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Abstract: In this paper, we propose a self-supervised stereo matching method based on superpixel
random walk pre-matching (SRWP) and parallax-channel attention mechanism (PCAM). Our method
is divided into two stages, training and testing. First, in the training stage, we obtain pre-matching
results of stereo images based on superpixel random walk, and some matching points with high
confidence are selected as labeled samples. Then, a stereo matching network is constructed to describe
the matching correlation by calculating the attention scores of any two points between different
images through the parallax-channel attention mechanism, superimposing the scores of each layer to
calculate the disparity. The network is trained using the labeled samples and some unsupervised
constraint criteria. Finally, in the testing stage, the trained network is used to obtain stereo matching
relations of stereo images. The proposed method does not need manually labeled training samples
and is more suitable for 3D reconstruction under mass satellite remote sensing data. Comparative
experiments on multiple datasets show that our method has a stereo matching EPE of 2.44 and a 3D
reconstruction RMSE of 2.36 m. Especially in the weak texture and parallax abrupt change regions,
we can achieve more advanced performance than other methods.

Keywords: satellite stereo images; self-supervised stereo matching; superpixel random walk;
pre-matching; parallax-channel attention mechanism

1. Introduction

In the past decade, automatic 3D reconstruction of urban scenes has been a research
hotspot in remote sensing image processing, photogrammetry, and computer vision. How-
ever, 3D reconstruction from aerial images [1] and lidar point clouds [2] is difficult to scale
to wider areas due to various constraints (e.g., air traffic control, airline authorization,
equipment costs, etc.). In contrast, 3D reconstruction using optical satellite remote sensing
stereo images is more advantageous in terms of data cost and coverage range [3].

Among the existing 3D reconstruction schemes of satellite data, most are based on
the stereo correspondence of two-view images and use a series of processing steps such
as rational function model to obtain 3D information of the scene. Among them, satellite
image stereo matching, as a key step to realize the transition from 2D images to 3D models,
has been a hot spot for research in the field of satellite 3D reconstruction. Although stereo
matching of satellite images is oriented to more complex images, its essence is still to
find the same name points from two images, just like stereo matching of ordinary images.
According to the development trend of stereo matching, it can be divided into traditional
methods and neural network methods.

However, both traditional methods and neural network methods still have much room
for progress in the stereo matching of satellite images for urban scenes. The advantages
and disadvantages of different methods are summarized as follows:
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1. The traditional matching methods do not need a large number of training samples,
which makes them faster and requiring less computational resources. They can obtain
some high-confidence matching points in the local area of the image through simple
and known feature artificial selection. However, in urban scenes, there are more
complex situations on satellite images than in other scenes. Traditional methods are
not as accurate as the CNN method. They only describe the matching cost using
conventional features such as gradient, census, and scale-invariant feature transform
(SIFT), which extract limited feature dimensions and make it difficult to achieve better
results on satellite images [4].

2. Convolutional neural networks can extract deep features for finding more accurate
stereo matching correspondence, which is more advantageous in processing larger
amounts of remote sensing data. However, a large number of training samples
containing truth labels are required for CNN training, which is difficult to obtain
for stereo matching of satellite data [5]. If the network model trained with other
datasets is directly used to match real satellite stereo remote sensing images, the effect
is poor [6].

To this end, this paper uses traditional matching methods to obtain some matching
points with high confidence as training samples, and convolutional neural networks to
extract depth features for describing stereo matching relationships. Combining the advan-
tages of traditional matching methods and convolutional neural networks, a self-supervised
stereo matching method based on SRWP and PCAM is proposed for 3D reconstruction of
satellite stereo images of urban scenes. Our method is divided into two stages: training
and testing. First, in the training stage, we obtain pre-matching results by a pre-matching
method based on superpixel random wandering, and select some of the matching points
with high confidence as labeled training samples. Then, a stereo matching network is
constructed to describe the correlation between two points by calculating the attention
scores of any two points between different images through the parallax-channel attention
mechanism, superimposing the attention scores of each layer to calculate the disparity. The
network is trained on labeled samples and the unsupervised constraint criteria. Finally, in
the testing phase, the trained network is used to re-match the stereo images to be matched.
The main contributions of our work can be summarized as follows:

(1) A pre-matching method based on superpixel random walk is proposed. The occlusion
and parallax discontinuity existing in stereo images are handled by constructing
parallax consistency and mutation constraints. The matching cost update is achieved
by superpixel segmentation and random walk to ensure the reliability of disparity for
weak texture and parallax mutation regions. This method is robust to visual difference
and occlusion between images with different viewing angles.

(2) A parallax-channel attention stereo matching network is proposed. The self-supervised
training problem under sparse samples is solved by a feature enhancement module.
The correspondence of stereo image pairs is captured by parallax-channel attention.
The method can achieve better results for stereo matching of complex urban scenes.

The remainder of this paper is organized as follows. Section 3 provides a detailed
description of the proposed method. Section 4 presents comparative experiments and a
discussion of public data sets. Conclusions are drawn in Section 5.

2. Related Work

Traditional stereo matching methods can be broadly classified into local matching [7],
semi-global matching (SGM) [8] and global matching [9]. The global matching usually
optimizes a global objective function, while the local matching tends to consider the
neighborhood information. The semi-global matching comprehensively considers the
advantages of both. It essentially finds the optimal parallax for each pixel through dynamic
programming, so that the global energy function of the whole image is minimized. The
algorithm is insensitive to the effects of illumination changes and has strong robustness to
noise [10]. Huang et al. [11] proposed an image-guided SGM method based on defining
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the rules for propagation of valid pixels to invalid pixels by enhancing the propagation
cost of texture-rich regions and guiding the interpolation method to interpolate the invalid
parallaxes to obtain the final matching results, thus solving the problems of noise and
ambiguity of similarity metrics in the matching process. Li et al. [12] proposed an improved
SGM method by replacing the mutual information entropy in the original SGM with the
census transform and reducing the matching time using a hierarchical matching strategy.
Hosni et al. [13] proposed a fast cost volume filtering stereo matching (FCVFSM) method
to realize a real-time disparity map by using fast edge preserving filtering to smooth label
costs. In addition to this, some scholars have also started from other perspectives, such
as Changjae et al. [14], who considered the matching cost as the probability of matching
between points and sought the steady-state distribution of the matching probability through
the proposed random walk with restart algorithm, thus giving the confidence of their
matching along with the output matching result.

On the other hand, various data-driven convolutional neural network (CNN) methods
have been introduced into the field of stereo matching, which can combine the disparity
solution process into an end-to-end network by relying on massive training samples;
these have gradually become the mainstream of stereo matching methods. Driven by the
success of CNNs in many vision tasks, some early network-based methods used CNNs
to replace one or more steps in the stereo matching process [15,16]. Zbontar et al. [17]
predicted the matching degree of two image blocks by training a CNN, and then used the
traditional cost aggregation method to calculate the matching cost to obtain the matching
relationship. Kendall et al. [18] proposed GCNet, an end-to-end stereo matching network
that obtains geometric and contextual information directly from binocular image data. It
builds a matching cost cube with deep features, regularizes it through 3D convolution,
and finally computes the best matching disparity value from the matching cost using a
flexible argmin operation. Based on this, Chang et al. [19] proposed a pyramid pooling
module for the feature extraction part of the GCNet, expanded the receptive field to obtain
more representative features, and introduced a stacked hourglass network to regularize the
matching cost cube. On the other hand, some scholars have tried to introduce traditional
matching algorithms into the field of deep learning. Seki et al. [20] proposed a learning-
based parameter estimation method, using CNNs to train and adjust the penalty parameters
of SGM.

All the above stereo matching methods are designed for the stereo matching task of
computer vision images; satellite remote sensing images are very different from computer
vision images in terms of acquisition methods and image complexity. For example, images
taken by satellites under high-speed motion conditions have longer baselines and larger
angle differences than computer vision images, as the sides of inclined buildings are prone
to inconsistent left and right views due to occlusion, their tops have a large number of
weakly textured areas that are difficult to match, and their edges are difficult to locate
accurately due to parallax abrupt change generated by differences in floor height [21].

