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Abstract: A radar echo signal received from a cone-shaped target with precession contains micro-
Doppler (m-D) information from different effective scattering centers. By taking full advantage of the
m-D information, this paper proposes a parameter estimation algorithm for precession cone-shaped
targets based on the range–frequency–time radar data cube (RDC). We build scattering center models
of precession cone-shaped targets with the occlusion effect. The Binary Mask method is first utilized
to obtain a high-resolution range-Doppler (RD) sequence. On this basis, the range–frequency–time
RDC can be extracted from the RD sequence. In order to approach the actual case, we discuss
the parameter estimation algorithm under different radar lines-of-sight (LOS). The most attractive
attribute of this algorithm is that it can conduct in-depth research on m-D parameter estimation from
a three-dimensional (3D) domain. Finally, the experimental results illustrate the effectiveness of the
proposed method.

Keywords: micro-Doppler; radar data cube; parameter estimation; precession targets

1. Introduction

Generally, micro-motion is defined as the tiny movement of an object in addition
to the movement of the main body, which can more accurately describe the movement
characteristics of the object [1]. For example, the flutter of aircraft wings, the clap of human
hands, the precession of the space target, and so on. This additional motion of targets can
give rise to the modulation effect of echo signals, which is referred to as the micro-Doppler
(m-D) effect [2]. M-D effect is widespread and difficult to imitate. Therefore, it is given
extensive attention from researchers in the field of target recognition [3–5].

In the early study stage, Chen et al. realized the unification of the cone-shaped target
micro-motion mode [6]. Usually, affected by spin stabilizers, the micro-motion of a cone-
shaped target will be expressed in the form of precession [7]. Then, Hongwei Gao et al.
used the engineering approximation method to evaluate the effective scattering centers [8].
Furthermore, XiaoFeng Ai et al. demonstrated that the scattering center of a cone-shaped
target is divided into localized scattering centers (LSCs) and sliding-type scattering centers
generated by edge diffraction (SSCE) using electromagnetic simulation [9]. In addition,
A. R. Persico et al. confirmed the occlusion effect at certain radar line-of-sight (LOS)
angles [10]. Therefore, the radar echo signal of the precession cone-shaped target contains
the m-D information from different effective scattering centers with the occlusion effect,
thus making accurate parameter estimation difficult.

In radar applications, target feature extraction and parameter estimation are often
achieved through different radar images. Therefore, opportune radar images are inevitably
used in order to efficiently represent the m-D phenomena. Micro-motion target parame-
ter estimation based on two-dimensional (2D) radar images is widely considered in the
literature. Xueru Bai et al. used high-resolution imaging to reconstruct precession cone-
shaped target scattering centers; additionally, micro-motion parameters were obtained at
the same time [11]. In-Oh Choi et al. established an efficient framework for cone-shaped
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target parameters estimation while saving computational resources [12]. Yu Zhou et al.
investigated a time–frequency (TF) curve extraction novel method called CSRDI-MGPTF
and then discussed a parameter estimation method under the occlusion effect [13]. Nannan
Zhu et al. used the phase-derived range (PDR) method based on a high-resolution range
profile (HRRP) to realize parameter estimation under low SNR [14]. However, the inverse
synthetic aperture radar (ISAR) image ignores the time-varying characteristics of scatter-
ing centers on micro-motion targets, the TF spectrogram ignores the range information,
and the HRRP ignores the Doppler information. In short, using these methods, it is difficult
to make full use of target echo information. Consequently, we must construct a new form
of radar signal expression to represent target m-D characteristics overall.

Compared to 2D radar images, range–frequency–time joint-variable representations
are more effective in target parameter estimation because they offer the possibility of using
comprehensive m-D information. Several multidimensional processing techniques have
been developed over the past few years [15–19]. For example, He Y et al. proposed a
novel radar signal concept called range-Doppler surface (RDS), which can contain range,
frequency, and time information [17]. S. Z. Gurbuz et al. summarized the current method of
human micro-motion recognition and presented the range–time–frequency radar data cube
(RDC) recognition method, but the research lacked a qualitative analysis of the model [18].
Baris Erol developed a boosting scheme using RDC-based processing to increase human
classification performance [19]. However, the literature [17–19] only exploits the spatial
shape of the range–frequency–time RDC and does not delve into its intrinsic mechanism
and the rich signal characteristics it contains.

