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Abstract: Timely, accurate estimates of forest aboveground carbon density (AGC) are essential for
understanding the global carbon cycle and providing crucial reference information for climate-
change-related policies. To date, airborne LiDAR has been considered as the most precise remote-
sensing-based technology for forest AGC estimation, but it suffers great challenges from various
uncertainty sources. Stratified estimation has the potential to reduce the uncertainty and improve
the forest AGC estimation. However, the impact of stratification and how to effectively combine
stratification and modeling algorithms have not been fully investigated in forest AGC estimation.
In this study, we performed a comparative analysis of different stratification approaches (non-
stratification, forest type stratification (FTS) and dominant species stratification (DSS)) and different
modeling algorithms (stepwise regression, random forest (RF), Cubist, extreme gradient boosting
(XGBoost) and categorical boosting (CatBoost)) to identify the optimal stratification approach and
modeling algorithm for forest AGC estimation, using airborne LiDAR data. The analysis of variance
(ANOVA) was used to quantify and determine the factors that had a significant effect on the estimation
accuracy. The results revealed the superiority of stratified estimation models over the unstratified
ones, with higher estimation accuracy achieved by the DSS models. Moreover, this improvement
was more significant in coniferous species than broadleaf species. The ML algorithms outperformed
stepwise regression and the CatBoost models based on DSS provided the highest estimation accuracy
(R2 = 0.8232, RMSE = 5.2421, RRMSE = 20.5680, MAE = 4.0169 and Bias = 0.4493). The ANOVA of
the prediction error indicated that the stratification method was a more important factor than the
regression algorithm in forest AGC estimation. This study demonstrated the positive effect of
stratification and how the combination of DSS and the CatBoost algorithm can effectively improve
the estimation accuracy of forest AGC. Integrating this strategy with national forest inventory could
help improve the monitoring of forest carbon stock over large areas.

Keywords: aboveground carbon density; LiDAR; stratified estimation; machine learning algorithm;
Northeast China

1. Introduction

Covering about 30% of the earth land area, forest ecosystems are a huge global carbon
reservoir with carbon stocks of about 861 ± 66 Pg C [1]. Over 80% of vegetation above-
ground carbon in terrestrial ecosystems and more than 70% of global soil organic carbon
are stored in forest ecosystems [2–4]. As carbon is naturally exchanged between forests
and the atmosphere through photosynthesis, respiration, decomposition and combustion,
forest ecosystems play a key role in the global carbon cycle [5–7]. To better understand and
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regulate the mechanisms of the global carbon cycle, we require accurate estimation and
monitoring of forest aboveground carbon density (AGC). Forest AGC is an important indi-
cator of the fundamental characteristics of forest ecosystems and the basis for evaluating
the structural function and carbon sink capacity of forests [8,9]. Moreover, the current need
to mitigate the impact of climate change on the global ecosystems raises the importance
of quantifying forest carbon exchange and carbon stock from local to global scales [10,11].
Quantitative and accurate estimation of forest AGC is also required by many international
climate change adaptation and mitigation policies (e.g., the United Nations Framework
Convention on Climate Change (UNFCCC), the Kyoto Protocol, the Reducing Emissions
from Deforestation and Forest Degradation (REDD+) program and the carbon neutrality
policy) [12–15].

Traditionally, forest AGC is obtained through ground surveys, which are generally
recognized to be the most accurate method [16,17]. However, the field-measured method
is usually labor-intensive and time-consuming, and it is difficult to carry out at large
scales or in remote areas [12]. The advent of remote-sensing technology, particularly light
detection and ranging (LiDAR), has overcome these limitations to some extent. LiDAR
technology is considered to be the most accurate remote-sensing-based estimation tool for
forest aboveground biomass (AGB) and carbon stock [18]. As an active remote-sensing
technology, LiDAR has the greatest advantage over other sensors in the ability to accurately
capture the vertical structure information of forest vegetation, which plays an important
role in forest AGC estimation. Due to its high spectral saturation point, LiDAR can also
overcome the data saturation problem in optical and radar data. Metrics from LiDAR data
(e.g., height and density) are highly correlated with forest AGB and AGC, and have been
reported to provide good estimation results in several studies across various geographical
areas [19–23]. To date, the most common approach to estimate forest AGC based on
LiDAR data is achieved by establishing statistical regression models between LiDAR
metrics and ground survey data. These regression models can be divided into two main
categories: parametric and non-parametric algorithms. The parametric algorithms that
have been widely used include multiple linear regression, stepwise regression, partial
least squares regression, etc. Parametric algorithms have a clear model structure and
strong interpretability of model parameters, but need to obey strict statistical assumptions
and are hardly generalized. The non-parametric machine-learning algorithms, such as
artificial neural networks (ANNs), support vector machines (SVMs), K-nearest neighbors
(K-NNs), random forest (RF) and Cubist have attracted great interests in recent years [24–26].
Compared with parametric algorithms, non-parametric algorithms determine the model
structure in a data-driven manner and are insensitive to noisy data. Due to the flexibility
of non-parametric algorithms, they may be more suitable for modeling complex non-
linear forest carbon-stock estimates [18]. Recently, two novel decision-tree-based ensemble
algorithms, extreme gradient boosting (XGBoost) and categorical boosting (Catboost), have
excelled in several machine-learning competitions and attracted much attention. Although
XGBoost and CatBoost have outperformed other machine-learning algorithms in various
fields [27–30], these two algorithms have rarely been used in forest AGC estimation, and
the performance remains to be examined.

Stratified estimation is suggested to be an effective approach to reduce variance and
improve the accuracy of estimates without increasing the sample size [31]. The main pur-
pose of stratification is to group heterogeneous components within populations into strata
so that the within-stratum variance will be significantly smaller than the overall variance,
resulting in a better estimate result. This method has been proven to be useful in forest
AGB estimation, and the stratification methods range from forest type and topography to
site quality [32–34]. Among these methods, stratification based on forest type has been
frequently used and has shown positive effects, as forest AGB and AGC vary with different
stand structures and species composition [35]. However, other studies have reported only
slight improvements when using forest-type stratification [36–38]. The mixed results raise
the need for further research on the effects of stratification in forest AGC estimates and
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provide guidance for appropriate stratification methods. Moreover, limited by the number
of sample plots, few studies have explored the effect of finer stratification (e.g., dominant
species stratification) on forest AGC estimates.

The northeast forest region, together with the southern forest region and the southwest
forest region, are known as the three major forest regions in China. As the largest natural
forest area in China, the northeast forest region is the largest carbon pool, with its forest
aboveground carbon stock reaching more than 1/4 of the country’s total [39,40]. Despite
that several studies have developed remote-sensing-based forest AGB estimation models
at the regional level, forest-type level or species level in the northeast forest region [41,42],
species-level carbon-stock estimation models based on LiDAR data in the northeast forest
region of China have not been reported. Finer descriptions of forest ecosystems and
structures, such as specific-species characteristics, are needed to meet the new challenges
posed by forest management and monitoring [43]. Species-level information is of great
value to support refined forest management and sustainable development. Moreover, the
species-level approach makes full use of existing forest inventory information and avoids
the additional costs of ground surveys.

Here, in order to fill the above gaps, we used airborne LiDAR data, stepwise regres-
sion and four machine learning algorithms (RF, Cubist, XGBoost and CatBoost) to develop
forest AGC estimation models based on forest type and dominant species stratification in
the northeastern forest regions of China. We hypothesized that the accuracy of forest AGC
estimation can be substantially increased by combining finer stratification (dominant species
stratification) and non-parametric machine learning algorithms. To examine this assumption,
the performance of estimation models was compared (a) between stratification and non-
stratification; (b) between forest type stratification (FTS) and dominant species stratification
(DSS); (c) within the strata; and (d) between multiple stepwise regression and four machine
learning algorithms, RF, Cubist, XGBoost and CatBoost. The objectives of this study were
threefold: (1) to examine the effect of stratification on forest AGC estimation and explore ap-
propriate stratification methods; (2) to evaluate the application of machine-learning algorithms
in forest AGC estimation, especially the performance of the two novel decision tree-based
ensemble algorithms, XGBoost and CatBoost; and (3) to establish species-level forest AGC
estimation models in the northeastern forest regions of China.

