–100%
3 3.55–3.93 0.3 K 180–350 K
4 10.3–11.3 0.2 K 180–330 K
5 11.5–12.5 0.2 K 180–330 K
6 1.55–1.64 0.15% 0–90%
7 0.43–0.48 0.05% 0–50%
8 0.48–0.53 0.05% 0–50%
9 0.53–0.58 0.05% 0–50%
10 1.325–1.395 0.19% 0–90%

2.1.2. TERRA/MODIS L1B Data

Terra is also a polar-orbiting satellite. The descending node of Terra is at 10:30 am,
which is close to FY-3C. Therefore, MODIS onboard Terra is used in this study for the
purpose of inter-calibration. The swath width of MODIS is 2330 km. Among 36 channels of
MODIS, channels 20, 22, 23, 31, and 32 are used for SST retrieval [26]. The nadir resolution
of channel 31 and channel 32 is 1 km [26]. The data format is HDF4. In addition to BT
information, MODIS L1B data also includes latitude and longitude, satellite zenith angle,
etc., which are used for geographic correction and matching with VIRR data. The MODIS
L1B data is distributed by Level-1 and Atmosphere Archive and Distribution System
Distributed Active Archive Center (LAADS DAAC), and the MODIS L1B data version
is V6.2.2.

2.1.3. Metop-A/AVHRR SSTskin Data

The AVHRR is mounted on Metop-A, the local time of the descending node is 9:30
am, which is close to the FY-3C satellite. Merchant et al. reprocessed the AVHRR data and
used the optimal estimation algorithm for SST retrieval [27]. Next, a climate data record
(CDR) of global SST had been developed. The SST is skin SST in the depth of 10 µm [27].
This study uses AVHRR L2P SSTskin data from the CDR to validate the retrieval results. Its
nadir resolution is 4 km. AVHRR SSTskin contains quality level information. The quality
level of SST was divided according to land and ice information, SST value range, clear
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sky probability, zenith angle information, etc. for users to choose [27]. Pixels that pass all
checks have the highest quality with a quality level of 5. The AVHRR SSTskin data are from
European Space Agency Sea Surface Temperature Climate Change Initiative (ESA SST CCI)
project and the version is V2.1.

2.1.4. Buoy Data

The buoy data are from iQuam (In situ SST Quality Monitor) SST data. The iQuam SST
data include ship data, drifting buoy data, tropical moored buoy data, coastal moored buoy
data, Argo Float data, high resolution drifter data, IMOS (Integrated Marine Observing
System, Australia) data, and CRW (coral reef buoy) data. The iQuam data also contain
quality level information. The quality level of iQuam data was divided based on duplicate
removal, plausibility/geolocation check, platform track check, SST spike check, ID check,
reference check, and cross-platform check [28]. The data with quality level of 5 have
the highest quality level. This study selects only the highest quality drifting buoy data,
tropical moored buoy data, and high resolution drifter data for validation [28]. Buoys,
moored buoys, as well as high resolution drifters measure water temperature in the depth
of 10−2~10 m, the temperature is bulk temperature [23]. The data were downloaded from
the National Environmental Satellite, Data, and Information Service Satellite Applications
and Research (NOAA NESDIS STAR) center; the iQuam data version of this study used
is V2.1.

2.1.5. ERA-Interim Data

ERA-Interim numerical weather prediction (NWP) data include atmospheric param-
eters and surface parameters. Atmospheric parameters include temperature, specific
humidity, ozone mass mixing ratio, and specific cloud liquid water content. Surface param-
eters mainly include sea surface temperature, SSTskin, surface pressure, total column water
vapor (TCWV), total cloud cover, 10 m U wind component, 10 m V wind component, 2 m
temperature, and 2 m dewpoint temperature. In addition, geolocation information, such as
latitude and longitude, are also included here. The spatial resolution of NWP data is 75 km,
with data at 0 h, 6 h, 12 h, and 18 h every day [29]. The NWP data was downloaded from
the European Centre for Medium-Range Weather Forecasts (ECMWF).