The key contribution of this paper is to suggest a new parameter estimation method
based on range–frequency–time RDC. Compared with available methods, the proposed
method is capable of: (a) making full use of the range, frequency, and time informa-
tion; (b) realizing the distinction between LSC and SSCE in range–frequency–time RDC;
(c) estimating the m-D parameters and structure parameters even under the occlusion effect.

The paper is organized as follows. In Section 2, precession cone-shaped target model
and m-D characteristics analysis are introduced. In Section 3, the range–frequency–time
RDC construct method is depicted. Section 4 introduces the proposed parameter estima-
tion method for precession cone-shaped targets. Simulation results via electromagnetic
computation verify the effectiveness of the analyses in Section 5. Conclusions and future
discussions are drawn in the last section.

2. Cone-Shaped Target Micro-Doppler Characteristic Analysis
2.1. Echo Signal and Cone-Shaped Target Precession Model

Assuming the target’s translation motion is precisely compensated, the target echo
can be described as:

s(t) = ∑
k

σkej2π
∫

fk(t)dt (1)

where σk and fk(t) denote the scattering coefficient and instantaneous Doppler frequency
of the kth scattering point, respectively.

Affected by spin and lateral disturbance, the cone-shaped target finally moves in the
form of precession. The instantaneous Doppler frequency fk(t) in Equation (1) can be
denoted as the m-D modulation of the scattering point.

As shown in Figure 1, the system O−XYZ is the right-hand coordinate system.
To facilitate analysis, the mass of the cone-shaped target is set at the origin of coordinate
system. ωc represents the cone rotation angular velocity, ωs represents the spin angular
velocity, and the elevation and azimuth angles of the target symmetry axis are γ and α,
respectively. The angle between the LOS and the O− Z axis is θ0.
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Figure 1. Micro-motion model of cone-shaped precession target. 
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According to the theory of scattering center, Point A is fixed on the top of the cone-
shaped target, which can be assumed as a localized scattering center (LSC).

Thus, the micro-motion range and m-D frequency of Point A can be rewritten as
follows [20]: {

fA=
2ωch1sinγsinθ0cos(ωct+α)

λ
rA= h1F(t)

(2)

where λ is the wavelength; h1 is the distance from the top of the cone to the center of mass;
t is the time variable; F(t) = cosγcosθ0 + sinγsinθ0sin(ωct + α).

In Equation (2), the m-D of the localized scattering center in the cone-shaped target
conforms to the law of sinusoidal modulation.

Points B and C are located at the edge of the cone-shaped target, which can be con-
sidered as sliding-type scattering centers generated by edge diffraction (SSCE). Thus,
the micro-motion range and m-D frequency of Point B and Point C can be rewritten as
follows [20]:  fB= − 2ωcsinγsinθ0cos(ωct+α)

λ

{
h2 + d F(t)√

1−F2(t)

}
rB = −h2F(t) + r

√
1− F2(t)

(3)

 fC = − 2ωcsinγsinθ0cos(ωct+α)
λ

{
h2 − d F(t)√

1−F2(t)

}
rC = −h2F(t)− r

√
1− F2(t)

(4)

where h2 is the distance from the center of mass to the center of the bottom, and d is the
radius of the target bottom.

According to Equations (3) and (4), the m-D of sliding-type scattering centers in cone-
shaped targets does not conform to the sinusoidal modulation law. In addition, we find
that the m-D frequency of Point B and C is only different in the sign of d F(t)√

1−F2(t)
, and the

micro-motion range of Point B and C is only different in the sign of d
√

1− F2(t). Based on
this, we implement subsequent parameter estimation.

2.2. Occlusion Effect

Since not all the scattering points appear in radar observation time, the signal in
Equation (1) turns into:

socclusion(t) = ∑
k

σkhk(t)ej2π
∫

fk(t)dt (5)

where hk is the occlusion function of the kth scattering point.
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The occlusion function hk(t) depends on the θ0 and semi-angle ϕ0 in Figure 1. As shown
in Table 1, the value of occlusion function is 0 or 1. For the localized scattering center A,
the occlusion function hA(t) = 0 for π− ϕ0 − γ ≤ θ0 < π− γ, which means that occlusion
occurs. For sliding-type scattering centers B, these scattering centers induce modulation
in radar echo signal all the time, so the function hB(t)= 1 for all possibilities of θ. When
ϕ0 − γ ≤ θ0 < π

2 − γ, sliding-type scattering center C is invisible, so the function hC(t)= 0.
In addition, according to electromagnetic theory, the RCS of LSC is larger than those of
SSCE [12].

