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Abstract: Currently, analyses related the status of soybeans, a major oil crop, as well as the related
climate drivers, are based on on-site data and are generally focused on a particular country or
region. This study used remote sensing, meteorological, and statistical data products to analyze
spatiotemporal variations at the end of the growing season (EOS) for soybeans in the world’s
major soybean-growing areas. The ridge regression estimation model calculates the average annual
temperature, precipitation, and total radiation contributions to phenological changes. A systematic
analysis of the spatiotemporal changes in the EOS and the associated climate drivers since the
beginning of the 21st century shows the following: (1) in India, soybean EOS is later than in China
and the United States. The main soybean-growing areas in the southern hemisphere are concentrated
in South America, where two crops are planted yearly. (2) In most of the world’s soybean-growing
regions, the rate change of the EOS is ±2 days/year. In the Mississippi River Valley, India, and South
America (the first quarter), the soybean EOS is generally occurring earlier, whereas, in northeast
China, it is generally occurring later. (3) The relative contributions of different meteorological factors
to the soybean EOS vary between soybean-growing areas; there are also differences within the
individual areas. This study provides a solid foundation for understanding the spatiotemporal
changes in soybean crops in the world’s major soybean-growing areas and spatiotemporal variations
in the effects of climate change on soybean EOS.

Keywords: global soybean-growing regions; soybean growing season end of season (EOS);
spatiotemporal patterns; interannual trends; climate drivers

1. Introduction

Soybeans are important sources of vegetable protein and oil. China is the world-
leading soybean consumer and producer, with soybean imports accounting for 60% of
total global soybean imports. According to a U.S. Department of Agriculture (USDA)
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survey, soybeans are one of the five main crops exported by the United States, Brazil, and
Argentina. These three countries dominate the soybean market, accounting for 80% of
global exports [1,2]. As advocated by their government [3], farmers in Brazil are more
likely to manage their crop types effectively and increase soy yields while maintaining the
availability of soil nutrients and the quality of the environment.

Quantifying the response of major crops to climate change is a prerequisite for under-
standing the impact of climate change on food security. To perform crop classification at
the regional scale, it is often necessary to first understand the differences in the phenology
of crops in different regions to reduce the effects of differences in cropping structure [4].

In some recent studies, the spatial and temporal patterns in the soybean crop and the
response of the crop to climate change in specific local areas have been analyzed, mainly
using ground station data; it has been found that climate change has a more significant
impact on soybean phenology than crop management in the main soybean-producing areas
of eastern China. The dominant factor is the change in the mean annual temperature: the
warming climate leads to a shorter soybean growing season [5,6]. Most parts of northeast
China experienced a general increase in temperature from 1991 to 2009; as a result, the
earliest date at which a temperature of 10°C was reached occurred earlier and the first frost
occurred later. The spatiotemporal variations in soybean fertility and yield in Heilongjiang
province, China, over the past three decades, show that the impact of climate change
on soybean fertility varies from region to region. Pod setting, filling, and maturity are
occurring slightly earlier, and the growing period has become shorter; these changes in
soybean phenology are related to climate warming [7]. Soybean crops in Brazil are heavily
influenced by precipitation and are usually sown at the beginning of the rainy season,
but this relationship does not exactly follow the beginning of the rainy season; farmers
adjust their soybean planting behaviors to climate change, allowing for suitable growing
conditions for other crops that are more suitable for the dry season [8,9]. The satellite-based
PhenoCrop framework has also been used to monitor the progression of the soybean and
corn growing seasons in Nebraska, United States; it was found that the growing season
occurred progressively later from the southeast to the northeast [10]. VIIRS data have
also been used to monitor soybean and corn phenology in the central United States and
enable the effective monitoring of crop growth at a regional scale and the generation of
highly accurate crop-type masks based on the two-crop-type mask [11]. Soybean planting
is mainly carried out in the rainy season in India (similar to Brazil). The amount of rainfall
and the number of days with rainfall significantly affect the crop phenology under different
time delays. The yield is impacted by the sowing date and the maximum and minimum
temperatures experienced during the different growth stages [? ].

