
����������
�������

Citation: Xie, Y.; Yang, T.; Wang, X.;

Chen, X.; Pang, S.; Hu, J.; Wang, A.;

Chen, L.; Shen, Z. Applying a

Portable Backpack Lidar to Measure

and Locate Trees in a Nature Forest

Plot: Accuracy and Error Analyses.

Remote Sens. 2022, 14, 1806. https://

doi.org/10.3390/rs14081806

Academic Editor: Nikolay Strigul

Received: 28 February 2022

Accepted: 5 April 2022

Published: 8 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Applying a Portable Backpack Lidar to Measure and Locate
Trees in a Nature Forest Plot: Accuracy and Error Analyses
Yuyang Xie 1 , Tao Yang 2, Xiaofeng Wang 2, Xi Chen 2, Shuxin Pang 3 , Juan Hu 4, Anxian Wang 4, Ling Chen 4

and Zehao Shen 1,*

1 Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental
Sciences, Peking University, Beijing 100871, China; xie_yy@pku.edu.cn

2 School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China;
yt941112@ynu.edu.cn (T.Y.); wangxiaofeng@mail.ynu.edu.cn (X.W.); chenxi@mail.ynu.edu.cn (X.C.)

3 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany,
Chinese Academy of Sciences, Beijing 100093, China; pangshuxin@ibcas.ac.cn

4 Zhanyi Branch of Zhujiangyuan Provincial Nature Reserve Administration and Protection Bureau,
Qujing 655331, China; zjybhqhj@163.com (J.H.); a2571181108@163.com (A.W.); cl13988994441@163.com (L.C.)

* Correspondence: shzh@urban.pku.edu.cn; Tel.: +86-010-62751179

Abstract: Accurate tree positioning and measurement of structural parameters are the basis of forest
inventory and mapping, which are important for forest biomass calculation and community dynamics
analyses. Portable backpack lidar that integrates the simultaneous localization and mapping (SLAM)
technique with a global navigation satellite system receiver has greater flexibility for tree inventory
than terrestrial laser scanning, but it has never been used to measure and map forest structure in
a large area (>101 hectares) with high tree density. In the present study, we used the LiBackpack
DG50 backpack lidar system to obtain the point cloud data of a 10 ha plot of subtropical evergreen
broadleaved forest, and applied these data to quantify errors and related factors in the diameter at
breast height (DBH) measurements and positioning for more than 1900 individual trees. We found an
average error of 4.19 cm in the DBH measurements obtained by lidar, compared with manual field
measurements. The incompleteness of the tree stem point clouds was the main factor that caused the
DBH measurement errors, and the field DBH measurements and density of the point clouds also had
significant impacts. The average tree positioning error was 4.64 m, and it was significantly affected by
the distance and route length from the measured trees to the data acquisition start position, whereas
it was affected little by the habitat complexity and characteristics of tree stems. The tree positioning
measurement error led to increases in the mean value and variability of paired-tree distance error as
the sample plot scale increased. We corrected the errors based on the estimates of predictive models.
After correction, the DBH measurement error decreased by 31.3%, the tree positioning error decreased
by 44.3%, and the paired-tree distance error decreased by 56.3%. As the sample plot scale increased,
the accumulated paired-tree distance error stabilized gradually.

Keywords: backpack lidar; closed forest; SLAM; stem positioning; accuracy; paired-tree distance

1. Introduction

Constructing investigation plots to monitor forest dynamics is an important approach
in plant community ecology research, and it also sets up a long-term platform for inter-
disciplinary biodiversity science [1]. These studies involved the inventory of individual
trees in sampling plots, including determining the position and structural parameters of
trees. However, ordinary forest inventory construction is time-consuming and laborious,
especially in plots with complex terrain and areas larger than 10 ha [2]. Rangefinder, total
station, and real-time kinematic systems have begun to be used for single tree positioning;
the efficiency of these tools is low because the global navigation satellite system (GNSS)
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signal and light transmission route are always blocked by the generally high density of
canopy found in natural forests [3].

Lidar (light detection and ranging) systems can be used as a new approach to acquiring
three-dimensional (3D) structural measurements of vegetation [4]. Ground-based terrestrial
laser scanning (TLS) has been used widely to obtain structural parameters with high
precision [5–7], but its fixed position limits its spatial flexibility. Therefore, TLS is inefficient
for use in a large area with complex environments [8]. Mobile lidar systems, such as
backpack lidar, can overcome this problem because they are portable, and the accuracy of
tree structure measurement based on mobile lidar has also been confirmed [8–12]. However,
most of the studies conducted to verify the measurement accuracy were performed in
plantations with simple tree structures and orderly arrangements [8], or small-area natural
coniferous forest plots with flat terrain [10], and only several dozen or hundreds of trees
were selected for the validation set with little sheltering around; thus the quality of lidar
point clouds was usually high and homogeneous. The high tree density and complex
understory structure in natural forests in subtropical regions would lead to great differences
in the quality of point clouds; thus, the suitability of backpack lidar for extracting natural
large-scale forest structures needs to be further verified.