Table 1. The value of occlusion function for cone-shaped target scattering points.

hA(t) hB(t) hC(t)

θ0 < ϕ0 − γ 1 1 1
ϕ0 − γ ≤ θ0 < π

2 − ϕ0 − γ 1 1 0
π
2 − ϕ0 − γ ≤ θ0 < π

2 − γ 1 1 0
π
2 − γ ≤ θ0 < π − ϕ0 − γ 1 1 1
π − ϕ0 − γ ≤ θ0 < π − γ 0 1 1

3. Range–Frequency–Time Radar Data Cube Construction

In this paper, the first step of range–frequency–time RDC construction is to obtain
the RD sequence. As shown in Figure 2, the RD sequence can be obtained by using the
received signal.
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Let us assume the radar emits a linear frequency modulated (LFM) signal; the received
radar echo signal from the k scattering point on the nth frame is found as follows:

snk(t̂, tn) = ∑
k

σkrect

(
t̂− 2Rk(tn)

c
τ

)
exp

(
j2π fc

(
t− 2Rk(tn)

c

))
exp

(
j2π

1
2

µ

(
t̂− 2Rk(tn)

c

)2
)

(6)

where t̂ is fast time; tn is slow time; µ is frequency modulation slope; fc is the carrier
frequency; c is the velocity of light; τ is time duration. Rk(tn) is the distance between the k
scattering point and the radar at a slow time tn, which can be solved using Equations (2)–(4).

It is worth noting that since the rotation speed of the space target is much faster
than the ordinary turntable model, using traditional Fourier transform and range-Doppler
algorithms cannot obtain high-resolution RD images [21]. Generally, RD images can be
seen as a sparse 2D matrix [22]. Therefore, this paper uses the sparse reconstruction
method to reconstruct the target signal. The goal of the sparse reconstruction is to improve
the image resolution with a limited pulse number. In our work, we utilize one of the
sparse reconstruction algorithms, called the two-dimensional gradient projection sequential
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order one negative exponential (2D-GP-SOONE) algorithm [23]. It is shown that the
2D-GP-SOONE algorithm based on the sparse reconstruction approach outperforms the
conventional range-Doppler algorithm. We provide a brief introduction to the 2D-GP-
SOONE algorithm.

Assume X ∈ RM×N as an unknown 2D sparse RD matrix and S ∈ RM×N as a known
echo signal matrix. A ∈ RM×M and B ∈ RN×N represent the partial Fourier dictionary
matrixes for range and azimuth compression, respectively. The model of radar echo signal
can be described as:

S = AXBT (7)

where (•)T denotes the transpose of a matrix.
The two-dimensional non-convex functions in sequential order one negative exponen-

tial function (SOONE) can be expressed as

Gδ(X) = ∑
i,j

exp

((
−
∣∣Xij

∣∣
δ

))
(8)

where δ is an auxiliary variable.
Then, the gradient projection (GP) method is used to reconstruct RD sparse matrices.

At last, a precise estimation of the RD sparse signal can be defined as follows:

X̂ = X + A+
(

S−AXBT
)(

B+
)T (9)

where (•)+ denotes the pseudo-inverse of a matrix.
The 2D-GP-SOONE method is not discussed further, since it is not the focus of this

paper. Interested readers may refer to [23] for more details.
After that, RD images are superimposed along the slow time axis to form an RD sequence.
To realize accurate scattering center extraction from the RD sequence, we propose a

feature enhancement method based on Binary Mask. Furthermore, the feature enhancement
method can also perform LSC data association automatically. It is worth noting that for
the parameter estimation method proposed in this paper, the association for SSCE is
non-essential.