For this reason, some scholars have begun to transfer various stereo matching
methods to the stereo matching of satellite remote sensing images. Tatar et al. [22]
and Mandanici et al. [23] directly applied SGM to the stereo matching of satellite images
without modification, and achieved good matching results on roof surfaces and open spaces
with weak textures in GeoEye-1 and WorldView-3 satellite data. Yang et al. [24] proposed a
semi-global block matching (SGBM) to achieve disparity and height estimation in weakly
textured waters by adaptive block matching. Zhu et al. [25] proposed a feature learning
method based on a two-branch network to transform the image matching problem into
a two-class classification problem, which used a two-stage training model to deal with
the complex features of remote sensing images. Tao et al. [26] achieved stereo matching
of remote sensing images using an improved pyramid stereo matching network and also
improved the construction of matching cost to cope with the large variation of disparity
range in remote sensing images, which can achieve better results in the parallax abrupt
change region.
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3. The Proposed Method

In this section, we present the proposed self-supervised stereo matching approach in
detail, and the outline of our approach is given in Figure 1. Our self-supervised method is
divided into two stages: training and testing. In the training stage, some labeled samples
with high confidence are obtained through the proposed pre-matching method, which
is then used to train the parallax-channel attention stereo matching network. After the
net-work model is trained, the model is used to test the stereo images one by one in the
testing stage to obtain the disparity map and stereo matching relationship. Therefore, the
pre-matching method and the parallax-channel attention network during the training stage
are the core of this paper and will be introduced in detail in this section.
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Figure 1. The training and testing process for proposed self-supervised stereo matching method
based on SRWP and PCAM.

3.1. Superpixel Random Walk Pre-Matching

The main objective of this section is to take advantage of traditional matching methods
to obtain some high-confidence matching points in local regions by means of artificially
selected simple features. These matching points are then used as labeled training samples
for subsequent matching networks. Generally speaking, sparse matching methods based on
feature points and lines can obtain stable and accurate feature points for matching, but the
number of matching points obtained by these methods is too small to support the training
requirements of subsequent network models. In contrast, the dense matching method can
obtain more matching points. The random walk algorithm proposed by Ham et al. [14] first
converts the matching problem into a probability model. The matching cost is regarded
as the probability of matching between points, which can provide a reference for us to
screen the accuracy of pre-matching points. However, the inherent smoothing assumption
of this method makes the matching unsatisfactory in areas of occlusion or parallax abrupt
change. For this reason, we consider that the edges of the optical images of urban areas
are semantically linked to the edges of the disparity map. Texture-similar regions of
optical images present fixed or linear changes in disparity values on the disparity map,
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without abrupt changes. In contrast, optical images with abrupt textures are prone to
abrupt changes in disparity values. We can understand that there is a certain constraint
relationship between the optical image and the disparity map, and since the disparity map
is a form of representation of the stereo matching relationship, the use of optical image
edge information can provide valuable clues to obtain the matching relationship between
the parallax abrupt change region.

Based on the above ideas, this paper proposes a pre-matching method based on
superpixel random walk, and the outline of the pre-matching is given in Figure 2. Using
the constraint relationship between optical image and disparity image, the noise results in
weak texture, and the mismatch of occlusion or parallax abrupt change region are removed
by superpixel segmentation and two constraint criteria. Specifically, we first construct a
point matching cost using selected simple features. Then, we aggregate them into block
matching cost based on the superpixel segmentation results. Finally, the matching cost is
updated and optimized according to the two constraint criteria of parallax consistency and
mutation, so as to obtain some stable matching points. The method consists of three steps:
constructing the point matching cost, constructing the block matching cost, and optimizing
and updating the cost.
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3.1.1. Point Matching Cost

One of the most basic ideas of stereo matching is to describe the matching correlation
between two images by constructing a matching cost function, so that the two points with
the greatest correlation can be selected as matching points. In this stage, we first construct
the initial matching cost of the pixel with common features in the existing matching
methods. The gradient features, census transform, rank transform and mutual information
features commonly used in stereo matching methods have high accuracy and stability.
Compared with rank transformation and mutual information that requires initial disparity
values and hierarchical iterations, this paper takes into account the computational needs of
the subsequent block matching and optimization algorithms, as well as the fact that the
urban scenes of interest contain a large number of buildings, so the initial matching cost
of the pre-matching method is constructed using gradient features and census transform,
which are more computationally efficient and more sensitive to building edges.

The census transform [27] technique is to convert the pixels of the left and right images
into binary vectors and compare them to the surrounding pixels within finite support
regions, as shown in Equation (1):

T(i, j) = ⊕
(iw ,jw)∈w(i,j)

H(I(i, j), I(iw, jw)) (1)
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where I(i, j) and I(iw, jw) denote the intensity values of the target pixel and the pixels
around the target, respectively, ⊕ denotes the cascade, w is the window around (i,j), and H
is the binary function that returns 0 or 1. We use a 5 × 5 window to encode a binary vector
of each pixel in the Census transform. The binary vectors are encoded by comparing the
intensity values of the center and its surrounding pixels, as in Equation (2):

H(I(i, j), I(iw, jw)) =
{

0, if I(i, j) < I(iw, jw)
1, if I(i, j) ≥ I(iw, jw)

(2)

where H(I(i, j), I(iw, jw)) is the binary function of (i, j) and (iw, jw). The binary vector is
assigned to each pixel in the left and right images. The matching cost is calculated using
the Hamming distance [28] of the two binary vectors, as shown in Equation (3):

Cr(i, j, d) = Hamming(Tl(i, j), Tr(i + d, j))
Cl(i, j, d) = Hamming(Tr(i, j), Tl(i− d, j))

(3)

where C(i, j, d) is the matching cost based on Hamming distance at disparity d. The subscripts
l and r denote the left image and right image, respectively. Since the census transform
encodes the image structure based on the relative ordering of pixel intensities, it has better
robustness to illumination variations and image noise. However, due to this property,
matching blur may result in weakly textured areas with the same or similar textures.
To solve these problems, we include gradient features in the calculation of the initial
matching cost.

The matching cost based on image gradient features is defined as in Equation (4):

Gr(i, j, d) = |∇x Il(i, j)−∇x Ir(i + d, j)|+
∣∣∇y Il(i, j)−∇y Ir(i + d, j)

∣∣
Gl(i, j, d) = |∇x Ir(i, j)−∇x Il(i− d, j)|+

∣∣∇y Ir(i, j)−∇y Il(i− d, j)
∣∣ (4)

where G(i, j, d) is the matching cost based on gradient feature at disparity d. ∇x I and ∇y I
denote the horizontal and vertical gradient images, respectively. The gradient images are
calculated with a 5 × 5 sobel filter.

The census transform and gradient features are combined by weight to construct the
following point matching cost, as shown in Equation (5):

Pr(i, j, d) = σcmin(Cr(i, j, d), τc) + σgmin(Gr(i, j, d), τg)
Pl(i, j, d) = σcmin(Cl(i, j, d), τc) + σgmin(Gl(i, j, d), τg)

(5)

where σc and σg are the weight parameter to balance the census term and the gradient term,
respectively. τc and τg are truncation values used to limit the influence of outliers. Pr is the
matching cost of each pixel in the right image compared to each point on the epipolar line
of the left image.

3.1.2. Block Matching Cost

The urban scenes contain a large number of artificial buildings. The most obvious
feature of such buildings is the similarity texture of the building top surface, and the
junction between buildings and non-buildings, which is prone to texture change. This
property on the disparity map has similar performance. We use this property to aggregate
the point matching cost into a block matching cost, so that there is a smooth parallax
constraint within the block, while the inter-block is more prone to parallax abrupt change,
as shown in Figure 3.

Superpixel is a block of images consisting of neighboring pixels with similar texture,
color, and illumination characteristics. Different pixels in one superpixel may have the same
geometric features and similar parallax. Thus, segmenting the optical image by superpixels
has similar results to segmenting the parallax map. For this reason, we use each superpixel
block segmented from the optical image as a guide for our aggregation point matching
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cost. In this paper, we use the simple linear iterative clustering [29] to perform superpixel
segmentation on the left and right images.

Remote Sens. 2022, 13, x FOR PEER REVIEW 7 of 26 
 

 

 

Figure 3. Comparison of pixel cost and superpixel cost. 

Superpixel is a block of images consisting of neighboring pixels with similar texture, 

color, and illumination characteristics. Different pixels in one superpixel may have the 

same geometric features and similar parallax. Thus, segmenting the optical image by su-

perpixels has similar results to segmenting the parallax map. For this reason, we use each 

superpixel block segmented from the optical image as a guide for our aggregation point 

matching cost. In this paper, we use the simple linear iterative clustering [29] to perform 

superpixel segmentation on the left and right images. 