The Intergovernmental Panel on Climate Change’s 5th Assessment Report states that
the global average surface temperature increases at 0.12 ◦C per decade [13]. There has
been an increase of 1 ◦C since 1850 due to human activities, and temperatures continue
to increase [14]. Studies in different regions have shown that soybean crop phenology re-
sponds to increasing temperatures to varying degrees [15,16], and crop phenology depends
on local climate conditions, the geographical environment, the particular crop varieties,
and local management practices [17,18]. In addition to changes in temperature that affect
soybean crop phenology, precipitation and solar radiation can also have an effect [19];
many studies have also been made on the effects of the average daily temperature, cumu-
lative precipitation, and cumulative sunshine duration on soybean crop phenology and
yield [16,20]. Understanding soybean crop phenology’s spatial and temporal characteristics
and how climatic factors influence these characteristics is essential in determining soybean
crop areas and predicting yields. Therefore, in this study, the average annual temperature,
annual cumulative precipitation, and cumulative radiation were chosen as the climatic
parameters in which an exploration of the relationship between climate parameters and
soybean crop phenology was based.

In this study, the phenological parameter of the end of the soybean growing season
(EOS) in the main soybean-producing areas of the world was taken as the research object
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because soybean yield is closely related to the EOS. The maturity of soybeans has a signifi-
cant effect on the crop yield and quality; this is demonstrated by the high water content of
soybeans harvested in advance, the decline in quality that results from excessive drying,
and the pod-cracking that affects late-harvested soybeans [21,22]. Moreover, it has been
shown that climate change has started to impact crop yields [20], and it is expected that the
yield of most crops will continue to decrease due to climate influences [23]. In this context,
monitoring the growth and conditions of crops in different locations and environments and
determining the exact moment to harvest major crops are essential to planning agricultural
machinery for harvesting. They can aid crop imports and export logistics [24].

Therefore, in this study, the soybean EOS was extracted from MODIS phenology data
products covering 2001–2018, to derive the spatial and temporal variabilities in soybean
EOS; the association between soybean EOS and climate change was then analyzed. The
specific objectives were (1) to investigate the spatial and temporal variabilities of soybean
EOS in the major soybean-growing regions of the world between 2001 and 2018, and (2) to
analyze the relationship between the spatial and temporal variabilities of soybean EOS and
climate. It was assumed that the spatial and temporal patterns in soybean phenology are
primarily controlled by climate conditions, including the temperature, precipitation, and
solar radiation, and the influence of crop management on soybean phenology was ignored.

2. Materials and Methods
2.1. Global Soybean Planting Map

Details of the world’s soybean-growing regions were obtained from the Spatial Pro-
duction Allocation Model 2010 (SPAM 2010), published by the International Food Policy
Research Institute in 2019. SPAM is also used by the Consultative Group on International
Agricultural Research (CGIAR) initiative and researchers from international organizations,
research institutions, and governmental organizations worldwide [25–28]. Global agricul-
tural production statistics are usually based on administrative units; these data lack spatial
diversity, and it is difficult to analyze the spatial and temporal correlations between crops
and environmental factors using such data. SPAM 2010 was developed to address this issue
and it includes the latest spatially-explicit agricultural production datasets from around
2010. SPAM is based on multiple inputs that use the cross-entropy method to provide a
reasonable classification of crops based on classification units. It has a spatial resolution of
5 arcminutes (about 10 km). SPAM 2010 data consist of area (physical and harvest), yield,
and production data for 42 crops under four cropping systems, including the physical
acreage raster maps for soybean used in this study.

In addition to SPAM 2010, we also extracted soybean crop distribution data for
2001–2018 from the cropland data layer (CDL) dataset produced by the USDA. We fused
these data with SPAM 2010 to generate a global map of areas where the density of soybean
planting was greater than 50%.

2.2. Phenology and Climate Data Products

Understanding crop phenology is vital to agricultural production, field management,
and planning decisions. The phenology data used in this study consisted of the MODIS
ground cover dynamics product MCD12Q2 Collection 6 (C6 MCD12Q2) provided by the
USGS [29,30]. This satellite data product has high temporal and spectral resolutions and is
widely used in studies on global vegetation change.