We assume that X ∈ RM×N represents the restructuring RD image matrix, where M
and N denotes range cells and frequency cells, respectively. The local statistical information
around each pixel can be estimated as follows [24]:

E =
1

UV ∑
u,v∈η

X(u, v) (10)

σ2 =
1

UV ∑
u,v∈η

X2(u, v)− µ2 (11)

where η is the U − by− V local neighborhood in image matrix X, E represent the local
mean; σ2 represents local variance.

After that, the pixel-wise adaptive Wiener filter can be expressed as:

w(u, v) = E +
σ2 − σn

2

σ2 (X(u, v)− E) (12)

where σn
2 denotes the variance of noise.

The pixel-wise adaptive Wiener filter can retain useful features of the image matrix
while suppressing noise. We define the RD image matrix after the pixel-wise adaptive
Wiener filter is Xw1. As described in Section 2, the RCS of LSC is larger than those of SSCE.
Therefore, Binary Mask is then created to segment different intensities sections. The Binary
Mask is a matrix of the same size as the matrix Xw1.
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The first step of constructing a Binary Mask is to calculate thresholds of matrix Xw1
by using Otsu’s method [25]. After solving the threshold values (λ11, λ12, λ13) from Xw1,
the first Binary Mask can be expressed as:

BM1(m, n) =
{

1, Xw1(m, n) > λ13
0, Xw1(m, n) ≤ λ13

(13)

where m ∈ M, n ∈ N.
This implies that the elements in BM1(m, n) satisfying Xw1(m, n) > λ13 are retained,

and the rest are set to 0. The elements in BM1(m, n) satisfying Xw1(m, n) ≤ λ12 indicate
that the pixel point belongs to the background or noise of the image. It does not con-
tain specific information and should be discarded. The elements in BM1(m, n) satisfying
λ12 < Xw1(m, n) ≤ λ13 indicate that the pixel point belongs to weak scattering points or
strong noise. The elements in BM1(m, n) satisfying Xw1(m, n) > λ13 indicate that the pixel
point belongs to strong scattering points.

Then, the image matrix XLSC, which only contains strong scattering point information,
can be extracted by the following formula:

XLSC = BM1 �X (14)

where � denotes the Hadamard product.
We assume that the number of frames in the RD sequence is K. Then, repeating the

above operation, we can obtain the range and frequency information of strong scattering
points in each frame of RD images. On the other hand, the association processing of strong
scattering points is also realized.

Next, the image matrix Xξ can be obtained by the following equation:

Xξ = (BM1)
− �X (15)

where (•)− denotes the logical not operation.
In Equation (15), the image matrix Xξ does not consist of strong scattering point signal

components. We define Xξ after the pixel-wise adaptive Wiener filter is Xw2. After that,
thresholds (λ21, λ22, λ23) of matrix Xw2 can be obtained by using Otsu’s method. Similarly,
the second Binary Mask can be expressed as BM2.

Then, the image matrix XSSCE, which only contains weak scattering point information,
can be extracted using the following formula:

XSSCE = BM2 �X (16)

To sum up, strong scattering point information can be extracted from image matrix
XLSC, and weak scattering point information can be extracted from image matrix XSSCE.

Then, the coordinate position of scattering points in the RD sequence constitutes the
range–frequency–time radar data cube.

4. Parameter Estimation Method

Firstly, the micro-motion period is estimated by the RD sequence. We choose t0 as the
initial time point and select the RD image Iij at t0 as the reference image. The correlation
coefficient sim between Iij and other sequence images Sij can be expressed as:

sim =
∑i ∑i

(
Iij − I

)(
Sij − S

)√(
∑i ∑j

(
Iij − I

)2
)(

∑i ∑j
(
Sij − S

)2
) (17)

where I and S represent the average of Iij and Sij, respectively.
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When reference image Iij and the contrast image Sij achieve the best matching,
the correlation coefficient sim takes the maximum value. Suppose the time of the best-
matched image is tc, then the estimation period of cone rotation is T̂ = tc − t0 and the value
of estimation cone rotation angular velocity is ω̂c =

2π
T̂

.
Then, the parameters including h1, h2, d, and precession angle γ can be estimated

using the range–frequency–time RDC. Affected by the occlusion effect, the parameter
estimation method is discussed in three cases. What is more, in any case, it is only necessary
to distinguish the strong scattering point from the weak scattering point; this means that
the weak scattering point does not need to be associated.