The block matching cost can be given by Equation (6): 

( , )

1
( , ) ( , , )

i j ss

X s d P i j d
n 

=   (6) 

where s is a superpixel block, ( , )X s d  is the cost function of the superpixel s when the 

disparity is d, and sn  is the number of points in the superpixel s. ( , , )P i j d  represents the 

point matching cost when the disparity is d at (i,j) in the superpixel s. The left image match-

ing cost ( , )lX s d  and the right image matching cost ( , )rX s d  are calculated separately. 

Although we construct the matching cost function for local blocks, the segmentation 

results of the superpixel will largely affect the matching results. Specifically, there are two 

problems: the larger the superpixel block, the more likely it is to have under-segmentation, 

where regions with different disparity are segmented in one superpixel block; the smaller 

the superpixel block, the more likely it is to have over-segmentation, where regions with 

the same disparity are segmented in different superpixel blocks, and as shown in Figure 

4. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4. Results of different superpixel segmentation cases: (a) optical image; (b) accurate segmen-

tation; (c) under-segmentation; (d) over-segmentation. 

3.1.3. Optimization and Updating 

In the actual segmentation process, it is difficult to guarantee that accurate segmen-

tation results can be obtained every time, which causes a certain error in the block match-

ing cost. For this reason, in this paper, the matching cost of each superpixel block is up-

dated iteratively under the condition of considering the influence of surrounding blocks, 

provided that the superpixel chunks are small enough, so as to achieve a stable block 

matching cost. This idea of iteratively updating the matching cost is similar to the random 

Figure 3. Comparison of pixel cost and superpixel cost.

The block matching cost can be given by Equation (6):

X(s, d) =
1
ns

∑
(i,j)∈s

P(i, j, d) (6)

where s is a superpixel block, X(s, d) is the cost function of the superpixel s when the
disparity is d, and ns is the number of points in the superpixel s. P(i, j, d) represents the
point matching cost when the disparity is d at (i,j) in the superpixel s. The left image
matching cost Xl(s, d) and the right image matching cost Xr(s, d) are calculated separately.

Although we construct the matching cost function for local blocks, the segmentation
results of the superpixel will largely affect the matching results. Specifically, there are two
problems: the larger the superpixel block, the more likely it is to have under-segmentation,
where regions with different disparity are segmented in one superpixel block; the smaller
the superpixel block, the more likely it is to have over-segmentation, where regions with
the same disparity are segmented in different superpixel blocks, and as shown in Figure 4.
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3.1.3. Optimization and Updating

In the actual segmentation process, it is difficult to guarantee that accurate segmenta-
tion results can be obtained every time, which causes a certain error in the block matching
cost. For this reason, in this paper, the matching cost of each superpixel block is updated
iteratively under the condition of considering the influence of surrounding blocks, provided
that the superpixel chunks are small enough, so as to achieve a stable block matching cost.
This idea of iteratively updating the matching cost is similar to the random walk algorithm;
both of them are designed to obtain a smooth stable probability distribution or matching
cost. To this end, this paper improves the random walk algorithm to update the block
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matching cost and eliminate the interference caused by over-segmentation through con-
straints such as smoothness, consistency and mutability. The final result of block matching
cost aggregation is similar to that of superpixel exact segmentation.

Random walk was first proposed for image segmentation [30]. It starts from a node
in the graph and faces two choices at each step, randomly choosing an adjacent node
or returning to the starting node. The algorithm contains a parameter c for the restart
probability and 1 − c for the probability of moving to an adjacent node. After iterations to
reach stability, this probability distribution can be considered as the distribution influenced
by the start node. We apply the random walk to the block matching cost update, and the
update function is defined as Equation (7):

Xd
t+1 = cWXd

t + (1− c)Xd
0 (7)

where Xd
0 = [F(s, d)]k×1 denotes the initial matching cost when the disparity value is d,

Xd
t denotes the updated matching cost, t is the number of iterations, and k is the number

of superpixels. The weighting matrix W = [wuv)]k×k contains the edge weights of all
superpixels, and W is obtained by normalizing the rows of W. Edge weights are used
to describe the probability that the matching cost of a superpixel block is passed to the
neighboring blocks. We assume that neighboring superpixel blocks on an optical image
tend to have similar disparity values on the disparity map when the color distance is close.
Therefore, neighboring superpixels with similar intensities have more influence on each other.
The edge weight wuv of the u-th and v-th superpixel blocks is calculated by Equation (8):

wuv = (1− τe)e−
(I(su)−I(sv))2

σe + τe (8)

where I(su) and I(sv) are the intensities of the u-th and v-th superpixel blocks, respectively,
and τe and σe are parameters that control the shape of the function.

The matching cost X gradually reaches convergence as the number of iterations t
increases. The above method provides a local minimum, but the limitations of the smooth-
ness constraint mean that it does not provide a good solution in regions of occlusion or
parallax abrupt change. Therefore, we added parallax consistency and mutation constraints
to correct and optimize the matching cost for these regions.

The occluded pixels involved in this paper are the pixel points that appear in only one
view and are not visible in the other view. In order to eliminate the effect of occluded pixels
on the matching cost update, we use parallax consistency to detect occluded pixel blocks
and set the occluded pixel blocks to zero in the matching cost update process. Parallax
consistency means that the matching relationships obtained in the two views should
correspond to each other, and the occluded pixels do not satisfy this consistency. Therefore,
we propose the following consistency constraint function, as shown in Equation (9):

Ot(s) =
{

1, if |Dr(xs, ys)− Dl(xs + Dr(xs, ys), ys)| ≤ 1
0, if |Dr(xs, ys)− Dl(xs + Dr(xs, ys), ys)| > 1

(9)

where Dl and Dr are the current parallax maps of the left image and right image, respec-
tively, and xs and ys are the x and y centroids of superpixel s. The superpixel blocks with
inconsistent disparity in the left and right disparity maps are divided into occluded super-
pixels and set to 0, while the other blocks are set to 1 as non-occluded superpixels. The
occlusion masks Vt = [Ot(s)]k×1 are obtained by splicing each Ot(s). Finally, the matching
cost is multiplied by the occlusion mask to obtain the consistent matching cost after the
parallax consistency constraint, as shown in Equation (10):

vd
t = Xd

t ΘVt (10)

where Θ denotes the element-wise product function.
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The random walk algorithm considers that adjacent blocks have more influence on
each other, which is manifested in the parallax map by the existence of smoothness con-
straints and prone to errors in the parallax abrupt change region. For example, in the
eaves of a building, the disparity value varies greatly, but the disparity boundary becomes
blurred due to the smoothness constraint. To prevent such problems, we add a mutability
constraint. First, we calculate the temporary disparity value of the superpixel based on the
current matching cost, as shown in Equation (11):

d′u =

∑
v∈N(u)∪u

wuvdvOt(sv)

∑
v∈N(u)∪u

wuvOt(sv)
(11)

where wuv is the edge weight, Ot(sv) is the consistency constraint, dv is the current disparity
of the neighboring superpixel, and d′u is the temporary disparity value of the u-th superpixel.
The mutability matching cost is calculated using the temporary disparity values composed
of all superpixel blocks, as in Equation (12).

ψd
t
(
d′
)
=

{ (
(d′ − d)/σψ

)2, if |d′ − d| ≤ τψ(
τψ/σψ

)2, if |d′ − d| > τψ

(12)

where d′ is the Equation (11) calculated parallax, σψ is the scalar parameter, and τψ denotes
the truncation parameter, which play an important role in controlling the parallax mutability.

The mutability constraint preserves disparity boundaries by maintaining the intensity
difference between adjacent superpixels, avoiding blurring small objects into the back-
ground and thus preserving more detailed information.