Mapping trees in forest sampling plots is the basis for exploring the structure and
dynamics of forest communities [13–15], and for quantifying interspecific or intraspecific
competition [16]. Thus, it is critical to obtain accurate position and structural measurements
of trees. Integrating GNSS and lidar can provide accurate position information for point
clouds and improve the efficiency and accuracy of automatic data registration [17,18].
However, the GNSS signal is usually shielded by the dense forest canopy. Therefore,
it is particularly important to evaluate the potential of the core technique of automatic
point cloud registration comprising simultaneous localization and mapping (SLAM) for
mobile lidar application in such a complex environment. SLAM is a technique that can
instantly build and update the surrounding environment’s map or 3D information by
tracking the sensor position; thus, it can provide an alternative environmental navigation
and positioning method without a GNSS signal [9,19].

The SLAM system first extracts some features of scanned objects in the initially ob-
tained point cloud data [20] and during movement; the system then calculates the rotation
and translation matrices based on the features in the current and previous time step, before
registering the point cloud and inertial measurement unit measurements, and updating the
current trajectory and position information. All of the point data collected from the begin-
ning of the data collection process, until the current time, are then updated to generate 3D
images [3]. The accuracy of this technique has been verified in many mapping studies [21].
However, most of the research objects were architectural or indoor facades, and only a few
studies have assessed the suitability of the technique for complex forests [3]. In particular,
Qian et al. [17] quantified the difference in the tree positioning accuracy between sparse and
dense forests using vehicle-mounted mobile lidar equipment. Chudá et al. [22] compared
the tree positioning accuracy with different types of portable lidar. However, these studies
did not quantify the effects of factors that caused positioning errors, while the former study
only investigated about 1 ha of dense forest and the latter only targeted dozens of trees.
Therefore, it is still necessary to determine whether this technique is suitable for inventory
and tree mapping in large-scale forests.

The diameter at breast height (DBH) and position of each tree are basic measurements
of forest structure—the distance between any two trees (paired-tree distance) is essential
to calculate forest density—and these metrics are also necessary for constructing forest
competition indexes [23–25]. In the present study, we used a backpack lidar system
(LiBackpack) equipped with double Velodyne Puck VLP-16 laser sensors to collect complete
point cloud data for a dense natural subtropical mixed forest of 10 ha in area, and aimed
to determine: (1) the errors in DBH measurements and tree positioning obtained using
the backpack lidar; (2) how different factors might affect the errors; and (3) whether the
accuracy of the measurements could be optimized based on the relationships between
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the measurement error and related factors. Our findings demonstrate the feasibility of
obtaining backpack lidar measurements in a complex forest environment, and also provide
suggestions for further improving and optimizing the accuracy of data so as to enhance the
efficiency of forest inventory and monitoring.

2. Materials and Methods
2.1. Study Area

The study site comprised an area of 10 ha (200 × 500 m2) in a semi-humid evergreen
broad-leaved forest as the forest monitoring plot (103.9◦E, 25.9◦N; 2300 m a.s.l.) located
at Maxiong Mountain, Pearl River Source Nature Reserve, Yunnan Province, China. This
reserve is located on the Nanpan River, which is one of the sources of the Pearl River, and
it has high value for biodiversity maintenance, water storage, soil conservation, climate
regulation, and tourism. This forest was destroyed by a wildfire 30 years ago and then
underwent restoration without much human disturbance. The establishment of a plot will
provide an important platform for the observation of natural community succession. The
tree density in the large sample plot was about 8600 trees/ha. The dominant species in the
tree layer was Castanopsis fargesii, which accounted for more than 90% of all trees, and the
dominant shrubs were Rhododendron irroratum and Rhododendron delavayi.

2.2. Field Measurement

The large forest plot (Figure 1) was artificially divided into 10 × 25 small survey grids,
each with an area of 20 × 20 m2. In this process, 286 grid corners were accurately located
by using the total station Z TS-420R (Hi-Target, Guangzhou, China). Six to ten trees were
selected in different directions around each grid corner, within a distance of 10 m, and
accurately located (Xfield, Yfield) using tape and a compass based on the precise coordinates
of the nearest grid corners. At the same time, we used a diameter ruler to measure the DBH
(DBHfield) at a height of 1.3 m for each selected tree.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 16 
 

 

obtained using the backpack lidar; (2) how different factors might affect the errors; and 

(3) whether the accuracy of the measurements could be optimized based on the rela-

tionships between the measurement error and related factors. Our findings demonstrate 

the feasibility of obtaining backpack lidar measurements in a complex forest environ-

ment, and also provide suggestions for further improving and optimizing the accuracy of 

data so as to enhance the efficiency of forest inventory and monitoring. 

2. Materials and Methods 

2.1. Study Area 

The study site comprised an area of 10 ha (200  500 m) in a semi-humid evergreen 

broad-leaved forest as the forest monitoring plot (103.9° E, 25.9° N; 2300 m a.s.l.) located 

at Maxiong Mountain, Pearl River Source Nature Reserve, Yunnan Province, China. This 

reserve is located on the Nanpan River, which is one of the sources of the Pearl River, and 

it has high value for biodiversity maintenance, water storage, soil conservation, climate 

regulation, and tourism. This forest was destroyed by a wildfire 30 years ago and then 

underwent restoration without much human disturbance. The establishment of a plot 

will provide an important platform for the observation of natural community succession. 