The C6 MCD12Q2 product has been validated by many studies [31,32]; it agrees well
with ground-based observations and has a high spatial resolution. MCD12Q2 can better
reduce the noise from atmospheric and perspective-geometry effects by estimating weather
events using a time series generated based on NBAR-EVI. Climate factors significantly
impact vegetation growth, agricultural production, and crop growth [17,18,33]. Crop
growth and meteorological data were mainly collected at agricultural observatories. In the
past, It was challenging to use data to demonstrate the influence of climate on crop planting
and growth at a large scale. However, as remote sensing technology has developed, crop
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phenology and meteorological data can now be obtained from remote sensing data and
used to show the relationship between climatic factors and crop growth at a large scale.

The climate data used in our study consisted of the monthly averaged global ERA5-
Land dataset [34], which has a spatial resolution of 9 km (0.1◦) and is produced by ESA
as part of the European Commission’s Copernicus Climate Change Service framework
for the fifth generation reanalysis of terrestrial climate data. This dataset contains hourly
temperatures (measured at 2 m above the surface), surface temperature, soil temperature,
water temperature, snow and ice reflectivity, total solar radiation, and total precipitation
data from 1981 to the present, and we used the surface temperature, total solar radiation,
and total precipitation data.

2.3. Data Processing
2.3.1. Extraction of High-Density Planting Areas

The spatial resolution of the SPAM 2010 data product is five arcminutes, and the value
of each image element is the size of the crop area within the area covered by the current
image element. Therefore, to convert this value into the percentage crop area within the
area covered by the image, the area covered by the image needs to be calculated first. This
spherical trapezoidal area can be calculated from the differences in latitude and longitude
between the edges of the image. Based on the area of the image element and the soybean
area within the image element, the percentage of the area planted with the soybean can be
obtained. Based on the high-density (>50%) planting area extraction results, four major
soybean growing areas were identified: Northeast China, India, the United States, and
South America.

2.3.2. Phenological Screening of Soybean Samples

In the U.S., soybeans are generally planted between early May and late June, and
the harvest period typically starts in early September and finishes in late October. This
means that the SOS corresponds to a day of the year (DOY) between 120 and 180 and
the EOS to a Julian date between 240 and 300. These ranges were determined for the
main soybean-producing areas considered in this study. When processing the downloaded
crop phenology data, samples with a SOS and EOS not within the expected ranges were
excluded. The soybean EOS dates for the remaining samples were extracted.

2.3.3. Climate-Based Analysis of the Spatiotemporal Variability in Soybean Phenology

Mean values of multi-year phenological parameters were calculated for soybean
samples from each region. Spatial distribution images were then generated, and linear
trends were calculated from time-series phenological period image data. To investigate the
relationship between soybean crop phenology and climate change from 2001 to 2018, we
used a ridge regression approach to calculate the contribution of different climate factors to
the soybean EOS in the four major soybean-growing regions.

For a multiple linear regression model given by y = Xβ + ε where the least-squares
estimates of the parameters are given by (1)

β̂ =
(
X′X

)−1X′y (1)

if the independent variables exhibit multicollinearity, the unbiased estimate, β, of the
parameter β̂ becomes unstable, especially at |X′X| = 0, and the predicted values deviate
by a lot from the actual value and may even have the opposite sign to the actual value.
Therefore, after first standardizing the data, a normal matrix kI(k > 0) is added to X′X, so



Remote Sens. 2022, 14, 1867 5 of 15

that the singularity of X′ X + kI is significantly reduced; the ridge regression estimate of
the regression parameter β is thus obtained as (2).

β̂(k) =
[
β̂1(k), β̂2(k), ..., β̂p(k)

]
=
(
X′X + kI

)−1X′y

= WkX′y

(2)

where k > 0 is the ridge parameter Wk =
(

X
′
X + kI

)−1
. If the independent variable X

is standardized, X
′
X is the correlation matrix of the independent variables; if y is also

standardized, this equation gives the standardized ridge regression estimate and the
resulting ridge regression-estimated parameter β̂(k) is more stable than the least-squares
estimate ̂β(k = 0).

3. Results
3.1. Spatial Patterns in Soybean EOS

An analysis of the multi-year EOS averages was conducted for each soybean-growing
region. In the northern hemisphere, the soybean EOS dates were concentrated between
DOY 262 and 310. The EOS dates for China and the United States were close to each other;
the EOS in India tended to be later than in these two regions.

