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Abstract: As an active microwave device, synthetic aperture radar (SAR) uses the backscatter of
objects for imaging. SAR image ship targets are characterized by unclear contour information, a
complex background and strong scattering. Existing deep learning detection algorithms derived
from anchor-based methods mostly rely on expert experience to set a series of hyperparameters,
and it is difficult to characterize the unique characteristics of SAR image ship targets, which greatly
limits detection accuracy and speed. Therefore, this paper proposes a new lightweight position-
enhanced anchor-free SAR ship detection algorithm called LPEDet. First, to resolve unclear SAR
target contours and multiscale performance problems, we used YOLOX as the benchmark framework
and redesigned the lightweight multiscale backbone, called NLCNet, which balances detection speed
and accuracy. Second, for the strong scattering characteristics of the SAR target, we designed a
new position-enhanced attention strategy, which suppresses background clutter by adding position
information to the channel attention that highlights the target information to more accurately identify
and locate the target. The experimental results for two large-scale SAR target detection datasets,
SSDD and HRSID, show that our method achieves a higher detection accuracy and a faster detection
speed than state-of-the-art SAR target detection methods.

Keywords: deep learning; SAR ship detection; position-enhanced attention; lightweight backbone

1. Introduction

SAR is one of the main ways of imaging Earth’s surface for civilian and military
research purposes at any time of day and is not affected by the weather or other imaging
characteristics. With rapid updates of tools, information and technology, a large number of
SAR images have been obtained. Due to the particularities of SAR imaging, the artificial
interpretation of SAR images is a time-consuming and labor-intensive process and so a
considerable amount of data have not been fully utilized. SAR image target detection aims
to automatically locate and identify specific targets from images and has wide application
prospects in real life. For example, in a military context, location detection of specific
military targets is conducive to tactical deployment and coastal defense early warning
capabilities. In a civil context, the detection of smuggling and illegal fishing vessels is
helpful for the monitoring and management of maritime transport.
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Since optical images are widely used in daily life, many researchers have developed
numerous target detection algorithms based on optical images, but there are relatively
few studies on SAR images. Due to the long imaging wavelength and complex imaging
mechanism of SAR images, their targets are discontinuous; that is, they are composed of
multiple discrete and irregular bright spots of scattering centers. Therefore, SAR images
are difficult to interpret intuitively. At the same time, SAR images have the characteristics
of an uneven target distribution and great sparsity. These characteristics make SAR image
target detection very different from common optical image target detection. When target
detection models used for optical images are directly used for SAR image detection without
considering the particularity of SAR images, the advantages of the algorithm are not fully
manifested. The development of SAR image target detection technology can be introduced
via the following two aspects: traditional SAR target detection and SAR ship detection
using deep learning.

Traditional SAR image target detection algorithms mainly include the constant false
alarm rate (CFAR) [1] detection algorithm based on the background clutter statistical
distribution and artificial image texture feature detection algorithms. The method based
on the CFAR uses the background units around the target and selects the constant false
alarm probability to determine the detection threshold. There are two main reasons for its
poor detection rate: one is that the same statistical model is used for all the clutter in the
sliding window, which easily leads to a mismatch of the statistical model in the maladaptive
regions. Second, the algorithm does not make full use of the feature information in the
image, but only uses the statistical distribution characteristics of the image gray values.
Huang et al. [2] proposed a CFAR algorithm based on target semantic features, which has a
lower false alarm rate when detecting targets in high-resolution SAR images. The detection
algorithm based on artificial extraction of image texture features has good performance for
some kinds of target detection; however, in the case of large differences in target features,
the performance drops significantly. Stein et al. [3] proposed a target detection method
based on the rotation-invariant wavelet transform. Compared with the CFAR detection
algorithm, the texture feature-based algorithm utilizes more image information and has
higher detection accuracy. However, texture features need to be extracted by manual design,
and the design process is complicated and time-consuming, so it is difficult to ensure the
timeliness of detection.