2. Materials and Methods
2.1. Study Area

We conducted this study in the forest regions of Northeast China, across three provinces,
Heilongjiang, Jilin and Inner Mongolia. The study area covered 12 areas in six forest regions
(Figure 1), including the Daxinganling in Inner Mongolia, the Daxinganling in Heilongjiang,
the Yichun, the Songhua River, the Mudanjiang and the Changbai Mountain (longitude
119◦36′—134◦05′E, latitude 41◦37′—53◦33′N). The climate in most of the region is temper-
ate monsoon, with a cold monsoon climate in the north. The average annual precipitation
ranges from 400 to 1000 mm, and the average annual temperature varies between −2 and
2.6 ◦C. The northeast forest region is surrounded by mountains to the east, north and
west, with an average altitude distribution of 500–2500 m. The northeast forest region is
one of the richest forest areas in China, with a total forest area of about 680,000 km2 and
a total forest volume stock of about 3.2 billion m3, accounting for 37% of the country’s
total forest area and 30% of the country’s total forest volume stock, respectively (Pan et al.,
2011). The Northeast Forest Region contains three zonal vegetation types: cold-temperate
coniferous forests, temperate mixed-coniferous forests and warm-temperate deciduous
broadleaf forests. The main coniferous species include Larch (Larix gmelinii), Camphor Pine
(Pinus sylvestris var. mongolica), Red Pine (Pinus koraiensis) and Spruce (Picea asperata); the
main broadleaf species are Poplar (Populus davidiana), White Birch (Betula platyphylla), Oak
(Quercus mongolica) and Elm (Ulmus pumila).
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Figure 1. (a) Location of the Heilongjiang, Jilin and Inner Mongolia three provinces in China.
(b) Location of the study area with 12 ALS data areas highlighted in black. (c,d) Field plots’ distribu-
tion in two ALS data areas.

2.2. Data Source and Preprocessing
2.2.1. Field Measurements Data and Forest AGC Calculation

The field survey was conducted from September 2019 to November 2019. The domi-
nant species, origin, age group and depression of each stand and the diameter at breast
height (DBH), tree height, age and canopy cover of the individual tree that DBH ≥ 6 cm
within each plot were measured and recorded by using traditional measuring instruments
in the forest inventory. Based on the latest national forest resources inventory results, the
distribution of dominant tree species, traffic conditions and other factors in the northeast
region, 12 areas covering the target species were typically selected as aerial flight areas for
obtaining LiDAR data. A total of 1600 sample plots were randomly collected in these areas,
covering five typical forest areas, namely Da Hinggan Ling, Xiao Hinggan Ling, Wanda
Mountain, Zhangguangcai Mountain and Changbai Mountain. The sample plots were
circular, with a radius of 13.82 m and an area of about 600 m2. The quality of the sample
plot survey was checked to ensure that the error in DBH measurement was less than 3%
and the error in tree height measurement was less than 5%. To ensure the geographic match
between the field data and the LiDAR data, clear markers were set up at the center of each
sample plot, and Real-Time Kinematic (RTK) technology was used to accurately locate
the center of the sample plot, ensuring that the horizontal and vertical coordinates of the
sample plot were positioned to within 1 m.

The individual tree data obtained from the field survey were statistically summarized,
and the outliers were removed according to the criterion of triple standard deviation;
and the data of dead trees were removed to calculate the mean area at breast height,
mean diameter at breast height, mean tree height and stand density of the sample plots.
After screening, a total of 1587 plots were selected. The AGB was calculated by applying
species-specific allometric equations, and then the aboveground carbon stock was received
by multiplying by the species-specific mean carbon conversion factor. The allometric
equations and carbon-conversion factors for each tree species are shown in Table 1, with
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reference to [44,45]. Finally, the individual tree aboveground carbon stock in each plot was
summed up and converted into hectares to obtain the forest AGC at plot level.

Table 1. Allometric equations and mean carbon conversion factors used in this study.

Tree Species Allometric Equation Mean Carbon Conversion Factors

Picea asperata AGB = 0.08070 × D2.25957 × H0.25663 0.4804

Abies fabri AGB = 0.06945 × D2.05753 × H0.50839 0.4805

Larix gmelinii AGB = 0.06848 × D2.01549 × H0.59146 0.4742 (Natural forest)
0.4674 (Plantation)

Pinus koraiensis AGB = 0.027847 × D1.810004 × H0.905002 0.4809

Populus davidiana AGB = 0.02884 × D2.8785 0.4956 (Natural forest)
0.4761 (Plantation)

Ulmus pumila AGB = 0.0607 × D2.4316 + 0.0678 × D1.9623 + 0.0148 × D1.9816 0.4648

Betula platyphylla AGB = 0.06807 × D2.10850 × H0.52019 0.4656

Quercus mongolica AGB = 0.06149 × D2.14380 × H0.58390 0.4802

Tilia tuan AGB = 0.01275 × D2.0188 × H1.0094 + 0.00182 × D1.9492 ×
H0.9746 + 0.00024 × D1.9814 × H0.9907 0.4677

2.2.2. Design of Sample Plot Stratification

The stratification of sample plots was based on the species information recorded in
the field data. In DSS, the criterion for stratification was that one or several tree species
account for more than 70% of the entire sample plot in volume stock. The sample plots
were therefore stratified (a) to coniferous forests and broadleaf forests (b) to three domi-
nant coniferous tree species, namely Spruce–Fir, Larch and Red Pine, and five dominant
broadleaf tree species, namely of Poplar, Elm, Linden, Oak and White Birch. According
to Reference [38], strata with smaller populations may return higher prediction errors,
which, in turn, can affect the total prediction error. Therefore, to minimize the impact of
strata size on the estimation results, we deliberately kept the sample sizes of the eight
dominant species strata on a comparable level (approximately 200 sample plots per strata).
The detailed information and summary statistics for the forest AGC of each stratification
are provided in Tables 2 and 3. The distribution of the dominant species in the study area is
shown in Figure 2. This map was generated from Sentinel-2A images and RF classifier.

Table 2. Overview and distribution of forest AGC of the forest-type-based stratification sample plots.

Forest Type Number Of Plot Forest AGC (Mg/ha)

Total Training Plot Validation Plot Range Mean Standard
Deviation

Coniferous forests 591 473 118 1.40–82.30 26.23 13.09
Broadleaf forests 996 795 201 0.52–79.83 26.19 11.98

All forests
(non-stratification) 1587 1267 320 0.52–82.30 26.20 12.35
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Table 3. Overview and distribution of forest AGC of the dominant-species-based stratification
sample plots.

Dominant Species Tree Species Composition

Number of Plot Forest AGC (Mg/Ha)

Total Training
Plot

Validation
Plot Range Mean Standard

Deviation

Picea asperata and
Abies fabri

Picea asperata dominant forests or
Abies fabri dominant forests with a

small mixture of Larix gmelinii
197 158 39 2.29–82.30 30.73 15.35

Larix gmelinii

Pure or Larix gmelinii dominant
forests with a small mixture of

Betula platyphylla and
Populus davidiana

197 158 39 1.40–56.13 25.33 12.11

Pinus koraiensis
Pure or Pinus koraiensis dominant

forests with a small mixture of
Larix gmelinii

197 158 39 1.44–49.13 22.64 9.96

Populus davidiana

Pure or Populus davidiana
dominant forests with a small

mixture of
Larix gmelinii

209 167 42 0.52–79.83 34.36 17.44

Ulmus pumila
Ulmus pumila dominant forests
with a small mixture of Populus

davidiana
199 159 40 5.81–48.09 23.12 7.62

Betula platyphylla

Pure or Betula platyphylla
dominant forests with a small

mixture of
Larix gmelinii

203 162 41 1.82–52.63 22.17 9.74

Quercus mongolica
Quercus mongolica dominant forests

with a small mixture of Pinus
tabuliformis

196 157 39 2.27–65.42 25.86 12.07

Tilia tuan Tilia tuan dominant forests with a
small mixture of Larix gmelinii 200 160 40 5.74–42.26 21.71 7.71

Figure 2. Dominant species map of the study area: (a,b) show the spatial distribution of dominant
species in two areas at a larger scale.
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2.2.3. Airborne Laser Scanning Data

In order to minimize the impact of forest condition change and errors caused by
the time mismatch between field measurements and LiDAR data, airborne LiDAR data
were acquired in twelve regions within the six forest regions in September and October
2019, with a total aerial area of 1043 km2. Using RIEGL VUX-1UAV airborne laser scanner
(RIEGL, Horn, Austria) mounted on a medium rotorcraft UAV platform (Siwei Spatial Data,
Beijing, China), with a maximum pulse emission frequency of 550 kHz, a beam divergence
angle of 0.5 mrad, a spot diameter of 50 mm, an average point density of about 4 points/m2,
an average ground point distance of about 1 m, a measurement accuracy of 10 mm, a flight
height of about 100 m and a flight speed of 70–110 km/h.