Combining parallax consistency and mutability matching cost, we construct the fol-
lowing block matching cost iterative update function, as shown in Equation (13):

Xd
t+1 = cW

(
(1− λ)Vd

t + λΨd
t

)
+ (1− c)Xd

0 (13)

where Ψd
t is the mutability matching cost calculated in Equation (12), Vd

t is the consistency
matching cost calculated according to Equation (10), λ is used to balance them, and c is the
restart probability. The consistency and mutability matching costs are determined based on
the current matching cost Xd

t . The matching cost propagates along the graph W, and the
initial matching cost is aggregated into the current matching cost, which is proportional to
the restart probability (1 − c). The combination of the superpixel matching cost and the
initial point matching cost constitutes the final matching cost P, and the parallax value d̂ is
determined by minimizing the matching cost, as in Equation (14):

Pt+1(i, j, d) = Xd
t (s, d) + γPt(i, j, d)

d̂ = argmin
d

(P(i, j, d)) (14)

where s is the superpixel corresponding to pixel (i,j), γ denotes the weight of the superpixel
and the point matching cost, and argmin means finding a disparity value to minimize the
matching cost P.

Since the matching cost P describes the degree of matching between two image point
pairs, we can filter all the matching points by setting a threshold to obtain some of the pairs
with higher matching confidence, which we call pre-matched pairs.
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3.2. Stereo Matching Network Based on Parallax-Channel Attention Mechanism

Although the rough matching relationship of images can be obtained using the pre-
matching method, conventional features such as gradient, census, and SIFT have limited
feature dimensionality for extraction. Through the combination and iterative update,
even if the artificial buildings and other areas we are concerned about can have a good
matching effect, there is a significant decrease in accuracy for other areas of the city. To
solve this problem, this paper first constructs a stereo matching network to describe the
stereo matching relationship using the deep features extracted by the CNN. In order to
further improve the network performance, we use the high-confidence pre-matched point
pairs obtained in the previous section and some unsupervised criterion to supervise and
constrain the network. Finally, a stereo matching network supporting sparse training
samples is formed.

In recent years, the self-attention mechanism [31] has been used in various fields of
visual image processing based on CNNs. The self-attention mechanism forms an attention
score by calculating the similarity of extracted features at any two points in a single image,
and then weights this score to the image to highlight more significant parts. We note that
the self-attention mechanism calculates the similarity of two points of an image as the
attention score, and the purpose of stereo matching is to find two points that are similar
in different images. Therefore, this paper introduces the process of obtaining attention
scores from the self-attention mechanism into stereo matching and describes the matching
correlation of two points by calculating the attention scores of any two points between
different images. Since a single attention score map can depict only one disparity value, we
form a 3D attention map by stacking the attention scores of different disparity values. The
i-th layer in the 3D attention map represents the attention score of each pixel with disparity
i. Finally, the disparity is calculated by superimposing the attention score maps of each
layer to achieve stereo matching.

With the above ideas, this paper constructs a parallax-channel attention mechanism
stereo matching network based on the traditional parallax attention for image super-
resolution and channel attention for target detection. Figure 5 shows the structure of the
proposed stereo matching network. We first extract the deep features by hourglass network,
then use the cascaded parallax-channel attention module to calculate the extracted features
as attention scores and combine them into 3D attention maps, and finally calculate the
disparity by superimposing the attention maps of each layer. In addition, we add two
optimization strategies, namely feature enhancement and disparity refinement, which are
used to obtain more significant features in feature extraction and more refined disparity in
disparity calculation.

Recent CNN matching methods, such as GCNet [18], PSMNet [19], etc., usually
focus on feature extraction of higher dimensions to generate larger 4D cost volumes
(height × width ×maximum disparity × feature dimension), and then use 3D CNNs to
achieve disparity map acquisition. However, such methods require high computational and
memory costs and therefore require manual setting of the maximum disparity to ensure
processing efficiency, which in turn limits their ability to process urban images with large
disparity variations. In addition, these methods have more complex network structures,
contain more dimensions in the 4D cost volume, require larger training samples, and are
difficult to adapt to the practical requirements of self-supervised matching for satellite
remote sensing images. The stereo matching network proposed in this paper has low
computational and memory costs, and ensures the possibility of matching between any
two points of different views on the epipolar line without setting the maximum dispar-
ity. Relying on multiple unsupervised constraints ensures that good matching results are
achieved even with only a small number of labeled samples obtained by pre-matching.
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attention mechanism.

3.2.1. Feature Extraction and Enhancement

The partially labeled samples obtained by pre-matching can be applied to the stereo
matching network as training samples. However, considering that our proposed self-
supervised network uses the same data in both the training and testing stage, and that a
batch of pre-matched point pairs with high confidence is available for all these data, we can
use this prior information to obtain more discriminative features in the feature extraction.
In this paper, we propose a feature enhancement process in the feature extraction stage,
using the labeled samples obtained by previous pre-matching to enhance the extracted
features at these samples by Gaussian functions, so that the points at the labeled samples
can obtain higher attention scores on the subsequent attention map. The essential idea is to
give more weight to the features related to the labeled samples obtained by pre-matching
on the feature map, so as to ensure that the pre-matching points with high confidence retain
the original matching results as much as possible.

First, we use the residual atrous spatial pyramid pooling module [32] for feature
extraction of left and right images to obtain hierarchical features with dense pixel sampling
rate and scale. After that, we expand the labeled samples obtained from the previous
pre-matching into two new inputs, a sparse matrix Dgt of size H × W to represent the
sparse pre-matching disparity map, and another binary mask Dloc of the same size for
the specified Dgt locations that have pre-matching samples. For each pixel in the image
with position (i,j) and Dloc(i, j) = 1, we enhance the features by using a Gaussian function
centered on Dgt(i, j). The feature corresponding to Dloc(i, j) = 1 is multiplied by the peak
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value of the function, while any other pixels are gradually multiplied by a lower factor
until they become far away from (i,j) and are suppressed. Specifically, our enhancement
function U is defined as in Equation (15):

U = k·e−
dis2

2σ2 (15)

where σ determines the width of the Gaussian curve, k denotes its maximum amplitude
and shall be greater than or equal to 1, and dis denotes the distance between the current
pixel point and (i,j). Therefore, we obtain the new enhanced feature F by multiplying
the original feature Fini, and we construct the following feature enhancement function as
shown in Equation (16):

F = (1− Dloc + Dloc·U)·Fini (16)

where the weight factor on the left is equal to 1 when Dloc = 0.

3.2.2. Parallax-Channel Attention
Parallax Attention

The parallax attention mechanism was first proposed to improve the performance
of stereo image super-resolution with a global field of perception along the epipolar line
to process different stereo images with large parallax variations [33]. Similar to the self-
attention mechanism, parallax attention describes the matching correlation between two
points by computing the attention score of any two points between different images and
then weighting this score to the image to achieve super-resolution. We achieve stereo
matching with this attention mechanism by calculating the correlation between pixels in
the left and right image through the dot product of features and using it as the matching
cost. Then, using softmax to achieve normalization, we generate the attention score and
combine it into a 3D attention map. Finally, we calculate the disparity in the next section to
achieve stereo matching, as shown in Figure 6.
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Figure 6. An illustration of parallax attention.

Specifically, the corresponding feature maps Fle f t, Fright ∈ RH×W×C are extracted from
the stereo images, where H and W are the height and width of the image, respectively, and
C is the dimension of the extracted deep features. The Fle f t is fed to a 1 × 1 convolution to
produce a query feature map Q ∈ RH×W×C, the Fright is fed to another 1 × 1 convolution
to produce a key feature map K ∈ RH×W×C, and then the i-th row Qi ∈ RW×C and
Ki ∈ RW×C in Q and K are extracted, respectively. Then, we perform matrix multiplication
between Qi and Ki

T and concatenate the matrix multiplication results from 1-th to H-th
row to obtain the matching cost Cright→le f t ∈ RH×W×W . Finally, the 3D attention map
Mright→le f t ∈ RH×W×W is generated by softmax normalization.
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Channel Attention

The image features extracted using residual atrous spatial pyramid pooling contain
multiple channels. Parallax attention only considers the spatial features of the image
features, equivalently treating each channel of the features and ignoring the differences
between the different channels. For this reason, we use a channel attention mechanism [34]
that applies feature weighting to the different channels of the extracted features Fle f t and
Fright. It models the importance of each feature channel and then enhances or suppresses
different channels, so that the channels that are more favorable for matching accuracy
improvement receive more attention and further improve the matching effect. Since each
channel describes different semantic information of the image, applying the attention
mechanism in the channel can be regarded as a process of selecting semantic attributes.
The illustration of channel attention mechanism is given in Figure 7.
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Take the feature map Fle f t ∈ RH×W×C as an example, which is obtained from the left
image. The feature map Fle f t is first reshaped to Fle f t = [ f1, f2, · · ·, fC], which has C feature
maps with a size of H ×W. Then the channel statistics feature vk of the k-th channel can be
obtained by Equation (17):

vk =
1

H ×W

H

∑
i=1

W

∑
j=1

fk(i, j) (17)

where fk(i, j) is the feature value of the k-th layer feature map at the position (i, j). The
above function can be interpreted as average pooling. The average pooling is then applied
to each channel to obtain the channel features v = [v1, v2, · · ·, vC] and calculate the channel
attention weights Z as shown in Equation (18):

Z = δ(WU R(WDv)) (18)

where R() denotes the leaky ReLU function, δ() represents the softmax function, WD refers
to the channel-downscaling convolution layer, and WU refers to the channel-upscaling
convolution layer.