SAR ship detection methods based on deep learning have become a research priority
and a large number of methods based on convolutional neural networks have emerged.
Zhang et al. [4] proposed a learning mechanism for marine balanced scenes when the
number of SAR image samples was extremely unbalanced and which extracted features
from images by establishing a generative adversarial network, using the k-means algorithm
for clustering and expansion of the number of samples to train the mode. The model
has achieved good results. The lightweight SAR ship detector “ShipDeNet-20” [5] greatly
reduces the size of the model and combines the feature fusion, feature enhancement
and scale sharing feature pyramid modules to further improve the accuracy, which is
conducive to hardware transplantation. HyperLi-Net [6] achieves high accuracy and
high speed in SAR image ship detection. The high accuracy is achieved by the multi-
receptive field, dilated convolution, channel and spatial attention, feature fusion and
feature pyramid modules. High speed is achieved by fusion of region-free models, small
kernels, narrow channels, separable convolutions and batch normalization. Its model
is also more lightweight, which is more conducive to hardware porting. Tz et al. [7]
solved the four imbalance problems in the SAR ship detection process and proposed
corresponding solutions, which were combined into the model to obtain a new balanced
learning network. Zhang et al. [8] mainly used depth-wise separable convolution to
constitute a new SAR ship detection method. By integrating the multi-scale detection,
connection and anchor box mechanisms, this method makes the model more lightweight
and the detection speed is also improved to a certain extent. Zhang et al. [9] gridded
the input image and used depthwise separable convolution operations. The backbone
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convolutional neural network and the detection convolutional neural network are combined
to form a new grid convolutional neural network, which has achieved good results in SAR
ship detection. RetinaNet [10] is essentially composed of resnet + FPN + two FCN sub-
networks. The design idea is that the backbone selects effective feature extraction networks
such as vgg and resnet. FPN is intended to strengthen the use of multi-scale features formed
in resnet, to obtain a feature map with stronger expressiveness and include multi-scale
target area information, and finally use two FCN sub-networks with the same structure
but no shared parameters on the feature map set of FPN so as to complete the target box
category classification and bbox position regression tasks. The SSD [11] model completely
eliminates proposal generation and subsequent pixel or feature resampling stages and
encapsulates all computations in a single network. This makes SSD easy to train and directly
integrated into systems that require detection components. The core of the SSD approach
is to use small convolutional filters to predict class scores and position offsets for a fixed
set of default bounding boxes on the feature map. The network model of YOLOv3 [12] is
mainly composed of 75 convolutional layers. Since the fully connected layer is not used, the
network can correspond to input images of any size. In addition, the pooling layer does not
appear in YOLOv3. Instead, the stride of the convolutional base layer is set to 2 to achieve
the effect of down sampling and the scale-invariant features are transferred to the next layer.
In addition, YOLOv3 also uses structures similar to ResNet and FPN networks, which are
also beneficial for improving detection accuracy. YOLOv3 is mainly aimed at small targets
and the accuracy has been significantly improved. YOLOX [13] is the first model to apply
the anchor-free mode in the YOLO series. The specific operation is to explicitly define the
3 × 3 region of the truth frame projected to the center of the feature graph as the positive
sample region and predict the four values of the target position (the offset distance of the
upper left corner and the height and width of the frame). The AFSar [14] network model
redesigns the backbone network, replaces the original Darknet-53 with MobileNetV2 and
improves it. At the same time, the detection head and neck are newly designed, making it a
lightweight network model. The RFB-net [15] algorithm introduces a receptive field block
(RFB) into the SSD [11] network and strengthens the feature extraction ability, influenced
by the way the human visual system works.

In summary, the following problems still need to be resolved:

(1) The existing algorithms of SAR image detection are mainly based on the design of
anchors. However, setting the hyperparameters of an anchor heavily relies on human
experience and a generated anchor greatly reduces model training speed. In addition,
a detection algorithm with anchors mostly focuses on the capture of target edge
information, while the unclear contour information of SAR images, especially with
respect to small- and medium-sized SAR targets, greatly limits its detection efficiency.