The tree density in the large sample plot was about 8600 trees/ha. The dominant species 

in the tree layer was Castanopsis fargesii, which accounted for more than 90% of all trees, 

and the dominant shrubs were Rhododendron irroratum and Rhododendron delavayi. 

2.2. Field Measurement 

The large forest plot (Figure 1) was artificially divided into 10 × 25 small survey 

grids, each with an area of 20 × 20 m2. In this process, 286 grid corners were accurately 

located by using the total station Z TS-420R (Hi-Target, Guangzhou, China). Six to ten 

trees were selected in different directions around each grid corner, within a distance of 10 

m, and accurately located (Xfield, Yfield) using tape and a compass based on the precise co-

ordinates of the nearest grid corners. At the same time, we used a diameter ruler to 

measure the DBH (DBHfield) at a height of 1.3 m for each selected tree.  

 

Figure 1. Situation in the forest plot and lidar data acquisition results. (a) Grids in the large forest 

plot and trajectories of multiple lidar scans. (b) Lidar point cloud data displayed by height. (c) Real 

scene in the forest plot and (d) the corresponding point cloud. 

2.3.Lidar Data Collection 

We used the LiBackpack DG50 backpack lidar system (Digital Green Valley Tech-

nology Co., Ltd., Beijing, China). This system is equipped with two Velodyne Puck 

(a) (c) (d) 

(b) 

Figure 1. Situation in the forest plot and lidar data acquisition results. (a) Grids in the large forest
plot and trajectories of multiple lidar scans. (b) Lidar point cloud data displayed by height. (c) Real
scene in the forest plot and (d) the corresponding point cloud.

2.3. Lidar Data Collection

We used the LiBackpack DG50 backpack lidar system (Digital Green Valley Technology
Co., Ltd., Beijing, China). This system is equipped with two Velodyne Puck VLP-16 lidar
sensors that rotate in the horizontal and vertical directions, and high-precision GNSS equip-
ment. The vertical field angle was 30◦, and the measurement range was within 100 m, where
600,000 laser pulses were emitted per second. In the data acquisition process, a measurer
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walked along a zigzag route in the forest with the backpack lidar equipment on his/her
back. The start and end of the walking route were in the same open area, with a stable GNSS
signal outside the sample plot, in order to ensure that part of the point cloud had geographic
location information. The original point cloud data and GNSS location records were then
imported into LiFuser BP software (https://www.greenvalleyintl.com/LiFuser/ accessed
on 1 June 2021) for matching to obtain point cloud data containing geographic location in-
formation and the trajectories for data acquisition processing (Figure 1b). Due to the limited
endurance of the equipment, we split the data acquisition into four parts (Figure 1a).

2.4. Data Processing
2.4.1. Preprocessing of Lidar Point Clouds

We extracted ground points from point clouds using an improved progressive trian-
gulated irregular network densification algorithm [26] and subtracted the elevations of
ground points from the elevations of the nearest non-ground points. Thus, the locations
of all trees were transformed onto a horizontal plane. We gridded the ground points as
a digital elevation model with a resolution of 0.5 m using an inverse distance-weighted
interpolation method. These processes were implemented in LiDAR 360 V5.0 software
(https://www.greenvalleyintl.com/LiDAR360/ accessed on 1 June 2021).

2.4.2. DBH Fitting and Trees Positioning

According to the measured positions and relative distributions of trees near the plot
corners, we searched the preprocessed point cloud to find 3D models corresponding to the
trees that we measured in the field. We applied the cylindrical fitting method based on
3D ordinary least squares to obtain the lidar DBH values (DBHlidar) and stem coordinates
(Xlidar,Ylidar) for the trees. As described by Xie et al. [8], the height of the stem point cloud
slices used in the algorithm was 30 cm (between 1.15–1.45 m from the ground) to optimize
the fitting accuracy. These processes were implemented in LiDAR 360 V5.0 software. We
calculated ∆DBH (DBHlidar-DBHfield) as the DBH estimation error for lidar, and calculated
∆X (Xlidar-Xfield) and ∆Y (Ylidar-Yfield) as the lidar estimation errors for trees positioned in
the east and south, respectively. We calculated ∆P as the square root of the sum of ∆X2 and
∆Y2 to represent the lidar tree positioning error. ∆X, ∆Y, and ∆P are shown in Figure 2a.
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and deviation in the east and north offsets: ∆X, ∆Y. (b) Distance interval from any tree to other trees,
i.e., search radius for calculating the relative distance error. The number in the figure is the radius of
the search range with the target tree as the center (m). (c) Completeness of the stem point cloud (CPC, ◦).

2.4.3. Paired-Tree Distance

The growth of trees in forests is regulated by competition [27,28] and the paired-tree
distance is often used as an indicator of competition intensity [29]. In order to explore the
measurement error in the paired-tree distance and the scale effect, we set the locations of
trees measured in the field (Xfield, Yfield) as centers to establish a series of buffers (Figure 2b),
which we defined as the search range for calculating paired-tree distance, and calculated the
distances measured by lidar (Dlidar) and in the field (Dfield) from each tree to all other trees

https://www.greenvalleyintl.com/LiFuser/
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within each search range. We defined the measurement error in the paired-tree distance as
∆D = Dlidar − Dfield, and calculated the mean and standard deviation of ∆D for different
search radius ranges in further analyses.