The raw ALS data were processed in the TerraScan modules running on the Microsta-
tion platform (TerraSolid, Ltd., Helsinki, Finland) and the LiDAR 360 software (GreenValley,
Beijing, China). The main preprocessing procedures include (a) route leveling; (b) point
cloud denoising; (c) point cloud filtering—an improved TIN (triangulated irregular net-
work) densification filtering algorithm [46] was used to classify the raw point clouds
into the ground or non-ground points; (d) DEM generation, interpolation of the classi-
fied ground points using the TIN algorithm [47] to generate DEM; (e) point cloud data
normalization—the absolute elevation of each point was subtracted from the DEM, and
the height of the point cloud was normalized to remove the elevation effects of the terrain;
(f) point cloud data clipping—the point cloud data corresponding to the sample plot was
clipped out according to the coordinates of the sample center and the radius information
to facilitate the extraction of LiDAR variables; and (g) LiDAR metrics extraction—the 32
LiDAR metrics were extracted from the normalized point clouds within each sample plot
with a threshold of 2 m to exclude shrubs and grasses.

2.3. Methods

In this study, we integrated sample plot stratification and ML algorithms to establish
forest AGC estimation models based on airborne LiDAR data in the forest regions of
Northeast China. Figure 3 showed the framework of the methods for this study. Field
measurement data and ALS data were first under preprocessing to obtain plot-level forest
AGC and normalized LiDAR data within plots. To explore the effect of stratification in forest
AGC estimation, the initial sample plots were stratified into three groups: non-stratification,
FTS and DSS (Section 2.2.2). Thirty height-related metrics and 2 canopy-related metrics
were extracted from normalized LiDAR data, and Pearson correlation analysis and Boruta
algorithms were used to perform variables selection (Section 2.3.1). Then forest AGC
estimation models were built based on Stepwise regression and four ML algorithms (RF,
Cubist, XGBoost and CatBoost), and independent validation sample plots were used to
evaluate the established models (Sections 2.3.2 and 2.3.5). The analysis of variance (ANOVA)
was applied to identify the important factors in forest AGC modeling (Section 2.3.4). Finally,
based on the model validation and ANOVA results, the optimal stratification approach and
algorithms, and the important factors in forest AGC estimation were derived.
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Figure 3. Flowchart of the methods for forest AGC estimation by combining sample plots stratification
and ML algorithms using ALS data.

2.3.1. Model Variables Extraction and Selection

Height-related variables and canopy-related variables derived from LiDAR data are
suggested to be useful at plot-level estimation and show a high correlation with forest AGB
and AGC [48,49]. The height metrics directly describe the vertical height and geometry
character of the trees, the density metrics reflect the return density of the trees, the canopy
metrics depict canopy structure and the intensity metrics refer to the energy backscattered
from the feature to the LiDAR sensor [50,51]. In this study, we extracted 30 height-related
and 2 canopy-related variables based on normalized point cloud data with a threshold of
2 m. The detailed information and description of LiDAR metrics are shown in Table 4.
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Table 4. Summary of the metrics extracted from ALS data used in this study.

LiDAR Metrics Description

CC Canopy cover

Canopy_relief_ratio Canopy relief ratio

H_1, H_5, H_10, H_20, H_30, . . . H_80,
H_90, H_95, H_99

Height percentiles. Vertical distribution of
point cloud height: 1%, 5%, 10%, 20%, 30%,
. . . , 80%, 90%, 95%, 99% quantile

H_max Maximum height

H_min Minimum height

H_mean Mean height

H_median Median of height

H_madmedian Median of median absolute deviation of height

H_sqrt_mean_sq Generalized means for the 2nd power of height

H_curt_mean_cube Generalized means for the 3rd power of height

H_AIH_IQ Interquartile distance of cumulative height

H_IQ Interquartile distance of height

H_skewness Skewness of height

H_kurtosis Kurtosis of height

H_aad Average absolute deviation of height

H_cv Coefficient of variation of height

H_stddev Standard deviation of height

H_variance Variance of height

Although forest AGC is influenced by various factors, not all variables are useful
in forest AGC modeling, due to the information redundancy issue. Identifying optimal
variables is challenging but the key to establishing a forest AGC estimation model. In this
study, Pearson correlation analysis and the Boruta algorithm were used to perform variable
selection. The Pearson correlation analysis was first used to select the LiDAR metrics that
most correlated with forest AGC. Then, the Boruta algorithm was used to further identify
the optimal variables. The core idea of the Boruta algorithm is to construct a shadow feature
by randomly mixing the original object feature values to determine whether the importance
result of any given feature is significant or not, and then to classify all feature objects in
a random forest classification using an extended aggregate with random samples. The
maximum Z score among shadow attributes (MZSA) was found and then a two-sided test
was performed for each feature object with unassigned importance. Features significantly
below the MZSA were considered “unimportant” and features significantly above the
MZSA were considered “important”. This process was repeated until all attributes were
assigned importance values, resulting in the optimal set of feature variables [52]. All of
these procedures were performed in R 4.1.0 using the Boruta packages [52].

2.3.2. Modeling Algorithms

Stepwise regression and four machine-learning algorithms, namely RF, Cubist, XG-
Boost and CatBoost, were used for forest AGC modeling in this study. Stepwise regression
is a parametric algorithm to screen variables and establish the optimal regression equation.
In the modeling process of stepwise regression, the predictive variables are input into the
regression equation one by one according to the given statistical standard. At each step
of the analysis, the predictive variables with the highest correlation with the dependent
variables first enter the regression equation, and then the variables are introduced into
the model one by one, and the F-test is carried out to judge whether the variable can be
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selected. Stepwise regression has been widely applied in forest AGB and AGC estimation,
as it can remove the variables causing multicollinearity [53–55].

RF is an improved machine learning integration algorithm based on decision trees; it
was first proposed by Breiman et al. in 2001. Its advantages over traditional decision tree
algorithms are that it is insensitive to noisy data, can deal with discrete or continuous data
sets and can handle huge datasets [21]. The basic principle of RF is that multiple decision
trees are integrated into a single but powerful model, using the “bagging” idea [56], and
the Bootstrap resampling technique is used to generate a new training sample set from
N original training samples by repeatedly selecting a random k (k < N) sample set. In
the whole sampling process, some samples may be taken more than once, while some of
the training data will not be sampled. This part of the training data is called “out-of-bag”
(OOB) data; the OOB data are not involved in the model-fitting process, but are used to
examine the generalization of the model. As randomness can effectively reduce model
variance, the RF algorithm can achieve good generalization and low variance resistance
without additional “pruning” of the decision trees [57].

Cubist is a rule-based decision-tree model extending from the earlier M5 model, based
on which a regression tree is constructed, and generating a linear regression model at
the end nodes of the tree, with predictions based on linear regression results at the end
nodes rather than on discrete values. The final model of Cubist is a set of multivariate
models associated with a set of rules associated with it, where each rule corresponds
to a multivariate linear expression. Cubist also uses a boosting-like scheme known as
committees, which uses the results of the training set to adjust and create subsequent trees,
and then averages the predictions of all committees to generate the final predictions [26].
In addition, the predictions generated by the model rules can be adjusted by using the
neighborhoods defined by the parameter neighbors in the training-set data, as this enables
Cubist to predict outside of the sample coverage [58].