2.2. Inter-Calibration with MODIS L1B BT Data

FY-3C and Terra satellites cross the equator in close time. The center wavelengths of
MODIS channels 31 and 32 and those of VIRR channels 4 and 5 are close. The channels
31 and 32 of MODIS have excellent stability and experience tiny changes every year with
less than 0.5% in long time series responses [30], which is often used to validate the
accuracy of other sensors or as a reference sensor for the purpose of inter-calibration of
other sensors [31]. In addition, the retrieval of OE SST essentially uses the difference
between the satellite observed BT and the simulated BT to estimate the difference between
the background SST and the SST combining with the sensitivity data, and then obtains
the SST based on the background SST [24]. The SST accuracy depends on the difference
between the satellite observation BT and the simulated BT. Therefore, the accuracy of the
satellite observation BT is crucial for the retrieval of the OE SST. Using MODIS as the
reference sensor, the BT data of VIRR and MODIS are inter-calibrated. The specific process
of inter-calibration is shown in Figure 1. Firstly, the VIRR and MODIS L1B data, VIRR_BT
and MODIS_BT, are projected into a 0.01◦ × 0.01◦ grid. For example, the BTs of both 11 µm
and 12 µm channels after projection in the daytime of 28 March 2016 are shown in Figure 2.
To generate the matchups, the temporal window is set to 20 min. The matchups with the
local standard deviation (LSD) of the BT less than 0.1 K and the satellite zenith angle less
than 5◦ are selected in order to reduce the influence of different atmospheric path lengths
and improve the homogeneity.
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The difference between VIRR_BT and MODIS_BT is named DIFF_SAT. The difference
of the simulated BT (the spectral difference) of the two is named DIFF_simulated. Due to
the difference of the sensor spectral response functions, it is necessary to use the DIFF_SAT
minus DIFF_simulated to obtain the actual difference named DD (Double Difference). The
BTs are simulated by the MODerate resolution atmospheric TRANsmission (MODTRAN).
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The difference between the simulated BT of the two is shown in Table 2. Figure 3 shows the
relationship between the two simulated BTs. There are 411,100 matchups in the daytime
and 397,902 matchups in the nighttime. From Table 2 and Figure 3, we can see that the
VIRR simulated BTs of the 11 µm and 12 µm channels are lower than MODIS. The spectral
difference of the 12 µm channel is more significant than that of the 11 µm channel. The
spectral difference between the two channels has no apparent relationship with the time
(daytime or nighttime). Table 3 shows the statistical results of DD. Figure 4 shows the
relationship between the MODIS_BT plus the spectral difference and the VIRR_BT. The
value of MODIS_BT plus the spectral difference is the value of MODIS_BT that removed
the spectral difference with VIRR. From Table 3 and Figure 4, we can see that in the daytime
the VIRR_BT of 11 µm and 12 µm channels is lower than that of MODIS, and the 12 µm
channel is more obvious in areas with lower BT. In the nighttime, the VIRR_BT of the
11 µm channel is close to MODIS, the VIRR_BT of the 12 µm channel is higher than that
of MODIS, and the 12 µm channel is more obvious in the area with higher BT. The DD
between VIRR_BT and MODIS_BT in the daytime is larger than that in the nighttime.

Table 2. VIRR and MODIS simulated BT difference (D means daytime, N means nighttime, R means
correlation coefficient).

11 µm 12 µm

Mean (K) Std Dev (K) R Mean (K) Std Dev (K) R Number

D −0.31 0.10 0.9999 −0.97 0.15 0.9999 411,100
N −0.33 0.10 0.9999 −0.86 0.21 0.9997 397,902
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Table 3. The Double Difference between VIRR_BT and MODIS_BT (D means daytime, N means
nighttime, R means correlation coefficient).