2.4.4. Extraction of Influencing Factors

In order to explore the factors that affected the accuracy of DBH measurements, we
calculated the completeness of the stem point cloud (CPC), point cloud density (PCD), point
cloud intensity (PCI), tree distance to trajectory (DT), terrain slope, slope aspect change
rate (SOA), terrain roughness, and DBHfield as independent variables. Due to sheltering by
other trees, it is difficult to ensure that laser echoes are generated in all directions from a tree
stem, so the shape of the stem point cloud is usually an incomplete cylinder. Considering
that the incompleteness of the cylinder may have affected the cylinder fitting algorithm,
we defined IPC (Figure 2c) as one radian on the cylindrical surface of the stem point cloud
with the tree position as the axis. The CPC was calculated as follows. First, the 30 cm stem
point cloud slice used for DBH fitting on the horizontal plane was orthogonally projected
to obtain point cloud rings before calculating the azimuth radian value (◦) based on the tree
position for all points in the rings, and then sorted the azimuth radian values for all points
corresponding to each tree from small to large, including 0◦ and 360◦. We defined outliers in
a sequence as those greater than the upper quartile plus 1.5 times the interquartile distance
using the function boxplot.stats() in R (V4.1.2). We treated the sum of three maximum
outliers of the first-order difference sequence of the azimuth radian sequence as the radian
missing from the projection point ring described above. Finally, we subtracted the missing
radian from 360◦ to obtain the CPC.

Previous studies have shown that PCD and DBHfield can significantly affect the DBH
measurements in plantations [8,30]; thus, they were also considered in the present study.
PCD was calculated as the number of points on the unit horizontal projection [8]. PCI is
the laser echo intensity on stems collected by the receiving device, which is related to the
surface material, roughness, incident angle direction of the target, emission energy of the
instrument, laser wavelength, and other attributes that were difficult to measure. DT is the
average Euclidean distance from a single tree position to the trajectory. The terrain slope,
SOA, and roughness reflecting the terrain complexity were calculated directly from the
digital elevation model data and extracted to the position of each tree.

To explore the factors that affected the positioning accuracy of trees, in addition
to the variables of the tree attributes specified above, we considered that the complex
environment would interfere with the movement of the experimenter carrying the lidar,
thereby influencing the scanning time, incident angle, as well as the performance of the
SLAM algorithm. The complex environment provided more reference points for automatic
data registration [17], but the greater numbers of branches and leaves also increased the
variability of the incident surface material for the laser. We calculated the number of trees
from the trajectory to each tree, as well as the average intensity, density, and total number
of stem laser points, terrain slope, SOA, and roughness to reflect the complexity of the
environment around the trees. The number of trees between the trajectory and the target
tree was calculated using the bottom-up single tree segmentation algorithm [31] combined
with visual interpretation.

In addition, the data accuracy of the point cloud may have been affected after losing
the GNSS signal, because we could only obtain the starting position before entering the
sample plot, and the GNSS signal was fixed in the whole process. Thus, we calculated the
Euclidian distance between each tree and the starting position. Since the systematic error
of the SLAM algorithm would accumulate during the whole process [21], we calculated
the cumulative route length from the first laser echo generated on each tree to the starting
position based on the accurate GPS time for every laser point and trajectory. We also
calculated the standard deviation for the GPS time of laser points on each stem to represent
the number of times the tree was scanned.
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Among the indicators described above, the CPC and route length to the starting
point were calculated using R (V4.1.2), PCI was the original value produced by LiFuser
BP software, the number of trees was calculated with LiDAR 360 software, and the other
indicators were calculated using ArcGIS v10.3.

2.5. Data Analysis

To estimate the contributions of different factors to the lidar measurement errors, we
used random forest models to explain ∆DBH and ∆P. We applied the bootstrap sampling
method of 100 iterations, with 80% random samples drawn each time to build the random
forest models, and the pseudo-R-squared value was used to measure the variation explained
by the model. We used the increase in the node purity to measure the impact of each
variable on the heterogeneity of the observed values at each node in the classification
tree, and the weight contributed by each variable was expressed as the proportion for the
variable relative to the total increase in the node purity value. The random forest model
was constructed using the “randomForest” package in R (V4.1.2).

To measure the marginal responses of the measurement errors to different explanatory
variables, we first conducted ten-fold cross-validation and used the principle of optimal
subset regression to determine the optimum number of variables in the random forest
model for selecting the optimal combination of variables. The “partialplot” function in
the “randomForest” R package was then used to produce partial correlation diagrams for
∆DBH and ∆P with their influencing variables.

To describe the trend in each marginal response, according to the partial correlation
between ∆DBH or ∆P and the dependent variables, we fitted univariate linear, quadratic,
logarithmic, exponential, and logistic models, and then identified the best model to explain
the variations in ∆DBH or ∆P with the dependent variables based on R2. If the trend
exhibited obvious segmentation characteristics, the “segmented” function in R (V4.1.2) was
used to determine the segmentation position and to perform segmentation fitting.