The main soybean-growing areas in the southern hemisphere are in South America.
This region has two cropping seasons, with the first soybean crop EOS mainly between DOY
80 and 123 and the second season approximately coinciding with the northern hemisphere.

From a global perspective, by defining areas where the soybean-planting density is
greater than 50% over an area of 100 km2 to be the main soybean-growing regions, these
regions consist of northeast China, North Dakota, and the Mississippi River Valley in the
United States, the western part of Madhya Pradesh, India, and the countries of Brazil and
Argentina in South America.

It was found that the multi-year averages of the soybean EOS in northeast China
are mainly concentrated between DOY 263 and 288. The spatial distributions of these
dates show that the EOS gradually occurs earlier from east to west as far as the area to the
northeast of Qiqihar; to the west of this, the date occurs later again (Figure 1a). Overall,
the EOS in northeast China occurs slightly earlier than in North Dakota, which lies at the
same latitude.

The areas where soybeans are grown are widely scattered, but the main growing
regions are the Mississippi River Valley and North Dakota. These two regions are widely
separated, so this paper will analyze them separately. In both regions, the multi-year
average EOS was found to occur between DOY 260 and 295, with the North Dakota EOS
being, on average, slightly earlier than the Mississippi River Valley EOS. In the Mississippi
River Valley, the EOS occurred gradually later from south to north (Figure 1b), whereas, in
North Dakota, it occurred later from east to west (Figure 1c).

In the soybean-growing region of India, the EOS onset was more concentrated within
a shorter period. So, there were just a few areas of delayed EOS onset in the east of the
region (Figure 1d), where the soybean EOS occurred later than in northeast China and the
United States (Figure 2).
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Figure 1. Spatial patterns in EOS multi-year averages for soybeans in different soybean-growing
regions: (a) northeast China; (b) North Dakota, U.S.; (c) Mississippi River Valley, U.S.; (d) India;
(e) South America (first crop); and (f) South America (second crop).

Figure 2. Histogram showing the temporal distributions of the EOS in each major soybean-producing
region (left: northern hemisphere, right: southern hemisphere): (a) northeast China; (b) North Dakota,
U.S.; (c) Mississippi River Valley, U.S.; (d) India; (e) South America (first crop); and (f) South America
(second crop).

In the major soybean-growing regions of Brazil and Argentina, two cropping seasons
can be extracted from the MCD12Q2 data, as shown in Figure 1e,f. For the first season, the
spatial distribution patterns show that, in Argentina, the EOS of the soybean crop gradually
occurred later from west to east; in the east of the region, the date of the soybean EOS is
similar to that in Brazil. For the second season, the spatial distribution pattern of the EOS
was mainly characterized by the early onset of the EOS in the southern growing areas and
the late onset of the EOS in the northern growing areas.

3.2. Trends and Spatial Patterns in Soybean EOS

The rate of change in the soybean EOS was±2 days/year for most of the world’s major
soybean-growing regions. The first soybean EOS tended to occur earlier in the Mississippi
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River Valley, India, and South America, whereas it tended to be delayed in northeast China.
Many spatial variabilities were observed in the second soybean EOS in the Mississippi
River Valley and the South American soybean-growing regions.

In the major soybean-growing areas of northeast China, the soybean EOS generally
occurred later, in the range of 0.61 days/year to 0.92 days/year (Figure 3), with an average
of 0.75 days/year. It can be seen from the spatial distribution of the rate of change that
there was a gradual decrease (from east to west) in the spatial variation amount in the rate
of change in the soybean EOS (Figure 4a), and that in northeast China, as a whole, the
soybean EOS occurred significantly later (Figure 5a).

Figure 3. Ranges concerning the rates of change in the soybean EOS for the major soybean-producing
regions of the world.

Figure 4. Analysis of trends in soybean EOS for the major soybean-growing regions.
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Figure 5. Spatial distribution of the rate of change in the soybean EOS for the major soybean-
growing regions: red and blue indicate areas where the soybean EOS occurs significantly earlier
and significantly later, respectively; green and yellow indicate areas where the soybean EOS occurs
slightly later and slightly earlier, respectively; and grey indicates that there is no significant trend in
the soybean EOS.