The obtained channel attention weights Z are then used to rescale the feature maps F
in the following manner to obtain channel attention weighted feature maps F′, as shown
in Equation (19):

F′ = FΘZ (19)

where Θ denotes the element-wise product function.
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Cascaded Parallax-Channel Attention Module

The matching network constituted by the above two attention mechanisms is still
essentially a local matching. It only considers the local information and lacks the utilization
of the global information. It is necessary to expand the support window of matching cost,
realize matching cost aggregation, reduce the influence of anomalies, improve signal-to-
noise ratio and improve matching accuracy [35]. To this end, this paper achieves matching
cost aggregation by cascading parallax-channel attention modules of different resolutions
and continuously superimposing the matching costs of each level to form the final matching
cost, while expanding the receptive field. Our cascaded parallax-channel attention module
consists of three resolution stages, each of which consists of four modules in series, as
shown in Figure 5.

First, the extracted features F1
le f t, F1

right ∈ R H
16×

W
16×C are input at the first resolution

stage, and the initial matching cost C1
right→le f t, C1

right→le f t ∈ R H
16×

W
16×

W
16 has a construction

value of 0. The F1
le f t and F1

right are fed into the channel attention module to obtain the

channel weighted feature maps F1
le f t
′ and F1

right
′, respectively. Then, the Fle f t and Fright are

obtained by a 3 × 3 convolution shared by two parameters. Next, the query feature Q
and the key feature K are obtained from Fle f t and Fright by 1 × 1 convolution, and K is
reshaped and multiplied with Q to obtain the matching cost Cright→le f t. Once Cright→le f t
is ready, Fle f t and Fright are exchanged to obtain Cle f t→right. After that, Cright→le f t and
Cle f t→right are added to C1

right→le f t and C1
le f t→right, and Fle f t and Fright are added to F1

le f t and

F1
right. After four repetitions of this module and bilinear upsampling, the input of the next

stage C2
right→le f t, C2

le f t→right, F2
le f t and F2

right are obtained. The above steps are repeated at

higher resolution stages until the final matching cost C4
right→le f t, C4

le f t→right ∈ R H
4 ×

W
4 ×

W
4

is obtained.

3.2.3. Disparity Calculation and Refinement

As shown in Figure 5, the final matching cost C4
right→le f t sum C4

le f t→right is obtained
using the above cascade module. It is normalized by softmax, and the matching cost
is converted into an attention score (between 0 and 1) to obtain a 3D attention map
M4

right→le f t, M4
le f t→right ∈ R H

4 ×
W
4 ×

W
4 . Disparity is calculated by superimposing the at-

tention maps of each layer, as in Equation (20):

D̂ =
W/4−1

∑
k=0

k×M4
right→le f t(:, :, k) (20)

So far we have obtained a rough parallax map at low resolution. To further obtain
a more accurate parallax map, we achieve disparity refinement by occlusion handling
and upsampling.

We obtain the occlusion mask using Equation (21), based on the same idea of process-
ing the occlusion superpixel block in Section 3.1.3.

V(i, j) =
{

1, if
∣∣D̂r(i, j)− D̂l(i + D̂r(i, j), j)

∣∣ ≤ 1
0, if

∣∣D̂r(i, j)− D̂l(i + D̂r(i, j), j)
∣∣ > 1

(21)

where D̂l and D̂r are the current disparity maps of the left and right images, respectively.
Parallax is not available for the occluded region because the correspondence cannot be

found for the pixels. However, in order to reduce the error on the occluded area during
metric evaluation, we use an image patching method to approximately fill the disparity
value of the occluded area by partial convolution [36].

Finally, we use a disparity upsampling module that uses the features of the left image
as a guide to provide structural information such as edges [37]. As shown in Figure 5, the
initial disparity D̂ini and features F4

le f t are concatenated in series and fed to the hourglass
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network to produce a residual disparity map D̂res and confidence map Mcon. Finally, the
refined disparity is calculated as Equation (22):

D = (1−Mcon)× D̂ini ↑ +Mcon × D̂res (22)

where ↑ is a bilinear upsampling operator.

3.2.4. Losses

In this paper, we first consider stereo matching as a special case of optical flow estima-
tion [38], and we use the photometric and smoothness losses in the optical flow framework
as unsupervised loss constraints. After that, we define two additional unsupervised losses
based on the left–right consistency and circular consistency of the stereo image. Finally we
use the labeled samples obtained by pre-matching and employ the L1 loss as a supervised
loss to further optimize the disparity map generated by the network. We define the total
loss as in Equation (23):

L = λpLp + λsLs + λPCAMLPCAM + Ll (23)

where λp, λs and λPCAM are used to balance different losses.

1. Photometric Loss

The photometric loss consists of a structural similarity (SSIM) index loss term and a
mean absolute error (MAE) loss term. Where SSIM is used to measure the similarity of
two images (i.e., one view and the other view after parallax transformation) and MAE
is used to measure the mean mode length of the predicted value error [39]. Since photo-
metric consistency only holds in non-occluded regions, the photometric loss is defined as
Equation (24):

Lp =
1
N ∑

p∈Vle f t

α
1− S(Ile f t(p), Ile f t

′(p))
2

+ (1− α)‖Ile f t(p)− Ile f t
′(p)‖1

Ile f t
′ = Iright�D

(24)

where S is a SSIM function, p indicates the non-occluded effective pixels, N is the number
of effective pixels, and α is used to balance SSIM and MAE. � is a warping operator using
the disparity, which indicates that the pixels of the right view Iright are rearranged into Î
according to disparity Dright. The specific process is that each pixel point Iright in the image
first find the disparity value d at the same position in the disparity map Dright, and then
each pixel point of Iright is shifted d pixels to the right or left to obtain a new reconstructed
image Ile f t

′.

2. Smoothness Loss

We use an edge-aware smoothness loss to encourage local smoothness of the dispar-
ity [40,41], which is defined as in Equation (25):

Ls =
1
N ∑

p
(‖∇xD(p)‖1e−‖∇x Ile f t(p)‖

1 + ‖∇yD(p)‖1e−‖∇y Ile f t(p)‖
1) (25)

where ∇x and ∇y are the gradients in the x and y axes, respectively.

3. PCAM Loss

Considering that the stereo image observes the same ground object from different
angles, we define two additional unsupervised losses, left–right consistency loss Lk

PCAM−q

and cyclic consistency Lk
PCAM−c loss, which are applied to adjust the PCAM stereo matching
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network on multiple resolution scales. The PCAM loss terms for different resolution scales
k (k = 1, 2, 3) are defined as in Equation (26):

Lk
PCAM = λPCAM−qLk

PCAM−q + λPCAM−cLk
PCAM−c (26)

• Lk
PCAM−q

Left–right consistency means that the optical image of a viewing angle can move each
pixel of the optical image according to the disparity value of the viewing angle as a guide
for pixel movement, so as to obtain a reconstructed optical image. The reconstructed image
is very similar to the optical image from another viewing angle. Thus, the more accurate
the disparity value, the more similar the reconstructed image is to the optical image of
the other viewpoint. The following function expresses the left–right consistency of stereo
images, as shown in Equation (27):{

Ile f t
′ = Iright � Dright

Iright
′ = Ile f t � Dle f t

(27)

We use the left–right consistency to connect the relationship between the left and right
optical images by modifying the above function to define the left–right consistency loss, as
shown in Equation (28):

Lk
PCAM−q = 1

Nk
le f t

∑
p∈Vk

le f t

‖Ik
le f t(p)− (Ik

right � Dk
right)(p)‖

1

+ 1
Nk

right
∑

p∈Vk
right

‖Ik
right(p)− (Ik

le f t � Dk
le f t)(p)‖

1

(28)

where Nk
le f t and Nk

right are the effective number of pixels in Vk
le f t and Vk

right, respectively.