XGBoost is an ensemble learning algorithm based on the Gradient Boosting Decision
Tree (GBDT) framework proposed by Chen and Guestrin in 2016 [59] that has won numerous
awards in Kaggle machine-learning competitions and has received widespread attention in
recent years. The algorithm is based on the idea of “Boosting” to generate a number of decision
trees in turn, combining all the predictions of a set of weak learners to develop a strong learner
through an additive training strategy. In contrast to the general GBDT algorithm, the XGBoost
algorithm performs a second-order Taylor expansion on the objective function, using the
second-order derivatives to accelerate the convergence of the model during training. At the
same time, a regularization term is added to the objective function to control the complexity
of the tree in order to obtain a simpler model and avoid overfitting [60]. Thus, XGBoost
is a flexible and highly scalable tree-structured boosting algorithm with the advantages of
being able to handle sparse data, greatly increase the speed of the algorithm, and reduce
computational memory in training on very large scale datasets.

CatBoost is a novel gradient boosting decision-tree algorithm developed by Dorogush
et al. [61] that belongs to the same boosting family as XGBoost, both being an improved
implementation in the framework of the GBDT algorithm. CatBoost uses oblivious trees as
base predictors, with fewer parameters and high accuracy, which can also handle categori-
cal features well. In addition, CatBoost has solved the statistical problems of Gradient Bias
and Prediction shift that all existing gradient boosting algorithms face by proposing a new
and improved gradient boosting algorithm, order boosting, to reduce the occurrence of
overfitting and thus improve the algorithm’s accuracy and generalization. The basic idea
is, firstly, the CatBoost model correlates the category features to account for the different
bases of category features, including calculating the frequency of category occurrences
and considering different combinations of category features to construct the regression
tree. Secondly, to solve the prediction drift problem caused by gradient bias, random
permutations are generated in the training dataset, and gradients are obtained based on
it. For training distinct models, different permutations are used; thus, overfitting will not
happen. Compared with existing GBDT algorithms, the advantages of CatBoost are the
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following: (a) using an innovative algorithm that automatically treats categorical features
as numerical features, (b) combining category features and making full use of the connec-
tions between features greatly enriches the feature dimension and (c) the use of a fully
symmetric tree model reduces overfitting and improves the accuracy and generalization of
the algorithm [57,62].

Forest AGC estimation is largely dependent on the relationship between tree height
and AGC due to the allometric relationships of the tree. Complex forest structure can
affect the relationship between forest AGC and tree height and thus interfere with the
estimation results. In theory, separate modeling of forest AGC for different dominant
species can mitigate this interference and improve the algorithm’s estimation performance.
Therefore, in this study, we assume that the finer the stratification and the simpler the
forest structure, the better the algorithm’s estimation performance will be. Moreover, the
estimation performance of different algorithms may be various due to the differences in
forest structure among species. To verify these hypothesizes, three different scenarios
were designed: (1) forest AGC models were established based on five algorithms without
stratification, resulting in a total of 5 models; (2) forest AGC models were established based
on FTS with five algorithms, resulting in a total of 10 models; and (3) forest AGC models
were established based on DSS with five algorithms, resulting in a total of 40 models.

2.3.3. Hyperparameter Optimization in Machine Learning Algorithm

Four machine learning algorithms, RF, Cubist, XGBoost and CatBoost, were used in
this study. In a machine-learning algorithm, the predicted results and model performance
are largely determined by the hyperparameters of the model. A set of hyperparameters
should be tuned for each algorithm to obtain the best model performance. The hyperparam-
eters of different machine learning vary greatly, and it is difficult to adjust the parameters
manually. Therefore, grid search technology was used to perform hyperparameter tuning
automatically. Hyperparameter tuning was performed on the RF, Cubist, XGBoost and
CatBoost algorithms based on the lowest RMSE of the model obtained by repeating the
10-fold cross-validation method five times on the training dataset, respectively, to ensure
the robustness in the modeling process. All of these procedures were performed in R 4.1.3,
using the Caret packages. Details about various hyperparameters and their corresponding
grid values are presented in Table 5.

Table 5. Hyperparameter tuning ranges for four machine learning algorithms.

Algorithm Hyperparameter Description Value Ranges

RF mtry the number of predictor variables
randomly sampled at each split

(1–n)
n refers to the number of
predictor variables

ntree the number of trees (100–1000)
at intervals of 50

Cubist committees the number of trees (1–100)
at intervals of 1

neighbors controls the rule-based model predictions (0–9)
at intervals of 1
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Table 5. Cont.

Algorithm Hyperparameter Description Value Ranges

XGBoost max_depth the depth of the tree (1–10)
at intervals of 1

eta the learning rate (0.01–0.5)
at intervals of 0.01

gamma minimum loss reduction of the tree (0–1)
at intervals of 0.1

colsample_bytree the number of predictor variables
supplied to a tree

(0–1)
at intervals of 0.1

min_child_weight minimum number of instances (1–10)
at intervals of 1

subsample the number of observations supplied
to a tree

(0–1)
at intervals of 0.1

CatBoost depth the depth of the tree (1–10)
at intervals of 1

learning_rate the learning rate (0.01–0.5)
at intervals of 0.01

l2_leaf_reg coefficient at the L2 regularization term of the
cost function

(0–5)
at intervals of 0.1

rsm the percentage of features to use at each split
selection

(0–1)
at intervals of 0.1

2.3.4. Statistical Analysis

The two-way analysis of variance (ANOVA) was used to quantify the effect of each
factor on the estimation error and to identify the key factors in forest AGC estimation. These
factors include the stratification method (non-stratification, FTS and DSS), the regression
algorithm (stepwise regression, RF, Cubist, XGBoost and CatBoost) and their interactions.
To better show how each factor explains the total variance, we calculated the eta-squared
(η2), the proportion of the sum of squares of each factor to the total sum of squares. The
ANOVA was performed in R 4.1.0.

2.3.5. Model Validation

To compare the estimation performance of stepwise regression and four machine-
learning algorithms in this study, coefficient of determination (R2, Equation (1)), root mean
square error (RMSE, Equation (2)), relative root mean square error (RRMSE, Equation (3)),
mean absolute error (MAE, Equation (4)) and Bias (Equation (5)) were employed. The
hold-out method was used for calculating the model performance metrics, and the field
measurement data of each stratification were randomly split into a training set (80% of
the total) and a validation set (the remaining 20%). The training set was used to train and
establish the model, while the validation set was not involved in the model establishing
process but acted as an independent sample to evaluate the model performance. After
hyperparameter optimization, the best models were built based on the training set, and
the model performance metrics were calculated based on the validation set. The higher R2,
lower RMSE, RRMSE, MAE and Bias values imply a higher prediction accuracy and better
estimation results:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (1)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(2)

RRMSE =
RMSE

y
× 100 (3)

MAE =
∑n

i=1|yi − ŷi|
n

(4)
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Bias =
∑n

i=1(ŷi − yi)

n
(5)

where n is the number of sample plots, ŷi is the predicted forest AGC, yi is the field
measurement forest AGC and y is the mean of field measurement forest AGC.

3. Results
3.1. Comparative Analysis of Forest AGC Estimation Results
3.1.1. Forest AGC Estimation Results Based on FTS

To evaluate the effect of FTS and non-parametric machine-learning algorithms in
establishing the forest AGC estimation models, 15 forest AGC estimation models were
developed by using stepwise regression and four machine-learning algorithms (RF, Cubist,
XGBoost and CatBoost) based on non-stratification and two stratified datasets (coniferous
forests and broadleaf forests), respectively. The model performance and evaluation results
for the stratified and the unstratified models are shown in Table 6.

Table 6. Performance of forest AGC estimation model based on non-stratification and FTS in the
validation datasets.