11 µm 12 µm

Mean (K) Std Dev (K) R Mean (K) Std Dev (K) R Number

D −0.93 0.27 0.9989 −0.53 0.31 0.9985 411,100
N 0.13 0.28 0.9991 0.44 0.32 0.9989 397,902
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The MODIS_BTs with the spectral difference are used to calibrate the VIRR_BTs using
Equations (1) and (2). The fitting coefficients of scale and offset are obtained, respectively,
for 11 µm channel in the daytime, 12 µm channel in the daytime, 11 µm channel in the
nighttime, and 12 µm channel in the nighttime.

VIRR_BT′ = scale × VIRR_BT + offset (1)

VIRR_BT′ = MODIS_BT + Diff_simulated (2)

The fitting coefficients are used to correct VIRR_BT to obtain the corrected BT named
VIRR_COR. The VIRR L1B BTs before and after the correction and the difference between
the two are shown in Figure 5 where the gray areas are the pixels exceeding the study
area, land, and obviously cloud (pixels with the BT of 11 µm channel less than 260 K).
Figure 5a–f show the images at 1:50 UTC on 28 March 2016 in the daytime, and Figure 5g–l
show the images at 12:40 UTC on 11 May 2016 in the nighttime. Figure 5a–c,g–i show the
11 µm channel images, and others show the 12 µm channel images. After calibration, in the
daytime, the BT of 11 µm and 12 µm channels is higher than that before calibration. The BT
of the 12 µm channel is higher in the lower BT region. In the nighttime, the BT of 11 µm
channel is close to that before calibration. The corrected BT of the 12 µm channel is lower in
the area with higher BT than before correction, indicating that the accuracy of VIRR_COR
after correction is higher than before.
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Figure 5. VIRR LI BT before and after calibration and the difference: (a) VIRR_BT 11 µm (daytime);
(b) VIRR_COR 11 µm (daytime); (c) difference 11 µm (daytime); (d) VIRR_BT 12 µm (daytime);
(e) VIRR_COR 12 µm (daytime); (f) difference 12 µm (daytime); (g) VIRR_BT 11 µm (nighttime);
(h) VIRR_COR 11 µm (nighttime); (i) difference 11 µm (nighttime); (j) VIRR_BT 12 µm (nighttime);
(k) VIRR_COR 12 µm (nighttime); (l) difference 12 µm (nighttime) (The gray areas are the pixels exceed-
ing the study area, land, and obviously cloud (pixels with the BT of 11 µm channel less than 260 K)).
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The difference between the VIRR_COR and MODIS_BT should be close to the spectral
difference. The statistical results are shown in Table 4. The result of DD after correction is
shown in Table 5. It shows that the DD of the two is close to 0 K, the standard deviation is
within 0.3 K, the correlation coefficients are close to 1. The relationship between MODIS_BT
plus the spectral difference and the VIRR_COR is shown in Figure 6. It can be seen
that, in general, the 11 µm channel and 12 µm channel BT in the daytime and nighttime
after calibration are in good agreement with the MODIS_BT plus the spectral difference.
Improvements have been made to the low observed BT of 11 µm channel and 12 µm
channel in the daytime and the high observed BT of 12 µm channel in the nighttime.

Table 4. Difference of VIRR_COR and MODIS_BT (D means daytime, N means nighttime, R means
correlation coefficient).

11 µm 12 µm

Mean (K) Std Dev (K) R Mean (K) Std Dev (K) R Number

D −0.31 0.25 0.9990 −0.97 0.32 0.9985 411,100
N −0.34 0.25 0.9993 −0.86 0.34 0.9987 397,902

Table 5. DD between VIRR_COR and MODIS_BT (D means daytime, N means nighttime, R means
correlation coefficient).