When θ0 < ϕ0− γ or π
2 − γ ≤ θ0 < π− ϕ0− γ, effective scattering points A, B, and C

are visible. We assume that the number of frames in the RD sequence is K. The range
and frequency information of scattering point A can be defined as rLSC ∈ RK×1 and
fLSC ∈ RK×1, respectively. The range and frequency information of SSCE can be defined as
rSSCE ∈ RK×2 and fSSCE ∈ RK×2, respectively.

We define r∗ = rLSC + rSSCE_1 + rSSCE_2, f ∗ = fLSC − ( fSSCE_1 + fSSCE_2), where
rSSCE_1 and rSSCE_2 represent the first and second columns of matrix rSSCE, respectively.
fSSCE_1 and fSSCE_2 represent the first and second columns of matrix fSSCE, respectively.

We can define the 3D characteristic curve s∗ of the cone-shaped target, which can be
written as 

r∗ = rLSC + rSSCE_1 + rSSCE_2
= rA + rB + rC = a + bsin(ωct∗ + ϕ1)
f ∗ = fLSC − ( fSSCE_1 + fSSCE_2)
= fA − ( fB + fC) = ccos(ωct∗ + ϕ2)
t∗ = ∆tk, k = 1, 2, · · · , K

(18)

where ∆t is interval time between each RD image, a = (h1− 2h2)cosγcosθ0, b = (h1− 2h2)sinγsinθ0,
c = 2ωc(h1+2h2)sinγsinθ0

λ .
From Equation (18), it can be seen that parameters a, b, and c are only affected by h1, h2,

and precession angles γ (θ0 is pre-determined). At the same time, we find that a represents
the median value of the sinusoidal curve, and b and c represent the amplitude of the
sinusoidal curve. Thus, the complex problem of extracting cone-shaped target parameters
is transformed into a simple problem of estimating the mean value and amplitude of the
sinusoidal curve.

As shown in Section 2, when precession angle γ is estimated, the value of F̂(t) can be
described. The estimation of the bottom radius is as follows:

d̂ =
|rSSCE_1 − rSSCE_2|

2
√

1− F̂2(t)
(19)

When ϕ0 − γ ≤ θ0 < π
2 − γ, which means only effective scattering point A and B

are visible. By analyzing Equation (3), it can be seen that both the micro-motion and
the m-D representation of scattering point B are composed of two parts; the first part is
the sinusoidal term, and the second part is the non-sinusoidal term. The sinusoidal part
satisfies the following formula:{

rB−s = −h2F(t) = − h2
h1

rA

fB−s = − 2ωcsinγsinθ0cos(ωct+α)
λ h2 = − h2

h1
fA

(20)

The non-sinusoidal part satisfies the following formula:{
rB−n = r

√
1− F2(t)

fB−n = − 2ωcsinγsinθ0cos(ωct+α)dF(t)
λ
√

1−F2(t)
(21)
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To realize the parameter estimation under the occlusion effect, the compensation
coefficient η is defined as:

η =
h2

h1
, η ∈ (0, 1) (22)

Under this case, the range and frequency information of scattering point A can be
defined as rLSC ∈ RK×1 and fLSC ∈ RK×1, respectively. The range and frequency infor-
mation of SSCE can be defined as rSSCE ∈ RK×1 and fSSCE ∈ RK×1, respectively. The 3D
characteristic curve s∗ can be rewritten as

r∗ = rA + rB + rC = (1− 2η)rLSC
f ∗ = fA − ( fB + fC) = (1 + 2η) fLSC
t∗ = ∆tk, k = 1, 2, · · · , K

(23)

Because the compensation coefficient η is unknown, we choose a suitable increasing
sequence for η̂ =

[
η̂1, . . . , η̂J

]
. Each estimation compensation coefficient η̂j corresponds to

a 3D characteristic curve s∗j , which is given by:
rj
∗ =

(
1− 2η̂j

)
rA

f j
∗ =

(
1 + 2η̂j

)
fA

tj
∗ = ∆tk, k = 1, 2, · · · , K

(24)