Forest Type Model R2 RMSE
(Mg/ha)

RRMSE
(%)

MAE
(Mg/ha)

Bias
(Mg/ha)

All forests
(non-stratification) Stepwise 0.3948 9.7867 39.0596 7.3902 0.8163

RF 0.4213 9.5699 38.1947 7.1368 0.8704
Cubist 0.4119 9.6471 38.5028 7.0665 −0.6283

XGBoost 0.4392 9.4209 37.5998 7.0208 0.0435
CatBoost 0.4411 9.4052 37.5374 7.0520 0.8851

Coniferous forests Stepwise 0.3911 9.4519 38.2231 7.0240 0.4808
RF 0.5853 7.8005 31.5447 5.9307 0.2851

Cubist 0.5304 8.3004 33.5663 6.5400 −0.0962
XGBoost 0.6017 7.6441 30.9124 5.7157 0.1689
CatBoost 0.6073 7.5907 30.6961 5.7559 −0.1662

Broadleaf forests Stepwise 0.3577 9.9602 41.2753 7.7378 2.0755
RF 0.4249 9.4252 39.0582 7.0348 1.5388

Cubist 0.3818 9.7718 40.4946 7.2849 0.6979
XGBoost 0.4585 9.1452 37.8982 6.8907 1.7294
CatBoost 0.4745 9.0093 37.3350 6.8652 1.6480

According to the results illustrated in Table 6, the FTS models improved the perfor-
mance and predicted accuracy when applying machine-learning algorithms, as evidenced
by an increase in R2 and a decrease in RMSE, RRMSE and MAE, while the reversed results
were achieved in stepwise regression models. Compared to the unstratified models, a
significant improvement was observed in the coniferous-forest-stratified models, while
only a slight improvement in the broadleaf-forest-stratified models, indicating that FTS
provided a more positive effect in coniferous forests than broadleaf forests. Overall, four
machine learning algorithms outperformed stepwise regression, regardless of the datasets
used. The CatBoost models achieved the best estimation performance in all the three
datasets, with the highest R2 (0.4411 in all forests, 0.6073 in coniferous forests and 0.4745 in
broadleaf forests), lowest RMSE (9.4052 in all forests, 7.5907 in coniferous forests and 9.0093
in broadleaf forests), RRMSE (37.5374 in all forests, 30.6961 in coniferous forests and 37.3350
in broadleaf forests) and MAE (6.8652 in broadleaf forests), followed by XGBoost, RF, Cubist
and stepwise regression. The Bias of the CatBoost models in the three datasets were 0.8851,
−0.1662 and 1.6480 Mg/ha, respectively, suggesting a general overestimation of forest AGC
in unstratified and broadleaf forest models, as well as a general underestimation of forest
AGC in coniferous forest models.

The improvement provided by the FTS models can be further evidenced in the scatter
plots between the field-measurement forest AGC and model estimated values (Figure 4).
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Figure 4 shows the correlation between the estimated forest AGC and the reference data based
on FTS is better compared to the non-stratification ones except the models using stepwise
regression. Moreover, a significant underestimation is observed when the forest AGC is larger
than 40 Mg/ha in all the 15 models, while a significant overestimation is observed when the
forest AGC is lower than 10 Mg/ha in unstratified and broadleaf forests models. However,
the extent of overestimation and underestimation is reduced when using FTS.

Figure 4. Scatter plots of the field-measured (x-axis) and predicted forest AGC (y-axis) using stepwise
regression and four different ML models based on FTS in the validation datasets.

3.1.2. Aboveground Carbon Density Estimation Results Based on DSS

To examine the influence of DSS and ML algorithms in the forest AGC estimation, we
compared and analyzed the model validation results of the forest AGC models established
by using stepwise regression and four machine-learning algorithms (RF, Cubist, XGBoost
and CatBoost) based on eight DSS datasets (Spruce-Fir, Larch, Red Pine, Poplar, White
Birch, Oak, Linden and Elm), respectively, resulting in a total of 40 models. The results of
model performances are summarized in Table 7 and Figure 5.
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Table 7. Performance of forest AGC estimation models based on DSS in the validation datasets.

Dominant
Species Model R2 RMSE

(Mg/ha)
RRMSE

(%)
MAE

(Mg/ha)
Bias

(Mg/ha)

Spruce–Fir Stepwise 0.7371 6.8977 23.4290 5.3067 −0.1559
RF 0.7547 6.6623 22.6294 4.9116 0.1994

Cubist 0.7493 6.7361 22.8801 5.2763 0.4992
XGBoost 0.7936 6.1119 20.7600 4.5688 −0.3968
CatBoost 0.8175 5.7463 19.5181 4.2701 1.0252

Larch Stepwise 0.6931 6.5371 28.4119 4.9649 1.7802
RF 0.6273 7.2045 31.3124 5.8318 1.9752

Cubist 0.6854 6.6184 28.7652 5.2080 0.5859
XGBoost 0.7047 6.4125 27.8701 4.8272 1.1372
CatBoost 0.7304 6.1274 26.6309 4.7103 1.1988

Red Pine Stepwise 0.7864 4.8843 21.8278 3.6780 −1.0045
RF 0.8351 4.2915 19.1786 3.2918 −0.7201

Cubist 0.8014 4.7098 21.0482 3.8554 −1.0005
XGBoost 0.8509 4.0810 18.2380 3.3971 −0.1736
CatBoost 0.8699 3.8113 17.0328 3.2853 0.1476

Poplar Stepwise 0.6751 8.9241 23.6450 6.8659 −0.9275
RF 0.7607 7.6595 20.2943 6.0103 −0.0022

Cubist 0.7486 7.8506 20.8007 6.1131 0.5429
XGBoost 0.7778 7.3812 19.5569 5.8989 0.1414
CatBoost 0.8054 6.9076 18.3022 5.2377 −0.0178

White Birch Stepwise 0.7211 5.3155 24.7447 4.1372 0.2416
RF 0.7407 5.0642 23.5747 3.7654 0.2466

Cubist 0.7662 4.8671 22.6570 3.5408 −0.2407
XGBoost 0.7636 4.8943 22.7840 3.5005 0.0718
CatBoost 0.7852 4.6653 21.7180 3.6770 −0.1229

Oak Stepwise 0.6362 6.6328 27.7826 4.8668 0.9758
RF 0.7468 5.5342 23.1808 4.0921 0.1669

Cubist 0.7386 5.6229 23.5524 3.9071 0.1812
XGBoost 0.7652 5.3294 22.3229 4.0862 −0.5591
CatBoost 0.7903 5.0355 21.0920 3.8465 0.3638

Linden Stepwise 0.3224 6.5837 30.2533 5.0754 0.7719
RF 0.5294 5.4869 25.2136 4.1952 0.4577

Cubist 0.4821 5.7557 26.4485 4.2222 0.3208
XGBoost 0.5450 5.3949 24.7906 4.1490 0.2983
CatBoost 0.6327 4.8474 22.2750 3.8665 0.5140

Elm Stepwise 0.5362 4.8298 20.4512 3.9670 0.9204
RF 0.5959 4.5080 19.0887 3.7378 1.2237

Cubist 0.5448 4.7845 20.2596 3.9858 1.1691
XGBoost 0.6308 4.3089 18.2456 3.5939 0.9103
CatBoost 0.6906 3.9446 16.7032 3.1906 0.5471

Figure 5 illustrates the estimation accuracy of forest AGC varies with different domi-
nant species. In terms of algorithm performance, estimation models based on DSS show
similar trends to those based on FTS; that is, the four machine-learning algorithms outper-
form the stepwise regression, with the CatBoost models achieving the highest estimation
accuracy, followed by XGBoost, RF, Cubist and stepwise regression. The detailed infor-
mation of the model evaluation results can be found in Table 7. Table 7 shows the 40
models for eight different dominant species with R2 varying from 0.3224 to 0.8699, RMSE
varying from 3.8113 to 8.9241, RRMSE varying from 16.7032 to 31.3124, MAE varying
from 3.1906 to 6.8659 and Bias varying from −1.0045 to 1.9752. Relatively high estima-
tion accuracy was achieved in all eight dominant species, with the CatBoost model based
on DSS for Red Pine achieving the best estimation accuracy (R2 = 0.8699, RMSE = 3.8133,
RRMSE = 17.0328, MAE = 3.2853 and Bias = 0.1476). In terms of Bias, no single algorithm
is optimal in all dominant species, with the highest mean Bias (1.2755) being observed in
the Larch models, indicating a more significant overestimation of forest AGC in the Larch,
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regardless of the algorithm used. Overall, the models established based on DSS achieved
much higher estimation accuracy compared to the unstratified models (Table 6), and this
improvement is more significant in the Spruce–Fir, Larch, Red Pine, Poplar, White Birch
and Oak models. The estimated forest AGC of eight dominant species models based on
the CatBoost algorithm was shown in Figure 6. The mean estimated forest AGC ranged
from 21.36 to 37.72 Mg/ha in eight dominant species, with the estimated forest AGC of
Poplar and Spruce–Fir being significantly higher than the other dominant species, and the
estimated forest AGC of the remaining dominant species were at a comparable level.