Ik
le f t and Ik

right are the bilinear downsampled images of the corresponding scale levels.

• Lk
PCAM−c

Cyclic consistency is based on the left–right consistency by reconstructing the recon-
structed optical image according to the disparity value of another viewing angle. The following
function represents the cyclic consistency of stereo images, as shown in Equation (29):{

Iright
′ = Iright � Dright � Dle f t

Ile f t
′ = Ile f t � Dle f t � Dright

(29)

We use cyclic consistency to further connect the relationship between the left and right
optical images by modifying the above function to define cyclic consistency loss, as shown
in Equation (30):

Lk
PCAM−c =

1
Nk

le f t
∑

p∈Vk
le f t

‖Ik
le f t(p)− (Ik

le f t � Dk
le f t � Dk

right)(p)‖
1

+ 1
Nk

right
∑

p∈Vk
right

‖Ik
right(p)− (Ik

right � Dk
right � Dk

le f t)(p)‖
1

(30)

4. L1 loss

L1 loss is widely used for various tasks in image processing due to its robustness and
low sensitivity to outliers [42]. We use the L1 norm of the predicted disparity value obtained
by the network and the disparity value obtained by pre-matching as the loss constraint.
The L1 loss is defined as in Equation (31):

Ll =
1
N ∑

p∈Vle f t

L(Dpred(p)− Dgt(p)) (31)
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in which

L(x) =
{

0.5x2, if |x| < 1
|x| − 0.5, otherwise

(32)

where Dpred(p) is the disparity of pixel p obtained through the network, and Dgt(p) is the
pre-matching disparity of pixel p.

4. Experimental Results and Discussion
4.1. Data Sets, Metrics, and Implementation Details

• Dataset

The datasets used in this paper comprise three sets. Dataset A is a set of public
datasets from the IGRASS Data Fusion Contest in 2019. The source data includes images
collected through worldview-2 and worldview-3 in Jacksonville and Omaha from 2014 to
2016, through cutting and other means, with a stereo image composed of 1685 pairs finally
formed. The size of each image is 1024 × 1024 pixels, and ground sample distance (GSD)
is 0.35 m. Dataset A provides the true disparity value corresponding to the left viewing
angle at the same time. Dataset B is the selected 100 sets of stereo pairs in Dataset A, with
manual markings of the area with weak texture or parallax abrupt change region as a mask.
Dataset C comprises SuperView-1 satellite stereo images and digital ground model (DSM)
data in Harbin; the image GSD is 0.5 m, and the digital ground model is measured by
airborne LiDAR.

• Metrics

The most direct way to evaluate the performance of stereo matching is to compare
disparity maps. However, considering the difficulty of obtaining the true value of disparity,
there are many studies that use the rational function model to solve the matching results into
DSM and indirectly evaluate the matching performance by comparing DSM. In this paper,
disparity map comparison and DSM comparison will be used to evaluate the matching
performance of this method in Datasets A, B and C.

For the evaluation of disparity results, we use end-point error (EPE) and the fraction
of erroneous pixels (D1 and D3) as measures. The smaller the value of the three indicators,
the better the matching effect. D1 represents the proportion of pixels with a real disparity
error of more than 1 pixel, D3 represents the proportion of pixels with a real disparity error
of more than 3 pixels, and EPE represents the average error between all pixel disparity and
real disparity. The calculation function is defined as in Equation (33):

EPE =
1
m

m

∑
i=1
|di − dri| (33)

where m is the number of valid pixels in the true disparity, di represents the disparity
obtained by this method, and dri represents the true disparity.

We use the root mean square error (RMSE) to evaluate the DSM. The calculation
function is defined as in Equation (34):

RMSE =

√
1
m

m

∑
i=1

(zi − hi)
2 (34)

where z is the solved altitude and h is the altitude measured by LiDAR as the true value of
the evaluation.

The above evaluation is only for points with true disparity or altitude.

• Implementation Details

The experiment was performed on a PC with Intel Core i7-10870H CPU, 16 G RAM,
and Nvidia RTX 2080 GPU, and we did not use any parallel programs or other dedicated
hardware. The PCAM network architecture was implemented using PyTorch. All models
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were optimized using the Adam method [43], with β1 = 0.9, β2 = 0.999 and a batch size of
32. The initial learning rate was set to 1 × 10−4 for 60 epochs and decreased to 1 × 10−5 for
another 20 epochs.

4.2. Evaluation of Pre-Matching Performance

To verify the effectiveness of the proposed pre-matching method, we first conducted
experiments on the method proposed in Section 3.1. Considering that the purpose of pre-
matching is to obtain stable and accurate matching points, and the matching method based
on feature points can generally obtain stable matching feature points, we compared the
proposed method with four state-of-the-art feature matching methods, including SIFT [44],
Harris [45], local linear transform (LLT) [46], and fast dense feature matching (FD) [47].
For our pre-matching method, we normalized the pre-matching cost to [0,1], eliminating
matching points whose cost was greater than the threshold value of 0.01 to retain the
matching points with high confidence. The results of the comparison experiment using
Dataset A are shown in Figure 8. The red points in the image show the extracted feature
points. The number and accuracy of matching points obtained by the five methods are
compared, as shown in Table 1, where the points represent the average number of matching
points extracted from each set of images.

Remote Sens. 2022, 13, x FOR PEER REVIEW 18 of 26 
 

 

[44], Harris [45], local linear transform (LLT) [46], and fast dense feature matching (FD) 

[47]. For our pre-matching method, we normalized the pre-matching cost to [0,1], elimi-

nating matching points whose cost was greater than the threshold value of 0.01 to retain 

the matching points with high confidence. The results of the comparison experiment using 

Dataset A are shown in Figure 8. The red points in the image show the extracted feature 

points. The number and accuracy of matching points obtained by the five methods are 

compared, as shown in Table 1, where the points represent the average number of match-

ing points extracted from each set of images. 

Table 1. Comparison of pre-matching results with different methods. 

Method EPE RMSE D1 D3 Points 

SIFT 1.31 3.15 0.17 0.10 984 

Harris 1.12 2.44 0.19 0.06 319 

LLT 1.24 2.75 0.17 0.07 973 

FD 1.35 3.45 0.17 0.11 1115 

Proposed 1.11 2.45 0.12 0.06 29,021 

The comparison results of Figure 8 and Table 1 clearly show that the number of 

matching points of SIFT, Harris, LLT and FD is small and mainly distributed on the edges 

of buildings and roads with rich textures; there are few matching points on the roofs of 

buildings and road surfaces with weaker textures. In contrast, our proposed pre-matching 

method is able to provide more dense matching points on buildings and roads that are of 

more concern in urban areas. This is due to the fact that the matching cost of our proposed 

pre-matching method is able to achieve aggregation by surrounding superpixel blocks, 

thus ensuring that weakly textured areas also provide stable matching points. Our pro-

posed pre-matching method extracts the largest number of matched point pairs, and the 

accuracy is close to that of other feature matching methods, which can provide sufficient 

training samples for the whole self-supervised matching. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 8. Some pre-matching results with different methods. (a) Results of SIFT; (b) results of Harris; 

(c) results of LLT; (d) results of FD; (e) results of pre-matching method. The top and bottom are right 

and left views, respectively. 

4.3. Ablation Study of SRWP and PCAM 

Considering that our proposed matching method contains several key links, and the 

adjustment of each link will have an impact on the performance of SRWP and PCAM, we 

compared the effects of different structures or parameters on the method through ablation 

experiments. 

• Pre-matching results 
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and left views, respectively.

Table 1. Comparison of pre-matching results with different methods.

Method EPE RMSE D1 D3 Points

SIFT 1.31 3.15 0.17 0.10 984
Harris 1.12 2.44 0.19 0.06 319

LLT 1.24 2.75 0.17 0.07 973
FD 1.35 3.45 0.17 0.11 1115

Proposed 1.11 2.45 0.12 0.06 29,021

The comparison results of Figure 8 and Table 1 clearly show that the number of
matching points of SIFT, Harris, LLT and FD is small and mainly distributed on the edges
of buildings and roads with rich textures; there are few matching points on the roofs of
buildings and road surfaces with weaker textures. In contrast, our proposed pre-matching
method is able to provide more dense matching points on buildings and roads that are of
more concern in urban areas. This is due to the fact that the matching cost of our proposed
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pre-matching method is able to achieve aggregation by surrounding superpixel blocks, thus
ensuring that weakly textured areas also provide stable matching points. Our proposed
pre-matching method extracts the largest number of matched point pairs, and the accuracy
is close to that of other feature matching methods, which can provide sufficient training
samples for the whole self-supervised matching.