Using the optimal univariate models determined above, we constructed a multivariate
generalized linear model (GLM) with ∆DBH, ∆X, and ∆Y as dependent variables. Accord-
ing to ∆DBH = DBHlidar − DBHfield, ∆X = Xlidar − Xfield, and ∆Y = Ylidar − Yfield, the linear
models were transformed into the form of the field-measured value ~ LiDAR-estimated
value to obtain the transformation relationship between the two measurements.

Next, we corrected DBHlidar, Xlidar, and Ylidar with the conversion model to obtain
the real values and determined the corrected values of ∆P and ∆D. We used one-way
analysis of variance to test the differences between the lidar measurement errors before
and after correction; then, we used locally weighted regression to explore the before- and
after-correction difference of the trends in the mean and standard deviation of the ∆D
values as the search range increased.

3. Result
3.1. DBH Measurement Error and Correction

The random forest model explained 30.40 ± 0.015% of the variation in ∆DBH. Ten-fold
cross-validation showed that the first three variables should be selected for the best model.
IPC explained the most variation, where it accounted for 26.28 ± 0.93% of the total variation,
and DBHfield and PCD explained 17.96 ± 0.63% and 9.00 ± 0.35%, respectively (Figure 3a).
The DBH lidar measurement error (∆DBH) was 2.16 ± 5.61 cm, and the absolute error
(|∆DBH|) was 4.19 ± 4.30 cm (Figure 4b).
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 Figure 3. Regression results obtained with the random forest model for the DBH measurement error
∆DBH. (a) Relative importance of variables, where the error line is the standard deviation of the
results obtained using the random forest model constructed by randomly drawing 80% of the samples
100 times. (b) Marginal response of the three most important variables, where the black lines are the
average marginal response values obtained using the random forest model constructed by randomly
drawing 80% of the samples 100 times. The upper and lower bounds of the gray shading are the
maximum and minimum values, respectively, and the red curve is the best curve obtained by model
screening based on R2.
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Figure 4. Relationship between the lidar-estimated and field-measured DBH values, and the estima-
tion absolute error before and after correction based on the transformation model. (a) Cross-origin
linear fitting of DBH lidar estimated and field measured values. The red points and line are the fitting
results before correction. The blue points and line are the fitting results after correction. The black
dotted line represents y = x. (b) Absolute errors (|∆DBH|) of lidar measurements before and after
correction. In the figure, × denotes the mean values. The differences are significant according to
analysis of variance (p < 0.05).

According to the R2 values, the quadratic model was the best in explaining the
marginal response of ∆DBH to CPC (R2 = 0.978; Figure 3b, Table 1). As the CPC in-
creased, ∆DBH decreased and gradually stabilized. ∆DBH was minimized when CPC
reached about 250◦, being stable as CPC increased further.
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Table 1. Curve fitting for the marginal response of the DBH measurement error (∆DBH) obtained
with the random forest model. The table shows the F value and R2 value for the model.

Variable Linear Logarithmic Quadratic Exponential Logistic

Completeness of
point cloud (CPC)

F 1274.358 3577.328 7804.132 2182.511 2033.291

R2 0.786 0.912 0.978 0.863 0.854

DBH field (DBHfield)
F 3572.559 16,223.59 6269.308 — —

R2 0.901 0.976 0.97 — —

Point density (PD)
F 44.255 204.248 598.36 32.151 45.977

R2 0.183 0.508 0.861 0.14 0.188

The logarithmic model was optimal for explaining the marginal response of ∆DBH
to DBHfield (R2 = 0.976; Figure 3b, Table 1). As DBHfield increased, ∆DBH decreased and
reached zero when DBHfield was about 23 cm. Moreover, ∆DBH was < 0 for trees with
DBHfield > 23 cm, i.e., DBHlidar was less than DBHfield.

The quadratic model was selected for explaining the marginal response of ∆DBH to
PCD (R2 = 0.861; Figure 3b, Table 1). ∆DBH decreased rapidly initially and then increased
as PCD increased. The minimum ∆DBH corresponded to the PCD of 8 points/cm2.

Based on the relationship identified, we constructed a predictive model for ∆DBH
(Equation (1)), where the R2 value was 0.323, which was similar to the total variation
explained by the random forest model. According to ∆DBH = DBHlidar − DBHfield, we
set DBHfield as DBHreal and transformed Equation (1) into Equation (2) as the model for
converting lidar measurements into real values, as follows.

∆DBH = −0.36DBHfield − 0.125IPC + 0.0002CPC2 − 0.34PD + 0.24PD2 + µ (1)

DBHreal = 1.56DBHLidar + 0.195IPC − 0.0003CPC2 + 0.53PD − 0.038PD2 + µ (2)

DBHfield was also an explanatory variable, so, in order to ensure that DBHlidar had a
unique value, the linear form of DBHfield was considered instead of the logarithmic form.
In the equations above, µ is the unexplained part, and the corrected DBHlidar is the part
on the right-hand-side of the equation, excluding µ. After correction, the linear fit (R2)
between DBHlidar and DBHfield was improved, and the fitted cross-origin line was closer to
y = x (slope = 0.9, slope before correction = 0.87; Figure 4a). The root mean square error
decreased from 6.01 cm to 3.86 cm (Figure 4a), and the absolute estimation error (|∆DBH|)
decreased from 4.19 ± 4.30 cm to 2.88 ± 2.56 cm (Figure 4b), i.e., a decrease of 31.3%.