Figure 5. Model estimation accuracy evaluation results based on the validation datasets using
stepwise regression and four ML algorithms in eight different dominant species.
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Figure 6. Cont.
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Figure 6. Model estimation accuracy evaluation results based on the validation datasets using
stepwise regression and four ML algorithms in eight different dominant species.

The scatter plots between the field-measurement forest AGC and estimated values
for the eight dominant species are provided in Figure 7. Figure 7 shows that the linear
relationships between the estimated and measured values of forest AGC are relatively
better in Spruce–Fir, Larch, Red Pine, Poplar, White Birch and Oak models, while relatively
poor linear relationships are observed in Linden and Elm. A significant underestimation is
observed when the forest AGC is larger than 40 Mg/ha in Larch, Poplar and Oak models,
while a significant overestimation is observed when the forest AGC is lower than 20 Mg/ha
in Larch, Poplar, Linden and Elm models. Compared to the unstratified models (Figure 4),
the linear relationships between the estimated and measured values of forest AGC and
the extent of overestimation and underestimation are greatly improved in all 40 models
established based on DSS. The forest AGC estimation models based on DSS have achieved
much better estimation performance than unstratified ones.

Figure 7. Estimated AGC of eight dominant species models using CatBoost algorithm.



Remote Sens. 2022, 14, 1477 19 of 30

3.1.3. Comparative Analysis of Forest AGC Estimation Results Based on FTS and DSS

To further explore the optimal stratification method in forest AGC estimation, the
overall estimation accuracy of models based on non-stratification, FTS and DSS were
summarized in Table 8. Generally, the CatBoost models based on DSS have achieved the
best estimation accuracy (R2 = 0.8232, RMSE = 5.2421, RRMSE = 20.5680, MAE = 4.0169
and Bias = 0.4493), while the stepwise regression models based on FTS provided the worst
estimation accuracy (R2 = 0.3700, RMSE = 9.7752, RRMSE = 40.1415, MAE = 7.4738 and
Bias = 1.4856). The comparative results illustrate that the estimation accuracy of models
based on DSS is significantly higher than that of models based on FTS, regardless of the
algorithm used, with R2 increased from 0.3700~0.5223 to 0.7309~0.8232, RMSE reduced from
8.5121~9.7752 to 5.2421~6.4663, RRMSE reduced from 34.9546~40.1415 to 20.5680~25.3713,
MAE reduced from 6.4549~7.4738 to 4.0169~4.8700 and Bias reduced from 0.4042~1.4856 to
0.1803~0.4493. As the CatBoost models based on DSS have provided the highest estimation
accuracy, they were chosen for mapping the spatial distribution of the estimated forest
AGC in the study area (Figure 8). Moreover, compared to the non-stratification models, a
significant improvement was observed in DSS models, while only a slight improvement
was observed in FTS models.

Table 8. Summary of the overall estimation accuracy of non-stratification, FTS and DSS models on
the validation datasets.

Stratification
Method Model R2 RMSE

(Mg/ha)
RRMSE

(%)
MAE

(Mg/ha)
Bias

(Mg/ha)

Non-stratification Stepwise
regression 0.3948 9.7867 39.0596 7.3902 0.8163

RF 0.4213 9.5699 38.1947 7.1368 0.8704
Cubist 0.4119 9.6471 38.5028 7.0665 −0.6283

XGBoost 0.4392 9.4209 37.5998 7.0208 0.0435
CatBoost 0.4411 9.4052 37.5374 7.0520 0.8851

FTS Stepwise
regression 0.3700 9.7752 40.1415 7.4738 1.4856

RF 0.4826 8.8590 36.3788 6.6264 1.0751
Cubist 0.4353 9.2548 38.0042 7.0094 0.4042

XGBoost 0.5101 8.6205 35.3995 6.4561 1.1522
CatBoost 0.5223 8.5121 34.9546 6.4549 0.9769

DSS Stepwise
regression 0.7309 6.4663 25.3713 4.8700 0.3162

RF 0.7737 5.9307 23.2698 4.5070 0.4091
Cubist 0.7705 5.9719 23.4313 4.5200 0.2599

XGBoost 0.7984 5.5975 21.9624 4.2611 0.1803
CatBoost 0.8232 5.2421 20.5680 4.0169 0.4493
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Figure 8. Forest AGC estimation map in the study area retrieved by the CatBoost models based on
DSS. (a,b) Spatial distribution of estimated forest AGC in two areas at a larger scale.

Further comparison of scatter plots of field-measured forest AGC and estimated
values between FTS models (Figure 4) and DSS models (Figure 6) illustrates that the linear
relationships between the estimated and measured values of forest AGC and the extent
of overestimation and underestimation are greatly improved in all 40 models established
based on DSS. In summary, the forest AGC estimation model established by each dominant
species has a higher predictive ability and applied potential than the models constructed
by each forest type.

3.2. Variable Importance Analysis

The variable importance for forest AGC estimation models was evaluated by the
PredictionValuesChange method based on CatBoost in the DSS models. The relative impor-
tance of the 10 highest ranked variables was shown in Figure 9, revealing that the important
variables vary in different dominant species models. The height percentile metrics have
achieved the highest relative importance in most of the DSS models, accounting for more
than 80% in the Larch model, more than 70% in the Spruce–Fir model, more than 40% in
the Oak model, more than 30% in the Red Pine, Poplar, White Birch and Linden model and
more than 25% in the Elm model. Canopy-related metrics are also useful in the forest AGC
estimation, with the canopy relief ratio metric being the most important variable in the
White Birch models and the fifth and sixth important variable in Linden and Poplar model.
In general, the height-related metrics and canopy-related metrics play an important role in
forest AGC estimation, with height-related metrics being more important. The variables
importance analysis results demonstrate that the important variables for the models vary
with dominant species, illustrating the necessity to identify optimal model variables for
forest AGC estimation models in different dominant species.
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Figure 9. Relative importance of the 10 highest ranked variables of CatBoost models based on DSS.

4. Discussion
4.1. Variables Selection in Forest AGC Estimation

Identifying suitable variables is a prerequisite and key to building a high-precision
forest AGC estimation model. The commonly used variables derived from LiDAR data
in forest AGB and AGC estimation can be divided into four categories: height, density,
intensity and canopy metrics [63–65]. In this study, the initial LiDAR dataset contained 30
height-related and two canopy-related variables, without considering density and intensity
variables. It is based on the prior knowledge that density and intensity metrics are often
influenced by many other factors, including transmitted power, range, angle of incidence,
atmospheric transmittance, environmental parameters and the structural characteristics
of the target itself [66], resulting in the density and intensity values obtained for the same
feature on different flight routes varying significantly and making it difficult to reflect
the true character of the feature. Moreover, several studies have proposed that LiDAR
intensity values must be calibrated before they can be applied to forest AGB and AGC
estimation [67,68], but to date, no standard approach for LiDAR intensity correction has
been established. Then Pearson correction analysis and the Boruta algorithm were used
to further provide auxiliary information on variable selection for each dataset. Feature
selection based on expert knowledge allows for the selection of the most useful variables in
AGC estimation from an empirical perspective, while correlation analysis and automated
feature selection algorithms provide the best set of variables from a statistical perspective.
It was also suggested in Reference [11] that the inclusion of expert knowledge in variables
selection would make the model more ecologically meaningful and generalized than those
using only automatic feature-selection algorithms, such as stepwise regression, RFE and Boruta.
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The variable importance analysis results showed that the height percentile metrics are
the most important in most cases, which is consistent with several previous studies [20,58],
revealing the high corrective between height percentile metrics and forest AGC. In addition,
the variable importance results also demonstrated that the important variables are different
in different dominant species. Thus, there are possibly two ways to improve the large-scale
forest AGC estimation: One is to select optimal variables for a specific study area. In
this case, considering the experience and previous effort on AGC estimation in variables
selection of the specific study region may be more effective before modeling. The other
is to examine the potential generic indicators that are independent of geographical and
environmental conditions, e.g., the TCH metric derived from ALS data [69] and LiDAR
biomass index (LBI) obtained from TLS data [70]. However, the extent to which these
indicators are effective remains to be tested, and more studies should be carried out on the
model transferability to provide accurate forest AGC estimation on a large scale.