11 µm 12 µm

Mean (K) Std Dev (K) R Mean (K) Std Dev (K) R Number

D 0.00 0.27 0.9989 0.00 0.29 0.9991 411,100
N −0.01 0.28 0.9985 0.01 0.28 0.9989 397,902
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2.3. Cloud Detection

Bayesian cloud detection theory can provide the probability that the pixel is clear
sky, so as to meet the needs of different users; therefore, this study adopts the Bayesian
cloud detection method for cloud detection [32]. Bayesian cloud detection was proposed
by Merchant, the formula is shown in Equation (3) [32].

P
(

c|y o, xb
)
=

1 +
P(c)P

(
yo |x b, c

)
P(c)P

(
yo |x b, c

)
−1

(3)

where P
(

c|y o, xb) is the probability of a clear sky pixel, P(c) is the prior cloud probability,

P(c) is the prior clear probability, P
(

yo |x b, c
)

is the probability density function (PDF)
of the observation when the background field value is known under cloud conditions,
P
(

yo |x b, c
)

is the PDF of the observation when the background field value is known under

clear sky conditions. Both P
(

yo |x b, c
)

and P
(

yo |x b, c
)

can be expressed as the product of
the spectral part and the texture part, as shown in Equations (4) and (5) [32].

P
(

yo |x b, c
)
= P

(
yo

s |x
b, c
)
× P

(
yo

t |x
b, c
)

(4)

P
(

yo |x b, c
)
= P

(
yo

s |x
b, c
)
× P

(
yo

t |x
b, c
)

(5)

where P
(

yo
s |x

b, c
)

is the PDF of the spectral part under cloud conditions, P
(

yo
t |x

b, c
)

is the PDF of texture part under cloud conditions, P
(

yo
s |x

b, c
)

is the PDF of the spec-

tral part under clear sky conditions, P
(

yo
t |x

b, c
)

is the PDF of texture part under clear
sky conditions.

Firstly, simulated BTs are obtained by MODTRAN with inputs of the Era-Interim
NWP background field data, satellite zenith angle data, VIRR 11 µm and 12 µm spectral
response curves and other information. Simulated BT is obtained through atmospheric
radiative transfer modelling. The simulated BT of two channels at 1:50 UTC on 28 March
2016 is shown in Figure 7. The gray areas are the pixels exceeding the study area, land, and
obviously cloud.
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Figure 7. Simulated BT of two channels at 1:50 UTC on 28 March 2016: (a) 11 µm channel; (b) 12 µm
channel (The gray areas are the pixels exceeding the study area, land, and obviously cloud (pixels
with the BT of 11 µm channel less than 260 K)).
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Based on the simulated BT, the corrected satellite observation BT, the satellite zenith
angle, the background field total cloud cover, SST, TCWV, and other data, pixel-by-pixel
calculations are performed to obtain the P

(
c|y o, xb). In this process, it is necessary to

calculate the P
(

yo
s |x

b, c
)

, P
(

yo
t |x

b, c
)

, P
(

yo
s |x

b, c
)

, and P
(

yo
t |x

b, c
)

. The P
(

yo
s |x

b, c
)

,

P
(

yo
t |x

b, c
)

, and P
(

yo
t |x

b, c
)

need to be calculated by the lookup table [33]. The lookup
table used in this article is the AATSR-based lookup table provided in the ESA CCI SST
project [33]. At a strong oceanfront, the LSD in the clear sky may be 2.5 times greater than
the noise equivalent temperature difference of the sensor, which leads to underestimating
the probability of the pixel being clear sky [34]. In addition, VIRR’s noise temperature
difference is higher than AATSR, therefore the threshold of the LSD of the texture part
look-up table is relaxed. The pixels with probability greater than 0.9 are considered clear,
and the Bayesian cloud detection results of 11 µm before and after the detection are shown
in Figure 8. The gray areas are the pixels exceeding the study area, land, and obviously
cloud. The white areas are the pixels detected by the Bayesian method as cloud. From the
figure, we can see that there are no obvious cloud missing pixels.
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2.4. SST Retrieval

The VIRR SSTskin is retrieved using OE SST algorithm, and the principle of OE is
shown in Equation (6) by Merchant et al. [24,35,36].