4.3. Ablation Study of SRWP and PCAM

Considering that our proposed matching method contains several key links, and the
adjustment of each link will have an impact on the performance of SRWP and PCAM,
we compared the effects of different structures or parameters on the method through
ablation experiments.

• Pre-matching results

To verify the impact of different confidence levels and number of labeled samples
obtained by pre-matching on the overall algorithm, we set the pre-matching cost threshold
to [0.001,0.005,0.01,0.02,0.05] and conducted the experiments separately. The experiments
were conducted using Dataset A, and the result is shown in Table 2. The number of points
is the number of labeled training samples provided for pre-matching, and EPE/D1/D3
metrics are the average of 1685 sets of experimental data.

Table 2. Comparison of different pre-matching results.

Method Threshold Number of
Points EPE D1 D3

Pre-matching 0.001 20,922 2.53 0.28 0.18
Pre-matching 0.005 24,576 2.50 0.27 0.18
Pre-matching 0.01 29,021 2.44 0.25 0.16
Pre-matching 0.02 39,097 2.62 0.29 0.19
Pre-matching 0.05 51,724 2.79 0.32 0.23

The matching accuracy comparison in Table 2 shows that the setting of the pre-
matching threshold will affect the performance of SRWP and PCAM. As the threshold
increases, the more labeled samples are extracted, but the quality of these samples decreases
continuously. Therefore, the threshold is not set as high as possible or as low as possible. In
this paper, we set the threshold to 0.01 through several experiments.

• Different Loss

We evaluated the method using different losses to test the effectiveness of the loss
function. The experiments were conducted using Dataset A. The EPE/D1/D3 metrics
are the average of 1685 sets of experimental data. The experimental results are shown
in Table 3.

Table 3. Comparison results with different losses.

Lp Ls LPCAM Ll EPE D1 D3

X 5.79 0.31 0.24
X X 4.12 0.30 0.22
X X X 3.24 0.28 0.19
X X X X 2.44 0.25 0.16

Four kinds of losses are defined in this paper. Table 3 shows that the evaluation
metrics EPE/D1/D3 are relatively high if only photometric loss is used for training. This is
because of the structural similarity of the photometric loss description; the weak texture
areas cannot be well handled. If the loss includes smoothness loss, the evaluation metrics
achieve a certain decrease, which is due to the fact that non-disparity abrupt regions in
remote sensing images still occupy the majority of the image. If PCAM loss is added, the
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performance will gradually improve, which is due to the fact that the loss fully takes into
account the left–right consistency and cyclic consistency existing in stereo images. Finally,
adding L1 loss as labeled samples using matching points with high confidence obtained by
pre-matching results in a significant decrease in the evaluation metrics.

4.4. Flexibility of SRWP and PCAM

Considering that SRWP and PCAM will encounter various conditions of data in
practical application, we group the experimental data to compare the effectiveness of the
method in dealing with different data.

• Resolutions

To test the flexibility of the method to different image resolutions, we adjusted both
the test image and the true disparity map of Dataset A to 1024× 1024, 512× 512, 256 × 256,
and 128 × 128 resolutions, and the values in the true disparity map are adjusted to the
corresponding scales. The results are shown in Table 4.

Table 4. Comparison results with different resolutions.

Resolutions EPE D1 D3

1024 × 1024 2.44 0.25 0.16
512 × 512 2.35 0.23 0.15
256 × 256 2.36 0.22 0.14
128 × 128 2.34 0.20 0.14

Table 4 shows that the performance of our method has little change under the four
resolutions, because our method calculates the disparity for pixels, which are less disturbed
by the resolution. On the other hand, as the resolution becomes smaller, there is a certain
improvement in matching accuracy, which is due to the fact that the range of disparity is
continuously reduced during down-sampling, thus reducing the matching difficulty.

• Maximum Parallax

In order to test the flexibility of the method for different disparity sizes, we grouped
the test images of Dataset A into four groups for testing separately, and the upper and
lower bounds of disparity for the images in each group were (0,40), (0,80), (0,120), and
(0,160). The results obtained are shown in Table 5.

Table 5. Comparison results with different maximum disparity.

Range of Disparity EPE D1 D3

(0,40) 2.42 0.24 0.16
(0,80) 2.56 0.26 0.18
(0,120) 2.64 0.27 0.20
(0,160) 2.80 0.28 0.21

As can be observed from Table 5, the performance of our method does not vary much
for different disparity ranges, which is due to the fact that our method is able to handle
large disparity differences by means of a saliency map. However, the overall trend is that
the larger the saliency map range, the worse the accuracy, which is due to the fact that the
larger the saliency map range, the more difficult it is to search for the true saliency map
value. In general, our method can ensure that the matching accuracy decreases slightly
while the disparity range increases significantly, which proves that our method can adapt
to different parallax ranges.
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4.5. Results and Discussion

In this section, experiments are conducted using Datasets A, B, and C, where Datasets
A and B utilize true disparity values and evaluate disparity accuracy by EPE, D1, and D3
metrics. Since there is no corresponding disparity true value for Dataset C, we use the
matching results to 3D reconstruction. We calculate the RMSE of DSM obtained by three-
dimensional reconstruction, and indirectly evaluate the matching accuracy. In order to fully
demonstrate the effectiveness of the proposed algorithm, some of the latest algorithms
are selected for comparison experiments, including three types of traditional methods
(FCVFSM [13], SGM [10] and SGBM [24]) and three types of neural network methods
(PSMNet [19], CGN [48] and BGNet [49]). The parameters of all compared methods are set
according to the recommendations of their articles, the network models are used in their
original models, and the results of the quantitative evaluation are shown in Table 6, where
time refers to the test time.

Table 6. Comparison of different stereo matching methods.

Method
Dataset A Dataset B Dataset C

EPE D1 D3 Time (s) EPE D1 D3 RMSE Time (s)

FCVFSM 4.56 0.49 0.36 24.67 4.84 0.47 0.39 6.21 3.79
SGBM 4.95 0.47 0.32 22.96 5.10 0.45 0.35 7.19 3.53
SGM 3.73 0.40 0.29 8.95 3.65 0.39 0.27 5.14 1.37

PSMNet 3.14 0.33 0.26 1.36 3.23 0.34 0.25 3.75 0.21
CGN 3.39 0.35 0.22 1.12 3.45 0.38 0.24 3.93 0.17

BGNet 2.85 0.31 0.18 1.10 2.83 0.31 0.17 3.32 0.17
Proposed 2.44 0.25 0.16 1.18 2.32 0.24 0.14 2.36 0.18

The first set of experiments is from Dataset A, containing 1685 pairs of stereo images,
each 1024 × 1024 pixels. Some experimental results are shown in Figure 9.

It can be seen from the experimental results in Figure 9 that our method is visually
closer to the true value of disparity than other methods. At the same time, our method is
able to suppress the singular value generation. This is due to the smoothing loss set by
our method and the fact that training at different resolutions can effectively weight the
singular errors.

The second set of experiments is from Dataset B. Stereo matching experiments are
performed separately, and then the matched disparity maps are multiplied by the mask to
obtain disparity map results for weak texture or parallax abrupt change regions; some of
the experimental results are shown in Figure 10.

The experimental results in Figure 10 show that our method is closer to the true value
of disparity compared with other methods in the region of weak texture or parallax abrupt
change. The green boxes marking the edges of the buildings show that our method can
accurately locate the disparity faults between the buildings and the ground, ensuring the
disparity edges are flush and closer to the true disparity value in terms of shape contours.
This is because our method not only ensures that the training samples contain a large
number of disparity mutation edges through pre-matching, but also optimizes the disparity
edges through disparity refinement. As can be seen from the top of the building, marked
by the black circle, our method is able to obtain satisfactory disparity results in the weakly
textured regions, maintaining disparity smoothness in the flat areas on top of the building.
This is mainly due to the loss of smoothness and PCAM, which limits the generation of
distortion. The experimental results in Figure 10 demonstrate that our method can handle
stereo matching of weak textures and parallax abrupt change regions.
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Figure 9. Some stereo matching results with different methods for Dataset A. (a) Optical satellite
stereo pairs; (b) truth of disparity; (c) results of proposed method; (d) results of FCVFSM; (e) results
of SGBM; (f) results of SGM; (g) results of CGN; (h) results of BGNet; (i) results of PSM.