4.2. The Role of Stratification in Forest AGC Estimation

Our study indicated that both FTS and DSS could improve the estimation accuracy of
forest AGC compared to non-stratification estimation, which confirmed the effectiveness of
stratification in forest AGC estimation and was consistent with previous studies [71,72].
The essence of stratified estimation is to aggregate observations of target variables into
more homogeneous strata or levels than the whole. Forest AGC varies greatly across
different forest types and dominant species, as forest AGC is related to a variety of factors,
such as forest structure, species composition, stand characteristics and site factors. The
heterogeneity between different forests makes the relationship between forest AGC and
tree height becoming particularly complex and limit the estimation accuracy of LiDAR
data. Stratifying the sample plots into forest types or dominant species can reduce forest
heterogeneity arisen from the interference of other factors in AGC estimates, thus improving
the correlation between forest AGC and LiDAR metrics. Moreover, allometric models
and carbon conversion factors are developed at the tree species level, and thus the AGC
estimation models should be established on individual forest type or dominant species to
reduce the uncertainty [16].

A two-way ANOVA was used to explore the important factors in forest AGC estima-
tion. The ANOVA results (Table 9) showed that the stratification method had the most
significant effect on the estimation error, explaining 53% of the total variance in R2, 66%
of the RMSE, 77% of the RRMSE and 64% of the MAE. The regression algorithm and its
corresponding interactions had a marginal impact on estimation accuracy, explaining less
than 10% of the total variance in R2, RMSE, RRMSE and MAE, respectively. The ANOVA
results proved that a stratification of the sample plots is of greater importance than the
modeling algorithm, which was inconsistent with Reference [38]. The discrepancy may be
contributed to the differences in stratification method, sample size and the study area; thus,
more studies should be conducted to further examine the generalizability of our results.

Table 9. ANOVA of the R2, RMSE, RRMSE and MAE respective to the stratification method, regression
method and their interaction.

Factor Df R2

SumSq η2 RMSE
SumSq η2 RRMSE

SumSq η2 MAE
SumSq η2

Stratification 2 0.65 0.53 123.45 0.66 2171.4 0.77 63.89 0.64
Regression method 4 0.10 0.08 8.39 0.05 131.1 0.05 4.51 0.05

Stratification: regression
method 8 0.01 0.01 0.68 0.00 11.5 0.00 0.50 0.01

Residuals 40 0.47 53.52 511.3 30.57

4.3. FTS versus DSS

The comparative results between FTS and unstratified estimates show that significant
improvement was obtained in AGC estimation models based on coniferous forest, while
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only marginal improvement was obtained in AGC estimation models based on broadleaf
forest. One possible explanation for this is to be found in the substantial differences in tree
crowns and distribution of branches and leaves across different broadleaf tree species in
this study, which heavily affects the penetration of the laser pulses and thus influences
the relationships between LiDAR metrics and forest AGC [73]. It is also mentioned by
Reference [21] that AGB modeling based on coniferous forest provided poorer estimation
performance due to the difference in crown size, shape and the relationship between the
AGB and canopy height of the Masson pine and Chinese fir. Therefore, stratifying the
sample plots into the coniferous forest and broadleaf forest may not be sufficient to reduce
the heterogeneity within strata and provide better estimation performance. In addition, a
higher estimation accuracy was obtained in the coniferous forest than in the broadleaf forest,
as is consistent with several previous studies [74,75]. The difference may be attributed to
the fact that broadleaf tree species tend to have more biomass in the branches and weaken
the relationships between height and forest AGC [76].

Further comparison of the estimation performance between the FTS and DSS models
illustrated that a substantially higher R2, RMSE, RRMSE, MAE and Bias were observed
in DSS models, and this is in line with previous studies [21,77]. The results demonstrate
that DSS is a more recommended approach for stratification estimation. The improvement
provided by DSS can be attributed to the fact that the relationships between tree height
and forest AGC are the same in individual tree species, as they share similar canopy
structures and AGB distribution. Stratifying sample plots into dominant species can
provide highly homogenous strata and minimize the within-strata variance, leading to a
better forest AGC estimation. However, there are also several studies reporting that only
minor improvements in estimation performance were obtained when the same data were
used to construct individual forest type or species strata for estimation [38,78,79]. The
difference in results may be attributed to inconsistent sample sizes across different studies
and small sample sizes within strata in most studies. Higher uncertainty and prediction
errors may be produced with fewer within-strata sample sizes, and these, in turn, affect
the total prediction error. For example, the Douglas fir and maple had the highest RMSD
value for 261% and 315%, which accounted for the smallest number of overall sample
plots (7.0% and 5.7%) [80]; the subtropical Picea abies forest (SPAF) had the highest RMSE
(82.7 ± 28.2 Mg/ha) and bias (−36.8 ± 19.5 Mg/ha) with the smallest number of reference
data (16) [81]. It is also mentioned by Reference [82] that estimates of standard errors can
be biased in the case of small sample sizes within strata. In this study, the within-strata
sample plot sizes of each dominant species were kept at around 200, which is a comparable
and relatively large level, making the estimation results more robust and representative.

4.4. Machine-Learning Algorithms for Forest AGC Estimation

Modeling algorithms have been suggested to be an important factor for the accurate
estimation of forest AGB and AGC [83]. However, to date, no single algorithm has been
optimal in all cases. Therefore, identifying a proper algorithm has been a critical step to
constructing AGC estimation models. In this study, the estimation performances of one
parametric approach (Stepwise regression) and four non-parametric machine learning algo-
rithms (RF, Cubist, XGBoost and CatBoost) were compared. The results showed that four
machine-learning algorithms outperform stepwise regression in most cases, thus confirming
previous findings that non-parametric machine-learning algorithms were suggested to be
more suitable for forest AGB and AGC estimation than the parametric algorithm [22,24,25].
We attribute the better performance of ML algorithms to the fact that the relationships
between forest AGC and the LiDAR metrics are likely nonlinear and complex, especially in
those forests with complex stand structures and tree species composition, and this makes it
difficult to model these relationships through parametric algorithms with a fixed model
structure. However, overestimation of forest AGC at low AGC values and underestimation
of forest AGC at high values are still common in ML algorithms. Moreover, the hyperpa-
rameter tuning methods and tuning ranges vary with study area and input data, which
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greatly limit the model transferability of ML algorithms. Moreover, we found that, when
forest AGC estimation models were established based on DSS, a significant improvement
was observed in stepwise regression models, implying that the relationships between forest
AGC and the LiDAR metrics are expected have a more linear association at the species
level.

Among the four ML algorithms, two novel boosting-based ensemble algorithms, XGBoost
and CatBoost, have provided better forest AGC estimation accuracy than others, and the
CatBoost algorithm outperformed other algorithms in all datasets. Before this study, XGBoost
and CatBoost algorithms have not been used for forest AGC estimation, but there have been
several studies on forest AGB estimation. Pham et al. [84] combined a genetic algorithm (GA)
and XGBoost to achieve the best estimation of mangrove AGB than other four ML algorithms
(RF, SVM, GBRT and CatBoost); Zhang et al. [85] compared and evaluated the performance of
eight ML algorithms (MARS, RF, SVM, GBRT, ANN, SGB, ERT and CatBoost) in forest AGB
estimation, and the results showed that CatBoost provided the best performance with an R2

of 0.72, an RMSE of 45.63 Mg/ha, a bias of 0.06 Mg/ha, and a relative RMSE of 25%. Luo
et al. [86] examined the different combinations of three feature selection methods and three ML
algorithms (RF, XGBoost and CatBoost) in forest AGB estimation and found that combining
RFE and CatBoost obtained the highest estimation accuracy. The compared results in this
study were consistent with these previous studies and further demonstrated the superiority
and application potential of XGBoost and CatBoost in forest AGC estimation. Compared with
XGBoost, CatBoost has achieved better estimation with fewer hyperparameters, higher model
efficiency and slighter overestimation and underestimation problems, making CatBoost a
more recommended algorithm in forest AGC estimation. However, more studies should be
carried out to further examine the application potential of CatBoost across various forest types
within different geographical environments.