ẑ = z(xa) +
(

KTS−1
ε K + S−1

a

)−1
KTS−1

ε (y0 − F(xa)) (6)

where ẑ is a matrix with the retrieval results of SSTskin and TCWV, xa is a matrix with the
background SSTskin and TCWV, y0 is satellite observed BT, F(xa) is simulated BT calculated
by atmospheric radiative modeling. K is a tangential vector, consisting of the partial
derivative of the simulated BT to background SSTskin and TCWV, Sε is the covariance
matrix of the satellite observed BT and the simulated BT, Sa is the error of the background
SSTskin and TCWV. Figure 9 shows the retrieved VIRR SSTskin in the daytime and nighttime
on 28 March 2016.
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3. Results

We used high precision drifting buoy data, tropical moored buoy data, and high
resolution drifter data of iQuam with a quality level of 5 to validate the retrieval results.
The VIRR SSTskin are matched with the buoy data. The temporal window is 1 h, the
spatial window is 0.01◦ × 0.01◦. To ensure the independence of matchups, when multiple
VIRR SSTskins or two buoy SSTs fall in the same grid, they are averaged. A total of
1807 matchups are obtained with a bias of −0.12 ◦C and a standard deviation of 0.52 ◦C,
the correlation coefficient between VIRR SSTskin and the buoy is 0.9960. The relationship
between the VIRR SSTskin and the buoy SST is shown in Figure 10. We can see that
the VIRR SSTskin is in good agreement with the buoy SST. The histogram of bias of
VIRR SSTskin with buoy SST is shown in Figure 11. It shows that the bias of most
matchups is distributed near zero, and the numbers show a decreasing trend to both
sides. Most points distribute between −1 ◦C and 1 ◦C. We calculate the distribution of
bias; 322 matchups have bias within 0.1 ◦C, accounting for 18% of the total; 883 matchups
have bias within 0.3 ◦C, accounting for 49% of the total; 1285 matchups have bias within
0.5 ◦C, accounting for 71% of the total; 1703 matchups have bias within 1 ◦C, accounting
for 94% of the total. The presence of large numbers of negative and positive biases due
to the influence of uncertainty of VIRR SST. However, the SST obtained by the OE is
skin temperature, while the SST measured by the buoy is the bulk temperature. In a
calm sea surface where the wind speed is less than 6 m/s, the skin temperature is about
0.17 ◦C lower than the bulk temperature [37], which is one of the reasons for negative
bias. During the day, in the absence of strong winds to drive the vertical mixing of the
water, the solar radiation can warm the sea surface water, which is one of the reasons for
positive bias in the daytime [38]. There are more matchups on the left side of zero than
on the right side, which means the skin effect leads to more negative bias pixels.
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MetOp-A AVHRR SSTskin from CCI project are used to evaluate the VIRR SSTskin.
Since both the SSTskin data are obtained by the OE are skin temperature, the descend-
ing nodes of the two satellites are close. The AVHRR SSTskin with the highest quality
and VIRR SSTskin is projected on the grid of 0.04◦ × 0.04◦. If multiple VIRR SSTskins or
AVHRR SSTskins fall in the same grid, they will be averaged. The temporal window for
matching between the VIRR SSTskin and AVHRR SSTskin is 1 h, and the spatial window is
0.04◦ × 0.04◦. There are a total of 6,028,138 matchups between the VIRR SSTskin and the
AVHRR SSTskin, with a bias of 0.08 ◦C and a standard deviation of 0.55 ◦C. The correlation
coefficient between VIRR SSTskin and AVHRR SSTskin is 0.9975. Figure 12 shows that the
VIRR SSTskin and the AVHRR SSTskin have good consistency. The histogram of bias of VIRR
SSTskin with AVHRR SSTskin is shown in Figure 13. It shows that the bias of most matchups
is distributed near zero, decreasing to both sides. 16% of matchups are distributed within
0.1 ◦C, 45% of matchups are distributed within 0.3 ◦C, 67% of matchups are distributed
within 0.5 ◦C, and 93% of matchups are distributed within 1 ◦C. The result is consistent
with the validation result with the buoy. The number of matchups on the left and right of
zero is roughly the same, which means that the skin effect does not need to be considered
when comparing VIRR SSTskin with AVHRR SSTskin.
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Due to the skin effect, the negative bias of VIRR SSTskin and buoy includes the devia-
tion of the skin temperature and the bulk temperature. The bias of the VIRR SSTskin and the
AVHRR SSTskin is close to 0, and the standard deviation is close to the standard deviation
from the buoy, indicating that the validation results compared with AVHRR SSTskin and
buoy SST are consistent.