The third set of experiments from Dataset C contains a set of stereo images of the
Harbin area with image pixel sizes 21,691 × 15,069 and 22,271 × 15,172. The results of
the partially reconstructed DSM experiments are shown in Figure 11. The size of this area
is 400 × 400 pixels. It can be seen from the figure that our method is able to compute
accurate disparity maps of satellite images and reliably reconstruct the DSMs based on our
disparity results.
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Figure 10. Some stereo matching results with different methods for dataset B. (a) Optical satellite
stereo pairs; (b) mask of left image; (c) truth of disparity; (d) results of proposed algorithm; (e) results
of FCVFSM; (f) results of SGBM; (g) results of SGM; (h) results of CGN; (i) results of BGNet; (j) results
of PSM.

Remote Sens. 2022, 13, x FOR PEER REVIEW 23 of 26 
 

 

Figure 10. Some stereo matching results with different methods for dataset B. (a) Optical satellite 

stereo pairs; (b) mask of left image; (c) truth of disparity; (d) results of proposed algorithm; (e) re-

sults of FCVFSM; (f) results of SGBM; (g) results of SGM; (h) results of CGN; (i) results of BGNet; (j) 

results of PSM. 

The third set of experiments from Dataset C contains a set of stereo images of the 

Harbin area with image pixel sizes 21,691 × 15,069 and 22,271 × 15,172. The results of the 

partially reconstructed DSM experiments are shown in Figure 11. The size of this area is 

400 × 400 pixels. It can be seen from the figure that our method is able to compute accurate 

disparity maps of satellite images and reliably reconstruct the DSMs based on our dispar-

ity results. 

  

(a) 

 

(b) 

 

(c) 

 
(d) 

 

(e) 

 

(f) 

 

(g) 

 
(h) 

Figure 11. Some 3D reconstruction results with different methods for dataset C. (a) Optical satellite 

stereo pairs; (b) results of SGBM; (c) results of SGM; (d) results of FCVFSM; (e) results of CGN; (f) 

results of BGNet; (g) results of PSM; (h) results of proposed algorithm. 

The experimental results in Figure 11 show that our method can maintain the flatness 

of the building roof compared with other methods, and also the reconstructed building 

has a more regular shape. The edges of the building marked by the red circles show that 

our method can achieve the separation of the building from the ground and effectively 

avoid the error caused by the difference in viewpoint. 

We use Dataset A, B and C for experimental analysis and compare with state-of-the-

art. From the experimental results in Figures 9–11 and Table 6, it can be seen that SGM as 

a classic dynamic programming stereo matching algorithm can only obtain a rough dis-

parity map when it involves parallax abrupt change and building occlusion. This is due 

to the difficulty of dynamic programming methods to compute edge pixel disparity only 

through the optimization of cost aggregation. As a variant of SGM, SGBM can improve 

the smoothness of parallax edges but cannot handle large areas without texture. As shown 

in Figure 10f,g, SGBM performs worse in untextured regions marked by black circles. 

FCVFSM assumes that the pixels in the support window have a constant parallax value, 

which violates the inclined surface and causes the edge to blur in the parallax abrupt 

change region. CGN achieves unsupervised matching by means of generative adversarial 

networks. However, its generator does not consider the attention mechanism and cannot 

improve the matching accuracy of buildings in the urban areas we are concerned about. 

BGnet and PSMNet focuses on the improvement of the network structure and still needs 

a large number of training samples containing ground-truth labels. This experiment di-

rectly uses its original network model, and it is difficult to accurately find the matching 

points of trees, buildings and other targets on the remote sensing images. 

In terms of time, traditional methods take longer than neural network methods. The 

method proposed in this paper has no advantage in test time. However, considering that 

this paper is oriented to 3D reconstruction under mass satellite remote sensing data, in 

Figure 11. Some 3D reconstruction results with different methods for dataset C. (a) Optical satellite
stereo pairs; (b) results of SGBM; (c) results of SGM; (d) results of FCVFSM; (e) results of CGN;
(f) results of BGNet; (g) results of PSM; (h) results of proposed algorithm.
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The experimental results in Figure 11 show that our method can maintain the flatness
of the building roof compared with other methods, and also the reconstructed building has
a more regular shape. The edges of the building marked by the red circles show that our
method can achieve the separation of the building from the ground and effectively avoid
the error caused by the difference in viewpoint.

We use Dataset A, B and C for experimental analysis and compare with state-of-the-
art. From the experimental results in Figures 9–11 and Table 6, it can be seen that SGM
as a classic dynamic programming stereo matching algorithm can only obtain a rough
disparity map when it involves parallax abrupt change and building occlusion. This is due
to the difficulty of dynamic programming methods to compute edge pixel disparity only
through the optimization of cost aggregation. As a variant of SGM, SGBM can improve
the smoothness of parallax edges but cannot handle large areas without texture. As shown
in Figure 10f,g, SGBM performs worse in untextured regions marked by black circles.
FCVFSM assumes that the pixels in the support window have a constant parallax value,
which violates the inclined surface and causes the edge to blur in the parallax abrupt
change region. CGN achieves unsupervised matching by means of generative adversarial
networks. However, its generator does not consider the attention mechanism and cannot
improve the matching accuracy of buildings in the urban areas we are concerned about.
BGnet and PSMNet focuses on the improvement of the network structure and still needs a
large number of training samples containing ground-truth labels. This experiment directly
uses its original network model, and it is difficult to accurately find the matching points of
trees, buildings and other targets on the remote sensing images.

In terms of time, traditional methods take longer than neural network methods. The
method proposed in this paper has no advantage in test time. However, considering that
this paper is oriented to 3D reconstruction under mass satellite remote sensing data, in
order to reduce the cost of manually labeling samples; it does not need to be as fast as the
stereo matching driverless method.

Our method is closer to the true value of disparity than other methods, whether in
the whole image, weak texture region or parallax abrupt change region. It also has more
advantages in accuracy comparison. The metrics value of the proposed method is the
lowest among the five algorithms. Since all the test data are satellite remote sensing images
of urban areas, the proposed self-supervised stereo matching method based on SRWP and
PCAM is more suitable for urban satellite remote sensing images than other methods.

5. Conclusions

Stereo matching and 3D reconstruction of urban scenes using optical satellite remote
sensing stereo images are more advantageous in terms of data cost and coverage range.
However, the urban scenes are complex and diverse, and there are problems such as
occlusion of building entities caused by different viewpoints, weak textures and parallax
abrupt change. Traditional matching methods using only simple features have difficulty
achieving better results. In contrast, the stereo matching method based on neural networks
needs to use a large number of training samples containing true labels, which are difficult
to obtain from satellite images. To this end, this paper proposes a self-supervised stereo
matching method based on SRWP and PCAM to achieve stereo matching of urban scenes.
First, based on the idea of matching cost optimization and updating, a superpixel random
walk pre-matching method is proposed. The initial point matching cost is constructed
by selecting simple features, and aggregated into a block matching cost based on the
superpixel segmentation results. The matching cost is optimized and updated, and the
pre-matching point pairs with high confidence are filtered using thresholding. We then
introduce parallax attention and channel attention into stereo matching and construct a
parallax-channel attention mechanism to capture the correspondence of stereo images.
We also add two optimization strategies, feature enhancement and parallax refinement,
to obtain more significant features in pre-processing and more refined parallax in post-
processing, respectively. The network model is then trained using pre-matching point pairs
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and various unsupervised loss constraints. Finally, the trained network is used to re-match
the stereo images to obtain disparity map and stereo matching relationships. Comparative
experiments and analyses on publicly and practically measured constructed datasets show
that our method is able to learn the parallax correspondence in a self-supervised manner
and can achieve more advanced performance compared to other methods. However, there
is still some interference error for vegetation such as trees. Future research will focus on
eliminating the effect of tree interference on stereo matching and 3D reconstruction.
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