Then, we can obtain the estimated values of
(

ĥ1j, ĥ2j, γ̂j

)
under different η̂j. Similarly,

the value of F̂j(t) under different η̂j can be described. The estimation of the bottom radius
under different η̂j is as follows:

d̂j =

∣∣η̂jrLSC + rSSCE
∣∣√

1− F̂j
2(t)

(25)

Finally, the set of parameter
(

ĥ1j, ĥ2j, d̂j, γ̂j

)
is calculated from (24) and (25) under the

compensation coefficient η̂j.
By this means, the value of target micro-motion range and m-D frequency under

different η̂j can be rewritten (r̂LSCj, f̂LSCj, r̂SSCEj, f̂SSCEj). To find the approximation of the
compensation coefficient η, the normalized error can be expressed as:

δj =

∣∣r̂LSCj − rLSC
∣∣

max
∣∣r̂LSCj − rLSC

∣∣ +
∣∣r̂SSCEj − rSSCE

∣∣
max

∣∣r̂SSCEj − rSSCE
∣∣ +

∣∣∣ f̂LSCj − fLSC

∣∣∣
max

∣∣∣ f̂LSCj − fLSC

∣∣∣ +
∣∣∣ f̂SSCEj − fSSCE

∣∣∣
max

∣∣∣ f̂SSCEj − fSSCE

∣∣∣ (26)

According to the above analysis, the value of δj corresponds to compensation coef-
ficient η̂j. When the value of δj reaches the minimum, it means that the sinusoidal part
in the m-D information of scattering point B is compensated most completely. This im-
plies that the estimation compensation coefficient η̂j is closer to the real value η. In other
words, the set of parameters (ĥ1j, ĥ2j, d̂j, γ̂j) corresponding to the best matching estimation
compensation coefficient η̂j is the final parameters’ estimated value.

When ϕ0 − γ ≤ θ0 < π
2 − γ, which means only effective scattering points B and C are

visible. The parameter estimation procedure under this condition is similar to case 2.
In this case, the range and frequency information of SSCE can be defined as

rSSCE ∈ RK×2 and fSSCE ∈ RK×2, respectively. Assume rSSCE_1 and rSSCE_2 represent
the first and second columns of matrix rSSCE, respectively. fSSCE_1 and fSSCE_2 represent
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the first and second columns of matrix fSSCE, respectively. The 3D characteristic curve s∗

can be rewritten as:
r∗ = rA + rB + rC =

(
1− 1

2η

)
(rSSCE_1 + rSSCE_2)

f ∗ = fA − ( fB + fC) = −
(

1 + 1
2η

)
( fSSCE_1 + fSSCE_2)

t∗ = ∆tk, k = 1, 2, · · · , K

(27)

We choose a suitable increasing sequence for η̂ =
[
η̂1, . . . , η̂J

]
.

Similarly, the set of parameters
(

ĥ1j, ĥ2j, γ̂j

)
can be estimated.

The estimation of the bottom radius under different η̂j is as follows:

d̂j =
|rSSCE_1 − rSSCE_2|

2
√

1− Fj
2(t)

(28)

Figure 3 shows the overall architecture for precession cone-shaped parameter estimation.
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5. Simulation Results and Discussion
5.1. Validation of Algorithm

Below, as shown in Figure 4, simulated data using a smoothed cone-shaped CAD
model is generated to prove the validity of the proposed parameter estimation method.
Then, to obtain electromagnetic data, FEKO software is utilized with the Physical Optics
(PO) method. In the experiments below, the parameters are set as shown in Table 2.
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Figure 4. Simulation model.

Table 2. Parameters of EM model.

Start Frequency 10 GHz Carrier Frequency 12 GHz

End frequency 12 GHz Polarization VV
Range of LOS 0◦ ∼ 180◦ Conic node radius 0.075 m
Bottom radius 0.6 m Height 2.8 m

In actual application, the received radar echo signal often contains white Gaussian
noise; therefore, we add white Gaussian noise n(t) into EM data s(t). The intensity of noise
is defined as:

SNR = 10 log10

 E
{
|s(t)|2

}
E
{
|n(t)|2

}
 (29)

Next, we perform simulations under two cases with different LOS.
Case 1: θ0 = 100◦, satisfied π − ϕ0 − γ ≤ θ0 < π − γ. The imaging result of the