In the U.S., there was significant spatial heterogeneity in the EOS trends in North
Dakota (Figure 4b), with the rates of change in the EOS concentrated in the ranges
−1.22 days/year and −0.81 days/year and 0.89 days/year to 1.40 days/year and
0.89 days/year to 1.40 days/year (Figure 3). The corresponding mean rates of change
were −0.98 days/year and 1.13 days/year, respectively, but the trend was insignificant in
most areas (Figure 5b). At the eastern and western edges of this soybean-growing region,
the EOS occurred significantly later in most places, whereas, in the center of the region, it
generally occurred significantly earlier. In the major soybean-growing areas of the Missis-
sippi River Valley, the rate of change in the EOS was found to be between −1.47 days/year
and −0.92 days/year in most areas; the average rate of change was −1.17 days/year
(Figure 3). The EOS was found to occur significantly later only in the northern part of this
region (Figure 4c), where the rate of change was mainly in the range of 0.70 days/year to
1.94 days/year.

In the Indian soybean-growing region, the trend was mainly towards an earlier soy-
bean EOS (Figure 4d); the rate of change was mainly in the range −1.34 days/year to
−0.80 days/year, with an average of −1.04 days/year (Figure 3). Over most of the region,
the soybean EOS occurred significantly earlier, and there was a small area in the eastern
part of the growing area with a significant movement of early EOS (Figure 5d). However,
there was a small area where the EOS occurred significantly later (Figure 5d).

Significant differences in the EOS trends were found for the two soybean seasons
in South America. For the first season, the EOS mainly occurred earlier, with rates of
change between−1.79 days/year and−1.02 days/year and an average of−1.25 days/year
(Figure 3) in Brazil and the southern part of Colva, Argentina. The few areas where the
EOS occurred significantly later were located in the northern part of Colva (Figure 4f),
where the rate of change was between 1.20 days/year and 1.75 days/year, with an average
of 1.51 days/year (Figure 3). For the second season, the rate of change in the EOS was
found to be between −2.46 days/year to −1.15 days/year and from 0.90 days/year to
1.36 days/year with average rates of −1.43 days/year and 1.08 days/year, respectively, in
the Londrina region and São Luiz Gonzaga (Figure 3). In the Londrina region, it was found
that the soybean EOS in the eastern part of São Luiz Gonzaga occurred later. However,
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moving eastwards towards Passo Fundo, there was a gradual change to an earlier EOS. In
the northern part of Londrina, there was a change, with EOS occurring later to earlier from
south to north.

3.3. Relationship between Changes in Soybean EOS and Climate Change

The influence of different meteorological factors on the change in the soybean EOS
varies from region to region. A positive contribution rate indicates that a particular meteo-
rological factor delays the onset of the soybean EOS, whereas a negative contribution rate
indicates that it contributes to an earlier onset.

Figure 6 shows the spatial distribution of the relative contributions of three meteoro-
logical factors—temperature, precipitation, and radiation—to the changes in the soybean
EOS that have occurred in the major soybean-growing areas in northeast China since 2001.
The main contributors to the change in the EOS in the region are precipitation and radiation,
with radiation contributing an average delay of 0.92 days/year. The spatial variation in
these values is low in the east and high in the region’s west, and the contribution is positive
throughout. The precipitation has contributed an average of −19.21% to the change in
the soybean EOS in this region; the contribution is high in the east and low in the west,
while some areas in the west have negative contributions. The relative contribution of the
temperature to the change in the soybean EOS in this region is low (<5%).

Figure 6. Relative contribution of different meteorological factors to the change in the soybean EOS
in the major soybean-growing areas in northeast China.