(2) In order to further improve accuracy, most of the existing work blindly adds model
structure and skills, resulting in a large number of model parameters, slow inference
speed and low efficiency in practical applications, which is not conducive to the
deployment of a model using mobile devices and greatly reduces the practicality of
the model.

(3) The existing work does not consider the scattering of SAR images and the unclear
target profile, which results in an algorithm being unable to better suppress the
background clutter to emphasize the salient information of the target, which greatly
reduces model performance.

To this end, we propose a new lightweight position-enhanced anchor-free SAR ship
detection algorithm called LPEDet which improves the accuracy and speed of SAR ship
detection from a more balanced perspective. The main contributions are as follows:

(1) To solve the problems that occur because anchor-based detection algorithms are highly
dependent on design frameworks based on expert experience and the difficulties
that occur in solving problems such as unclear contour information and complex
backgrounds of SAR image ship targets, we introduced an anchor-free target detection
algorithm. We introduced the latest YOLOX as the base network and, inspired by
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the latest lightweight backbone, LCNet [16], replaced the backbone Darknet-53 with
LCNet and then optimized the design according to the SAR target characteristics.

(2) To balance speed and model complexity, we constructed a new lightweight backbone
called NLCNet through the ingenious design of depthwise separable convolutional
modules and the novel structural construction of multiple modules. Experiments
show that our proposed lightweight backbone greatly improved inference speed and
detection accuracy.

(3) In order to improve the SAR target localization ability against complex backgrounds,
inspired by coordinate attention [17], we designed a position-enhanced attention strat-
egy. The strategy is to add target position awareness information to guide attention to
better highlight the target area, effectively suppress the problem of insufficient feature
extraction caused by SAR target strong scattering and better detect targets against
complex backgrounds, thereby improving detection accuracy.

2. Related Work

The development process for SAR image target detection technology ranges from
traditional SAR target detection to SAR target detection using deep learning. In the target
detection task based on deep learning, the main task of target detection is to take the
image as the input and output the characteristic image of the corresponding input image
through the backbone network. Therefore, the performance of target detection is closely
related to the feature extraction of the backbone network. Many studies have designed
different feature extraction backbone networks for different application scenarios and
detection tasks.

(1) Traditional SAR target detection algorithm.
The traditional SAR target detection algorithm is as follows. Ai et al. [18] proposed
a joint CFAR detection algorithm based on gray correlation by utilizing the strong
correlation characteristics of adjacent pixels inside the target SAR images. The CFAR
algorithm only considers the gray contrast and ignores target structure information,
which causes poor robustness and anti-interference ability and poor detection perfor-
mance under complex background clutter. Kaplan et al. [19] used the extended fractal
(EF) feature to detect vehicle targets in SAR images. This feature is sensitive not only
to the contrast of the target background but also to the target size. Compared with
the CFAR algorithm, the false alarm rate of detection is reduced. Charalampidis [20]
proposed the wavelet fractal (WF) feature, which can effectively segment and classify
different textures in images.