2D-GP-SOONE algorithm is shown in Figure 5a.
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Case 2: θ0 = 30◦, satisfied ϕ0 − γ ≤ θ0 < π
2 − ϕ0 − γ. The imaging result of the

2D-GP-SOONE algorithm is shown in Figure 5b.
As shown in Figure 5, the RCS of LSC is larger than those of SSCE, which provides a

basis for LSC data association.
In this simulation, the number of RD sequence frames is 100. We perform RD images

every 0.02 s.
Figure 6 presents RD sequence similarity estimation result. As shown in Figure 6a,

frame 7 is selected as the reference image, and the value of the correlation coefficient reaches
the peak when the number of sequence frames is 29, 51, 74, and 96. Therefore, the estimated
periods are 0.44 s, 0.44 s, 0.46 s, and 0.44 s, respectively. The average period is T̂ = 0.445
s. Accordingly, the estimation value of cone rotation angular velocities in case 1 is ωc.
Similarly, as shown in Figure 6b, the estimation value of cone rotation angular velocities in
case 2 is ωc =

2π
T̂
= 4.4944πrad/s.
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Figure 6. RD sequence similarity estimation.

Parameter estimation method under case 1 can be expounded in Figure 7. As de-
picted in Figure 7a, the range–frequency–time radar data cube can be obtained from the
RD sequence, while automatic association with LSC data is implemented by the Binary
Mask algorithm.
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Figure 7. Parameter estimation method under case 1.

As exhibited in Figure 7b, when the 3D characteristic curve s∗ is projected into the
time–range domain and the time–frequency domain, the projections all take the form of
Sine. The median and amplitude of the projection curve can be obtained by using the
fitting tool. Therefore, the parameter estimation values of s∗ are a = −0.0679, b = 0.0819,
and c = 694.5732. Accordingly, the parameter estimation values of the cone-shaped target
are ĥ1 = 1.9995 m, ĥ2 = 0.7998 m, γ̂ = 11.9977◦, and d̂ = 0.5934 m.



Remote Sens. 2022, 14, 1548 12 of 16

Parameter estimation method under case 2 can be expounded in Figure 8. As shown
in Figure 8a, affected by the occlusion effect, the range–frequency–time radar data cube
provides LSC and one part of the SSCE information.
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To achieve parameter estimation, the compensation coefficient is set as: J = 100,
η̂J = 1, and η̂1 = 0.01. As shown in Figure 8b, when the compensation coefficient η̂ = 0.40,
the value of normalized error reaches the minimum. This implies that the set of parameters
at η̂ = 0.40 is the final parameter estimated value. Accordingly, the parameter estima-
tion values of the cone-shaped target are ĥ1 = 2.0395 m, ĥ2 = 0.8066 m, γ̂ = 11.7172◦,
and d̂ = 0.6110 m.

In both cases, the 3D reconstructed image of the targets is shown in Figure 9. Target
geometric parameters under case 1 can be found in Figure 9a. Similarly, target geometric
parameters under case 1 can be found in Figure 9b. This shows that the parameter estima-
tion algorithm in this paper can achieve the high-precision 3D reconstruction of the target
under the occlusion effect.
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Figure 9. Three-dimensional reconstructed image. (a) Estimated target geometric parameters under
case 1. (b) Estimated target geometric parameters under case 2.

5.2. Algorithm Performance Analysis

To verify the effectiveness of the proposed compensation coefficient, the simulation
under the different values of h2

h1
is implemented.

It can be seen from Figure 10 that the value of normalized error δj reaches the minimum
when the estimation compensation coefficient satisfies ηj =

h2
h1

.
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Next, to evaluate the performance of the proposed method under different SNR
scenarios, we set the SNR ranges from −8 dB to 8 dB by using Equation (29).

Here, the Mean Absolute Percentage Error (MAPE) is introduced to the quantitative

analysis of the accuracy of parameters estimation. MAPE can be defined as 100%.
N

.
N
∑

.
n=1

∣∣∣∣ ŷ(
.
n)−y
y

∣∣∣∣,
where

.
N is the number of Monte Carto experiments; ŷ

( .
n
)

represents the estimate of the
parameter y in the

.
n− th experiment. Monte Carlo experiments are carried out 100 times

under different SNR conditions, which means
.