4.5. Species-Level Forest AGC Estimation

In this study, we established eight species-level forest AGC estimation models by
using CatBoost algorithms and achieved satisfactory estimation accuracy. Our species-
level estimation accuracy (R2 = 0.63~0.87) was significantly higher than that of Fu et al.
(R2 = 0.14~0.56) [42] and Zhang et al. (R2 = 0.01~0.47) [87], which linked field measurement
plots and MODIS data to map species-level biomass in Northeast China. High estimation
accuracy has been achieved in Spruce–Fir, Larch, Red Pine, Poplar, White Birch and Oak,
while relatively low-estimation accuracies were achieved for Linden and Elm. The discrep-
ancy may be explained by allometric equations and mean carbon conversion factors used
for Linden and Elm. The sample plots of Linden and Elm spanned six flight regions and
Heilongjiang and Jilin two provinces, with a difference of more than 10 degrees in latitude
between north and south. However, the allometric equations and mean carbon conversion
factors used for Linden and Elm in this study were not established for a specific region but
for the whole Northeast China region. The differences in hydrothermal conditions caused
by the latitude could have a significant effect on the growth of Linden and Elm, and these
difference, in turn, increase the uncertainty and errors of allometric equations and mean
carbon-conversion factors. Moreover, the relatively low-point cloud density of the LiDAR
data used in this study (4 points/m2) may not be enough to fully capture the structure
information, leading to the poorly structured Linden and Elm models. To our knowledge,
species-level forest AGC estimation models in northeast forest regions of China based on
LiDAR data have not yet been reported in studies. Species-level AGC estimation models
can provide important basic information for large-scale forest resource monitoring, but
they pose new challenges in terms of sample size and accurate forest classification products.
The lack of spectral information from LiDAR sensors makes it difficult to achieve accurate
dominant species maps based on LiDAR data. Therefore, using LiDAR as a sampling tool
and fusing LiDAR with other sensors (e.g., hyperspectral and optical) to acquire dominant
species area and build forest AGC models could be a potential solution [88,89].
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4.6. Uncertainty Analysis and Limitations

Identifying and understanding the uncertainty of the remote sensing-based forest
AGC estimation models is necessary for improving forest AGC estimation accuracy and
establishing standard estimation designs and procedures [90]. In addition to the errors and
uncertainties introduced by the variable selection methods, model algorithms themselves,
there are a number of external factors that can contribute to uncertainty in this study.
(1) The first factor is the allometric equations and mean carbon conversion factors used
for estimating plot-level forest AGB and forest AGC. The errors in allometric equations
have been regarded as a common and primary source of uncertainty in forest AGB and
AGC estimations [91–93]. The sample plots in this study were located in three provinces,
Heilongjiang, Jilin and Inner Mongolia, while the species-specific allometric equations and
mean carbon conversion factors used were developed for the entire Northeast China region.
The allometric equations depend on the assumptions of the allometric relationships between
diameter at breast height (DBH) and tree height (H), and these allometric relationships may
vary with environment and stand structure, resulting in different forest AGB estimations
and great uncertainty. The uncertainty propagates and accumulates with the error in
the carbon conversion factors, influencing the final estimation accuracy of forest AGC.
(2) The second factor is the errors from small trees shrubs and herbs. In this study, the trees
smaller than 6 cm in DBH, as well as shrubs and herbs, were not recorded in the ground
survey, which could be captured by the LiDAR data. The cumulative AGC of these small
trees, shrubs and herbs may become a non-negligible part of the total and thus introduce
errors into the forest AGC estimates. (3) The third factor is the effect of point density. The
point density used in this study was 4 points/m2, which is low-density point cloud data.
Previous studies have demonstrated that the ability of LiDAR to estimate vegetation height
decreases with lower point density [94,95]. The relative low point density in this study
has limited the detection of the vegetation canopy and the number of points that penetrate
to the ground, which may affect the DEM generation and the canopy and height-based
forest AGC estimation. (4) The fourth factor is the edge effect and geolocation error. The
effect of edge effect may be attributed to the fact that the field measurement is based on the
position of the stem while the LiDAR data capture the tree crown and height information
within the whole specific region. Therefore, some trees detected by LiDAR data may not
be recorded by the ground survey, thus contributing to the uncertainty in the forest AGC
estimation. The field sample plots are usually located by consumer-grade GPS whose
positional accuracy largely depends on the open conditions of the environment, leading
to location error from 1 to 10 m in the complex environment of forest [96]. The mismatch
of geographic location between LiDAR data and sample plots data may provide great
uncertainty and error in forest AGC estimation. (5) The fifth factor is the error from field
measurement. In this study, tree metrics, such as DBH and tree height, were measured
manually, using traditional tools. It is usually difficult to locate the treetop in forests with
high canopy closure and complex structures. Therefore, the quality and accuracy of these
metrics are largely determined by the quality and skill level of the surveyors, which may
introduce errors and uncertainty into the results. The advent of advanced technologies,
such as ground-based LiDAR and backpack LiDAR, promises to act as a new alternative to
reduce uncertainty and improve the accuracy of ground survey.

Some sources of uncertainty, such as the edge effects and geographical location errors,
are difficult to quantify empirically and statistically, as it is impossible to find an ideal
sample free of the effects of edge effects and geographical location errors. The advent
of simulation studies promises to be a powerful tool to solve the present limitations and
better quantify and understand uncertainties in forest AGB and AGC estimations. For
example, Knapp et al. [97] quantified the effect of border effects by using the bottom-up
simulation method, and the simulation results showed that the edge effects decreased
with increasing plot sizes, with the edge effects being most significant at the 10 m scale
and having no influence at the 100 m scale. There are also several studies using similar
simulation methods to successfully qualify the uncertainty introduced by the geolocation
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error [98], allometric equations [92] and forest structure [99]. Future studies should consider
multiple uncertainties simultaneously and quantify the weight of each component to better
understand the uncertainty in the entire process of forest AGC estimation.

5. Conclusions

In this study, we retrieved the potential of integrating sample plots stratification and
non-parametric machine-learning algorithms for forest AGC modeling in the forest regions
of Northeast China. Four major conclusions can be drawn:

(1) The ANOVA result showed that the stratification method had a more important
effect on forest AGC estimation than the regression algorithm. Both FTS and DSS
were effective in improving the estimation accuracy of forest AGC compared to
non-stratified models, demonstrating the positive role of stratification in forest AGC
estimation. Compared to the non-stratified models, the estimation accuracy of forest
AGC was significantly improved in coniferous species, while marginal improvement
was observed in the broadleaf species.

(2) Compared with FTS, models based on DSS achieved greater improvements, indicating
that DSS is a better stratification estimation method for forest AGC.

(3) Regardless of the stratification method used, of the five algorithms, the four non-
parametric ML algorithms outperformed parametric stepwise regression, with the
CatBoost algorithm obtaining the best estimation performance, followed by XGBoost,
RF, Cubist and stepwise regression.

(4) The most important LiDAR metrics for forest AGC estimation were the height per-
centiles and the canopy relief ratio.

(5) The CatBoost models based on DSS achieved the highest estimation accuracy, with
R2 = 0.8232, RMSE = 5.2421, RRMSE = 20.5680, MAE = 4.0169 and Bias = 0.4493. The
estimation values of the best forest AGC estimation model for the eight dominant
species ranged from 21.36 to 37.72 Mg/ha, with the Poplar having the highest forest
AGC and the White Birch having the lowest.

The main contribution of this study is the successful combination of DSS and the
CatBoost algorithm to improve the estimation performance of forest AGC and to obtain
the first high-precision species-level forest AGC estimation models based on the CatBoost
algorithm in the forest regions of Northeast China. Integrating this strategy with the
national forest inventory or accurate remote-sensing-based wall-to-wall dominant species
classification products is expected to provide a new solution to reduce the uncertainty and
improve the estimation accuracy of large-scale forest carbon stock.
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