In North Dakota and the Mississippi River Valley in the United States, the trends in
soybean EOS were similarly influenced by the climate. On average, the greatest contributor
to the change in the EOS is the precipitation (>40%) (Figures 7 and 8). There are differences
in temperature and radiation effects on the EOS in the two regions. In North Dakota, the
contribution of the radiation (−23.62%) is smaller than that of the temperature (−34.49%)
(Figure 7); also, the contribution of the temperature is predominantly negative. As can be
seen from the cumulative frequency distribution plot, the size of the radiation contribution
is relatively concentrated between −40% and 20%. The contribution of the temperature to
the change in soybean EOS gradually changes from negative to positive from southwest
to northeast. There is a lot of spatial heterogeneity in the temperature contribution in the
region’s northeast, whereas the contribution size is relatively uniform in the southwest.
The contribution of the radiation to the change in the EOS is relatively uniform across
the region.



Remote Sens. 2022, 14, 1867 10 of 15

Figure 7. Relative contributions of different meteorological factors to the change in the soybean EOS
in the major soybean-growing areas in North Dakota, U.S.

Similar values were found for the average relative contributions of the temperature
and radiation (−26.53% and −27.60%, respectively) to the changes in the soybean EOS
in the main soybean-growing areas of the Mississippi River Valley in the United States
(Figure 8). There was a wide spatial variation in these contributions, with the temperature
contribution changing from negative to positive from south to north. In the northern part
of the region, there were some areas where all three meteorological factors made positive
contributions to the change in the EOS, which means that the EOS occurred later there.

Figure 8. Relative contributions of different meteorological factors to the change in the soybean EOS
in the major soybean-growing areas in the Mississippi River Valley, U.S.

The radiation was found to be the dominant factor (−82.75%) affecting the soybean
EOS in the main soybean-growing areas of India (Figure 9), causing the soybean EOS
to occur earlier. The effects of the temperature (8.35%) and precipitation (8.91%) were
relatively small. There was little spatial variation in the relative contributions of the
different meteorological factors. The precipitation made a large positive contribution in
some parts of the region’s west; however, even here, the negative contribution made by the
radiation was still the dominant factor, trending toward an earlier EOS.

Figure 9. Relative contributions of different meteorological factors to the change in the soybean EOS
in the major soybean-growing areas in India.
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In South America, both the temperature and precipitation significantly influenced the
change in the EOS for both soybean crops (Figure 10). The negative contribution due to the
precipitation (−63.82%) in the first season was much greater than the positive contribution
due to the temperature (34.40%); as a result, the overall trend was toward an earlier EOS.
In terms of the spatial distribution, in the western part of Argentina, the contribution of
precipitation was mainly negative; this changed to a positive contribution farther east. The
positive contribution made by the temperature in the eastern part of the soybean-growing
region of Argentina was greater than that made by the precipitation.

Figure 10. Relative contributions of different meteorological factors to the change in the soybean EOS
in the major soybean-growing areas in South America (first season).

In the second soybean cultivation season in South America (Figure 11), the effects of
the temperature (−50.29%) and precipitation (49.23%) on the soybean EOS were relatively
uniform across the region. In the southern part of Brazil, the contribution of the radiation
to the change in the EOS was also relatively spatially heterogeneous and made a positive
contribution overall.

Figure 11. Relative contributions of different meteorological factors to the change in the soybean EOS
in the major soybean-growing areas in South America (second season).

4. Discussion
4.1. Feasibility of Using Remote Sensing Phenology Products to Extract Soybean Crop Weather

In many previous studies, remote sensing data were used for surface vegetation
or crop phenology feature extraction [27,35,36]; various vegetation phenology detection
methods have been developed using the MCD12Q2 product as a source of crop phenology
or vegetation data. There have been fewer studies using MCD12Q2 as a direct source of
vegetation or crop parameter data [37,38].

At the pixel scale, the differences in soybean crops can be significant: sowing dates
can differ by more than one month and harvest dates by more than two months over
distances of 1–2 km [36]. Therefore, the direct use of MCD12Q2 for extracting soybean
crop phenology is feasible but not very robust. Even though this product has the highest
spatial resolution (500 m) of the surface vegetation phenology datasets that are publicly
available, there is still a temporal bias, as many types of features or features entering the
same phenological stage can be visible in one pixel. Due to the scale of these data, there is a



Remote Sens. 2022, 14, 1867 12 of 15

problem of bias in the weather parameter estimation due to the occurrence of multiple plant
species in an image or the time bias of the same species entering the same phenological
stage [39]. Therefore, in this study, the soybean crop calendar published by the USDA was
used as a reference to filter the EOS extraction results. After filtering, it was still found
that a histogram showing the dates of occurrence of the critical phenological stages, based
on MCD12Q2 data of the Indian soybean-growing areas, did not match the calendar for
the Indian soybean crop and, overall, the dates seemed to be in advance of those given
in the crop calendar. In the case of the main soybean-growing region of Brazil, the key
weather events that influence the soybean crop have a clear bimodal distribution. Thus, two
soybean crops can be grown in this region each year [36]; some studies have demonstrated
the feasibility of using MCD12Q2 data to extract weather information related to the two
crops [40].