3.2. Tree Positioning Error and Correction

Figure 5 shows the distribution of the lidar tree positioning error (∆P), where the total
∆P was 4.64 ± 2.50 m. The random forest model explained 83.66% ± 0.01% of the variation
in ∆P, and the ten-fold cross-validation selected the first two variables for the best model.
The distance to the start (DS) explained most of the variation (48.81 ± 1.03%) in ∆P, and the
route length from the start (RS) explained 19.93 ± 0.66% (Figure 6a).

The model screening results based on the R2 values are shown in Table 2. The quadratic
model was selected for the marginal response of ∆P to DS (R2 = 0.936), and the goodness-
of-fit increased further after piecewise fitting with DS = 280 m as the boundary (R2 = 0.987;
Figure 6b). The variation of ∆P was only about 0.5 m before DS reached 280 m as a turning
point. ∆P then increased significantly with the increase of DS. The logarithmic model was
selected for the response of ∆P to RS (R2 = 0.750; Figure 6c). ∆P increased with RS, but the
rate fluctuated and slowed down before finally stabilizing.
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Figure 5. Tree positioning and tree position error in lidar measurements. (a) Tree positioning results
for each lidar point cloud data set and tree positions measured in the field. (b) Spatial distribution of
lidar tree position error (∆P, m). The color of the point indicates the error value. Datasets A, B, C, and
D correspond to trajectories A, B, C, and D in Figure 1.
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Figure 6. Results of random forest model for ∆P, ∆X, and ∆Y. (a) Relative importance of variables. The
error lines are the standard deviation of results constructed by randomly drawing 80% of the samples
100 times. Factors with minimal contributions were combined. (b–e) Marginal responses of the two
most important variables. The black lines are the average marginal response values constructed by
randomly drawing 80% of the samples 100 times. The upper and lower bounds of the gray shading
are the maximum and minimum values, respectively, and the red curve is the best curve obtained by
model screening based on R2.

Table 2. Curve fitting for the marginal response of the ∆P values to the primary predictive variables.
The table shows the F value and R2 value for the models.

Variable Linear Logarithmic Quadratic Exponential Logistic

Distance to start (DS)
F 2202.59 658.00 3244.53 2380.83 1767.65
R2 0.83 0.60 0.94 0.84 0.80

Route from start (RS)
F 563.65 1044.69 426.50 495.14 788.05
R2 0.62 0.75 0.71 0.59 0.69

The random forest model explained 75.50% ± 0.01% and 85.10% ± 0.01% of the
variation in the ∆X and ∆Y axes, respectively, and the order of importance of the variables
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was the same as that in ∆P model (Figure 6a). The trends in the marginal responses of ∆X
and ∆Y to DS and RS were similar to that for ∆P (Figure 6d,e); thus, they could be fitted
with models of the same form. The inflection points of ∆X and ∆Y corresponded to DS
values of 200 m and 350 m, respectively (Figure 6d).

We constructed predictive models for ∆X and ∆Y (Equations (3) and (4)) based on
their relationships with DS and RS.

∆X = 3.73 × e−5DS2 − 8.58 × e−3DS + 1.20 ln RS + µ (3)

∆Y = −4.40 × e−5DS2 + 1.17 × e−2DS − 2.90 ln RS + µ (4)

In Equations (3) and (4), µ is the unexplained variance. The R2 values for the GLMs
were 0.443 and 0.528, respectively, which were clearly lower than those for the random
forest models. According to ∆X = Xlidar − Xfield and ∆Y = Ylidar − Yfield, and by setting (Xfield,
Yfield) as the real location (Xreal, Yreal), we transformed the models to link values between
the lidar-measured and field-measured positions (Equations (5) and (6)):

Xreal = XLiDAR − 3.73 × e−5DS2 + 8.58 × e−3DS − 1.20 ln RS + µ (5)

Yreal = YLiDAR + 4.40 × e−5DS2 − 1.17 × e−2DS + 2.90 ln RS + µ (6)

After correction, ∆X and ∆Y decreased significantly, and ∆P decreased to 2.58 ± 1.90
m, 44.3% lower than the original measurement.

3.3. Measurement Error and Correction of Relative Distance between Trees

After tree position correction described above, the accuracy of the paired-tree distance
improved significantly (p < 0.05; Figure 7a). The lidar measurement error of the mean
paired-tree distance (∆D) was 1.74 ± 3.45 m based on the raw point cloud data, and
0.76 ± 3.46 m after correction with model-adjusted data, i.e., ∆D decreased by 56.3%. When
two trees were from the point cloud data of the same scanning, ∆D was 0.48 ± 2.23 m and
0.01 ± 2.52 m after correction. When two trees were from different point cloud data and
scanned twice, ∆D was 2.27 ± 3.72 m and 1.08 ± 3.74 m after correction.
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 Figure 7. Measurement error of the paired-tree distance (∆D) before and after model correction and
spatial accumulation. (a) ∆D between trees based on intra- and inter-point cloud data before and
after correction using GLM. “×” denotes the mean value and “***” denotes a significant difference
according to the one-way analysis of variance (p < 0.001). (b) Differences in the mean and standard
deviation of ∆D as the search radius increased. The black line in the figure is the curve fitted by
locally weighted regression.
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According to Figure 7b, the mean of ∆D measured with the raw point clouds increased
as the search range increased, thereby indicating a significant cumulative spatial effect on
∆D. When two trees were from different point cloud data, the spatial cumulative effect was
more significant. When the search radius was less than 100 m, the standard deviation of ∆D
had a positive correlation with the search radius. When the search radius was greater than
100 m, the variation in the standard deviation of ∆D decreased. After correction, the mean
and standard deviation of ∆D decreased significantly, especially for trees from different
point cloud data, and the relationship with the search radius was closer to an S-shaped
curve. The mean ∆D values did not increase significantly when the search radius was less
than 200 m and greater than 400 m.