The bias of the OE SST retrieval is mainly caused by the difference between the
satellite observation BT and the simulated BT, the background skin temperature error,
and the modeling error. Prior to the retrieval, inter-calibration with MODIS L1B data was
first carried out. The Bayesian cloud detection and SST retrieval are performed with the
calibration results, which contributed to the accuracy of the retrieval results. In addition,
during the retrieval process, the resolution of the background field data is lower than the
resolution of the satellite data, which causes the retrievals to be smoothed, thus the accuracy
at the temperature front may be affected. We hope to work to improve this situation in
future research.

4. Discussion

Since the BTs of the pixels in cloud conditions are low, the SST contaminated by the
cloud is obviously low. Thus, it can be judged as to whether there is a cloud missed
in detection by checking the SST values. In Section 3, the bias between VIRR SSTskin



Remote Sens. 2022, 14, 1451 15 of 17

and the buoy is −0.12 ◦C, which indicates the skin effect. The bias of VIRR SSTskin and
AVHRR SSTskin is 0.08 ◦C. Since VIRR SSTskin compared with the highest-level AVHRR
SSTskin, the time window is 1 h, so the influence of cloud is minimized when the two
are matched. In order to further evaluate the validity of cloud detection, the VIRR and
AVHRR monthly mean SSTskin are calculated, respectively. Firstly, the daily daytime and
nighttime VIRR SSTskin are averaged to obtain monthly daytime and nighttime mean
SSTskin, respectively. When multiple points fall into the same grid, the average is calculated.
Next, the monthly daytime and nighttime mean SSTskin are averaged to obtain VIRR
monthly mean SSTskin. The VIRR monthly mean SSTskin of March, May, August, and
November are shown in Figure 14, and the AVHRR monthly mean SSTskin are also obtained
in the same way. The difference between VIRR and AVHRR monthly mean SSTskin is
calculated. The bias is 0.07 ◦C, the standard deviation is 0.45 ◦C, and the correlation
coefficient is 0.9976. The bias is close to 0, and there are no more negative bias pixels in
VIRR SSTskin. Therefore, it demonstrates the validity of the cloud detection, i.e., there are
no obvious cloud missing pixels.
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5. Conclusions

The skin SST is received from FY-3C/VIRR. Firstly, the FY-3C/VIRR BTs are inter-
calibrated with the Terra/MODIS after removing the spectral difference. After inter-
calibration, the BT difference between the two after removing the spectral difference is
close to zero. Next, the Bayesian cloud detection and OE algorithm are applied to detect
cloud pixel and retrieve SSTskin using the calibrated BTs. Comparing the retrieval results
with the buoy SST, the bias is −0.12 ◦C, and the standard deviation is 0.52 ◦C. The VIRR
SSTskin is also compared with MetOp-A CCI AVHRR SSTskin, the bias is 0.08 ◦C, and the
standard deviation is 0.55 ◦C. The results compared with CCI AVHRR SSTskin and buoy
SST are consistent considering the difference of skin and bulk temperature. In this study,
only data from the Western Pacific are used for testing. The method can be further applied
to global SSTskin retrieval from FY-3C/VIRR.
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