It is feasible to use the MCD12Q2 data product directly as a single source of phenology
information for soybean crops. However, attention should still be paid to the resolution
of remote sensing phenology products as this affects the surface vegetation phenology
information that they provide and to the local farming system. In this paper, SPAM 2010
statistics were used as the final source of high-density soybean planting sample units in
the major soybean growing regions of the world, with the addition of CDL data as sample
expansions in the U.S. region, while other regions did not have such high-precision crop
samples as an aid, and soybean EOS extraction was more susceptible to other vegetation
or crop influences. In future research, time-series of vegetation indices should be used
to extract soybean crop phenology information so that spatial and temporal analyses
can be performed after accurate information on the distribution of the soybean crop has
been obtained.

4.2. Impact of Climate Change on the Spatial and Temporal Heterogeneity of Soybean EOS

This study shows that climate variability affects the date of occurrence of the soybean
EOS in the world’s major soybean-growing regions. However, this effect varies by region,
and even within regions experiencing similar changes in the climate, there is a large
degree of spatial and temporal heterogeneity in the EOS trends. This is because the spatial
resolution of the soybean EOS data extracted from the MCD12Q2 product in this study
was 500 m, whereas the spatial resolution of the meteorological data used was 10 km. The
values of the meteorological data raster are characterized by relatively continuous variation,
as the soybean crop can have large differences in the phenological periods of adjacent fields
at the pixel scale [36]. Within the same local area, the same meteorological factor can make
opposing contributions to the changes in the soybean EOS. The spatial distributions of
the contributions of temperature and precipitation to the trends in the soybean EOS were
found to have a directional pattern in northeast China and the Mississippi River Valley in
the U.S. In North Dakota, both the precipitation and temperature were found to have major
influences on the soybean EOS, but the contributions of the precipitation to the changes in
the soybean EOS were found to have high degrees of spatial heterogeneity.

In previous studies, the SOS was more often used for analyses related to climate-
related trends [41,42] and less frequently studied using EOS as a vegetation parameter. An
essential reason for this is that there is greater uncertainty associated with the indicators
related to vegetation senescence or dormancy than those related to the start of the season.
However, this uncertainty is considerably reduced when crops are studied.

5. Conclusions

In this study, the spatial and temporal patterns and trends in the timing of the soybean
EOS and related climate drivers were analyzed for some of the world’s main soybean-
growing regions over the period 2001–2018. The regions considered were northeast China
(mainly Heilongjiang Province), the United States (the Mississippi River Valley and the
state of North Dakota), India, Brazil, and Argentina. The EOS dates in China and the U.S.
soybean-growing regions were similar; in India, the EOS occurred later than in the first two
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regions. The main soybean-growing areas in the southern hemisphere are in South America,
where there are two growing seasons, with the end of the second season approximately
coinciding with the northern hemisphere EOS. Variations in the EOS dates and the trends
in the EOS were found both within and between the different soybean-growing regions,
with ±2 days/year as the rate of change in the EOS. The rate of change in the soybean EOS
and how the climate influenced this differed between the regions studied. An analysis of
the relative contributions of different meteorological factors showed that the radiation was
the major factor (contribution of 76.01%) causing a delay in the onset of the soybean EOS
in northeast China, whereas, in India, the radiation was mainly responsible (−82.75%) for
the trend towards an earlier EOS. In the U.S. soybean-growing regions, there was more
of a balance between the effects of the different factors, although the contribution of the
precipitation to the change in the EOS was found to be relatively large (>40%). In contrast,
precipitation was the major factor influencing the change in the soybean EOS (>98%).
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