4. Discussion
4.1. Efficiency of Backpack Lidar in Forest Inventory

In this study, we verified the suitability of backpack lidar for forest inventory in a large
and spatially complex area. In total, 4.5 machine hours were required to complete lidar
scanning of a 10 ha forest sample plot. Ground-based TLS equipment requires leveling and
calibration, and the layout must be selected for the control points in forests with undulating
terrain containing many obstacles, which are all time-consuming processes. At least 1 h and
10 h are needed when using TLS to complete forest scanning at areas of 30 m × 30 m and
1 ha, respectively [19,32]. The subsequent point cloud registration process also requires a
large amount of work. Therefore, few studies have used TLS to collect forest structure data
in an area larger than 1 ha. In addition, airborne laser scanning is highly efficient, but it is
difficult to obtain forest information below the canopy, such as DBH. It is also difficult to
accurately locate single trees in a forest with high canopy connectivity and overlap. Hyyppä
et al. [33] used a lightweight, small, unmanned aerial vehicle (UAV) that flew under the
canopy carrying lidar equipment to scan a forest plot measuring 30 m × 30 m. The flight
required 10–15 min and the accuracy of tree structure measurements was similar to that
obtained using TLS. However, they studied a small forest plot and the tree density was low.
The stability and safety of UAV flights under the canopy of large, closed forests need to be
further investigated. Thus, backpack lidar seems to be the most efficient and convenient
remote sensing approach for determining the natural forest inventory in a large area.

4.2. Factors Affecting DBH Measurement Accuracy

In the present study, the average DBH measurement error was 4.19 cm, which was
higher than that obtained previously in small plantation [8] and natural forest plots [3]
using the same equipment. We found that the incompleteness of the tree stem point cloud
was the main source of the DBH measurement error; thus, obstacles in the forest prevented
trees from being scanned in all directions and limited the accuracy of the cylinder-fitting
algorithm. This explains why the accuracy of the DBH measurements obtained by single sta-
tion TLS was generally lower than that using multi-station TLS in previous studies [10,31].
In addition, as the DBH increased, the lidar estimations gradually changed from greater
than the field measured values to less than these values. The lidar measurement error
was smallest when the DBH was about 20 cm. When the tree is too small, the stem sur-
face returns have fewer valid reference points; thus the surrounding noise points would
comprise a larger percentage in all cloud points used to fit the cylinder, resulting in an
over-estimated DBH, as well as a larger error. When the tree is too large, the shape of
the stem cross-section tends to become irregular, resulting in a larger geometric deviation
between the DBHfield measured by a diameter ruler and DBHlidar estimated with cylinder
fitting on point clouds. The lidar DBH measurement error decreased initially and then
increased as the PCD increased, and similar results were obtained experimentally in the
plantation using the same equipment [8]. However, it is unclear why the point intensity,
an indicator of tree surface roughness, contributed little to the measurement error. These
indicators only explained 32% of the lidar measurement error, but each single independent
variable had a clear linear relationship with the marginal response in terms of the measure-
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ment error. The correction model reduced the error by 44.3%. Thus, factors not considered
in the present study, including the shape characteristics of the stem section, could have
influenced the reliability of the DBH values measured using a ruler. In addition, due to
the thick herb cover and litter layer in the plot, the heights determined by lidar and field
measurements could differ from 1.3 m, which also indirectly affected the accuracy of the
DBH measurements.

4.3. Factors Influencing Tree Positioning

Compared with the lidar measurements of tree structure indexes, such as DBH, few
studies have investigated the tree positioning accuracy [34–37]. In general, previous studies
of tree positioning focused on the accuracy of the single tree segmentation algorithm [38–40],
but few have investigated the location accuracy of trees detected from point cloud data. Xie
et al. [41] determined the spatial point pattern for trees distributed in a forest plot of 1 ha
using lidar, and the patterns differed from the results measured in the field. In addition to
the accuracy of tree recognition, the tree positioning accuracy is also critical for studying
forest pattern, interspecific relationships, and density effect. We found that, due to obstacles
blocking the GNSS signal, the accuracy of tree positioning by backpack lidar varied greatly,
and the error range was similar to that in previous studies [17,42]. However, it should
be noted that the plot scale, forest density, and data acquisition complexity were much
greater in the present study compared with previous investigations, and we attributed the
positioning error to factors related to machine learning.