N = 100. Figure 11 describes the MAPE of
five target parameters under different SNRs.
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As shown in Figure 11, with the increase in SNR, the estimation accuracy of parameters
h1, h2, and d and precession angle γ still increase, and the estimation accuracy of cone
rotation angular velocity ωc remains constant. The cone rotation angular velocity ωc is
estimated by the correlation coefficient sim between different RD sequences. Since each RD
sequence frame is affected by noise, the increase in noise will only reduce the similarity
coefficient between the matched frame and the reference frame and will not affect the
final estimation result. In fact, when the total time is constant, the higher the number of
RD sequence frames, the higher the accuracy of cone rotation angular velocity estimation.
At the same time, the single most striking observation to emerge from the data comparison
occurs when the SNR <−6 dB, the MAPE of h1, h2, d, and γ increases sharply. The accuracy
of the parameter estimation method in this paper is affected by the RD imaging performance.
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When the SNR < −6 dB, part of the noise intensity is greater than the weak scattering point
intensity, causing weak scattering point information to vanish.

Below, we hope to evaluate the performance of the proposed method under different LOS.
Figure 12 presents the variation of MAPE with LOS. We can see that the proposed

method has better performance under any LOS, and the MARE of all estimated parameters
is kept below 2%.
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In order to verify the effectiveness of the method, the proposed parameter estimation
method is compared with the methods in [11–14].

The results shown in Table 3 indicate that the MAPE under different SNRs of the
parameter estimation method proposed in this paper is obviously lower than methods
in [11–14].

Table 3. MARE of estimated parameters with different methods.

SNR (dB) Method H d γ

8

Method in [11] 1.1456 2.3117 1.5514
Method in [12] 0.6811 2.3064 1.1740

Method in [13] 0.2341 1.3117 0.7542
Method in [14] 1.4418 1.8452 1.8924

Proposed method 0.1297 1.2335 0.7281

4

Method in [11] 2.2778 2.2447 1.9515
Method in [12] 1.5088 2.6920 1.4463
Method in [13] 1.2345 1.8764 2.3749
Method in [14] 1.8864 2.1523 2.1291

Proposed method 1.2549 1.7454 1.6949

0

Method in [11] 2.4135 3.9482 2.5326
Method in [12] 2.6396 3.2837 2.6079
Method in [13] 3.5632 5.5478 5.4750
Method in [14] 2.7256 1.8448 5.3267

Proposed method 1.6531 1.8346 2.3568

−4

Method in [11] 8.1545 7.3670 8.1754
Method in [12] 8.0829 6.9260 7.1740
Method in [13] 12.3467 13.5623 9.7423
Method in [14] 7.3691 8.3445 5.8345

Proposed method 2.9851 2.6969 3.9784

−8

Method in [11] 17.645 16.487 13.015
Method in [12] 15.5556 13.9438 11.9201
Method in [13] 21.4789 21.4587 23.1426
Method in [14] 19.5678 19.3748 20.7918

Proposed method 11.4079 7.2017 8.2215
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Next, we compare average calculation time to evaluate the computational complexity
of different methods, as shown in Table 4. Our experiments are executed on an Intel i7
processor. The software platforms are MATLAB R2020a. It can be seen from Table 4 that the
computing time of the proposed method in this paper is shorter than [11–14] and slightly
higher than [12].

Table 4. Calculation time of different methods.

Method in
[11]

Method in
[12]

Method in
[13]

Method in
[14]

Proposed
Method

Time 21.483 s 0.864 s 42.952 s 2.317 s 1.098 s

6. Conclusions

This paper proposed a precession cone-shaped target parameter estimation method,
which uses a new form of comprehensive tool, called the range–frequency–time radar
data cube. The method in this paper can realize parameter estimation under any LOS.
Additionally, compared with traditional parameter estimation methods, it makes full use
of the target range, frequency, and time information, has higher parameter estimation
accuracy, and strong robustness. Finally, EM simulation verifies the advantages of our
novel method.

The research lays the foundation for micro-Doppler-based fine target recognition. It is
worth noting that the parameter estimation method in this paper is suitable for cone-shaped
targets. Practically, the target’s structure is complex, such as streamlined structure targets,
cone-cylinder targets, etc. Therefore, future work will be focused on parameter estimation
with different target structures.
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