The distance and cumulative route length of the trajectory from trees to the starting
point (DS) contributed significantly to the positioning error. A fixed GNSS signal was
only present at the starting position outside the forest plot, so DS referred to the distance
between the equipment and the GNSS signal. In the present study, the positioning error
was affected little by the distance within 280 m of the GNSS signal, thereby demonstrating
that the equipment could accurately position trees in the forest within 280 m of a single
GNSS signal source. However, the error increased significantly when the distance exceeded
280 m. Thus, 280 m seems to be the maximum range with good data accuracy in the absence
of a GNSS signal. Beyond this distance, ∆P increased with increasing DS, but the slope
decreased gradually; this may have been due to the limitation of plot area, and the number
of trees with larger DS was lower. However, this did not affect the normality of the sample
data and the conclusion that backpack lidar indirectly led to the underestimation of the
forest density at a large scale.

Thus, when planning the data acquisition paths in a wider area, we should investigate
more open areas around the sample plot, such as roads, in order to set multiple starting
points around the sample plot to increase the number of GNSS signal sources and avoid
moving the equipment an excessive distance from the start, thereby improving the efficiency
and saving power. We could also place highly reflective georeferenced objects on a, for
example, 1.3 m pole as ground control points throughout the plot; however, the extremely
high density of tree branches may block these control points.

The measurement error increased with the route length, and this was the second most
important factor related to the positioning error. This error was due to the SLAM algorithm,
which is the basis of the point cloud construction method. SLAM matches adjacent frames
in the point cloud based on similar features. The registration of a subsequent frame
depends on the previous frame, so if one of the frames is offset, the error will propagate
during the registration of each subsequent frame [43]. A common solution to this problem
involves implementing a closed-loop optimization process by crossing or overlapping
the trajectory [21,44]. When a closed loop occurs, the system will compare whether the
current frame is similar to the frame at any previous time according to the topology, then
attempt to optimize the data collected between the two previous times to minimize the
data accumulation error. In the present study, we did not implement a closed loop in the
forest plot, and the trajectory only intersected outside the target forest area near the start
and end positions. Figure 7 shows that the marginal response of the error relative to the
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route length tended to gradually decrease at the end. A forest environment is complex
and navigation equipment failures will occur because the GNSS signal may be blocked,
so it would be difficult to complete a specific number of closed loops while maintaining
the stability of the inertial navigation system in the equipment. In future experiments, a
certain number of reference objects will be preset in a complex forest environment to use as
references for creating a closed loop.

The environmental factors around trees and the characteristics of trees contributed
little to the positioning error, thereby demonstrating that the equipment is suitable for use
in a complex forest environment. However, the complexity of the forest environment may
affect the variability of the laser incident surface and features that can be referenced by
SLAM, which could not be measured directly. The multivariate linear models based on the
marginal response relationships explained less of the variation in the measurement error
than the random forest model, which indicates that some nonlinear relationships could
have affected the positioning accuracy, and they require further investigation.

4.4. Paired-Tree Distance

Paired-tree distance is more important than the precise geographical coordinates of
trees in forest ecology studies, but the accurate measurement of the former also determines
that of the latter. We found that the measurement error for the paired-tree distance using
lidar also increased as the plot area increased. Thus, the estimated forest density was often
greater than the actual value when backpack lidar was used for large-scale forest inventory.
Considering the endurance capacity of the equipment, multiple scans must be performed,
and thus the measurement error of paired-tree distance, which further increases the possi-
bility of underestimating of the forest density. After tree position correction, we found that
the paired-tree distance measurement error decreased, and the accuracy of forest density
measurements decreased indirectly. In most previous studies based on point clouds without
geographical coordinates, the iterative closest point (ICP) algorithm was used to register the
point cloud data [45]. The ICP algorithm involves a transformation using the least-squares
method based on one point cloud, and translates or rotates another point cloud to minimize
the sum of squares of the distances between the same objects in two datasets [46]. The
ICP algorithm involves a rigid transformation, so the data positioning error is difficult to
eliminate. Moreover, the mandatory manual registration based on visual recognition makes
it difficult to determine the benchmark, which will also lead to unknown deformations of
the point cloud and make the error unpredictable. The geographic coordinate information
provided by GNSS greatly simplifies the registration process. The relationship determined
between the positioning error and plot scale, as well as the error accumulation identified
with the SLAM algorithm in the present study, may facilitate the development of a more
refined registration algorithm.

5. Conclusions

Backpack lidar integrated with GNSS and the SLAM technique is an effective tool
for tree inventory in a large area of closed forest. However, when the GNSS signal is
blocked, single tree positioning based on the lidar point cloud can result in remarkable
errors, which indirectly lead to the underestimation of the forest density at a large scale.
The positioning error had strong correlations with the distance of the scanned tree from
the GNSS signal and the cumulative effect of the error caused by the SLAM algorithm, but
weak correlations with the environmental complexity and tree properties. Moreover, the
properties of trees, such as the DBH, and obstruction by other trees in the forest affected
the accuracy of the DBH measurements by lidar. With the influential factors accounted
for, the DBH measurement error and offset of the tree positioning in different directions
were significantly reduced. The accuracy of measurements of the paired-tree distance at
different scales was also optimized. Our results provide a helpful test for the potential of
applying backpack lidar for data collection in complex forests, with useful hints for data
quality improvement.
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