(2) Common SAR image backbone networks based on deep learning.
It can be seen from VGG [21] that a deeper network can be formed by stacking
modules with the same dimension. For a given receptive field, it is shown that
compared with using a large convolution kernel for convolution, the effect of using
a stacked small convolution kernel is preferable. GoogLeNet [22] adopts a modular
structure (inception structure) to enrich network receptive fields with convolutional
kernels of different sizes. ShuffleNetV1 [23] and ShuffleNetV2 [24] adopt two core
operations: pointwise group convolution and channel shuffling, and they exchange
information through channel shuffling. GhostNet [25] divides the original convolution
layer into two parts. First, a traditional convolution operation is applied to the input
to generate feature maps, then these feature maps are transformed using a linear
operation, merging all the features together to get the final result. In DarkNet-53,
the poolless layer, the fully connected layer and the reduction of the feature graph
are achieved by increasing the step size of the convolution kernel. Using the idea of
feature pyramid networks (FPNs), the outputs of three scale feature layers are 13 × 13,
26 × 26 and 52 × 52. Among them, 13 × 13 is suitable for detecting large targets
and 52 × 52 is suitable for detecting small targets. Although the above backbone
network greatly improves detection accuracy, it also introduces a large number of
parameters into the model and the detection speed is relatively slow. MobileNetV1 [26]
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constructed a network by utilizing depth-separable convolution, which consists of
two steps: depthwise convolution and pointwise convolution. MobileNetV2 [27]
introduced a residual structure on the basis of MobileNetV1, which first raised the
dimension and then reduced the dimension. Although the model is lightweight,
it is suitable only for large models and it provides no significant improvement in
accuracy in small networks. The characteristic of a remote sensing image target is
density and it is difficult to distinguish between target contours and the background
environment. A new algorithm [28] is proposed for the above difficulties which can
also be used for video target recognition. It mainly uses the visual saliency mechanism
to extract the target of the region of interest and experiments show the effectiveness
of its results. In addition to SAR image target detection, the research on images
captured by UAVs should continue to advance because the use of UAV images for
target detection has broad application prospects in real life. The target detection of
UAV images is the subject of [29], which combines the deep learning target detection
method with existing template matching and proposes a parallel integrated deep
learning algorithm for multi-target detection.

(3) SAR image detection algorithm based on deep learning.
Jiao et al. [30] considered that the multi-scale nature of SAR image ship targets and the
background complexity of offshore ship targets were not conducive to monitoring and
the authors innovatively proposed a model based on the faster-RCNN framework.
Improvements have been made and a new training strategy has also been proposed
so that the training process focuses less on simple targets and is more suitable for the
detection of ship targets with complex backgrounds in SAR images, improving detec-
tion performance and thereby solving the problem of multiple scales and multiple
scenes. Chen et al. [31] mainly focused on indistinguishable ships on land and densely
arranged ships at sea and combined a model with an attention mechanism. The pur-
pose was to better solve the above two problems frequently encountered in ship target
detection. The application of an attention mechanism can better enable the location of
the ship targets we need to detect. At the same time, the loss function is also improved,
that is, generalized cross loss is introduced, and soft non-maximum suppression is
also used in the model. Therefore, the problem of densely arranged ship targets can be
better solved and detection performance can be improved. Cui et al. [32] considered
the multi-scale problem of ship targets in SAR images and used a densely connected
pyramid structure in their model. At the same time, a convolution block attention
module was used to refine the feature map, highlight the salient features, suppress
the fuzzy features and effectively improve the accuracy of the SAR image ship target.
Although the above algorithms generally have high detection accuracy, model size is
large, inference speed is slow and they do not take the characteristics of SAR images
into account, which greatly limits the performance of these algorithms. Wan et al. [14]
proposed an anchor-free SAR ship detection algorithm, the backbone network of
which is the more lightweight MobileNetV2S network, and further improved the
neck and head, so that the overall model effect is optimal. However, their improved
strategy did not fully consider the characteristics of SAR targets against complex
backgrounds, which is an issue worthy of further exploration.

Therefore, we propose a new SAR image detection method that comprehensively
considers the tradeoff between algorithm accuracy and speed.

3. Methods

This paper proposes a position-enhanced anchor-free SAR ship detection algorithm
called LPEDet which generally includes the benchmark anchor-free detection benchmark
network YOLOX, the lightweight feature enhancement backbone NLCnet and a position-
enhanced attention strategy. The overall framework is shown in Figure 1. The model
proposed in this paper will be explained in detail from three aspects.
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represent the output feature maps of blocks 1–6, respectively, and PEA is added to the adjacent blocks.
The subsequent operations of (2), (3) are the same with (1)).

3.1. Benchmark Network

Considering the unclear edge information of SAR targets and avoiding the short-
comings of traditional anchor-based methods, inspired by the latest anchor-free detection
framework YOLOX [13], we use YOLOX as the benchmark network. YOLOX is the first
to apply the anchor-free mode in the YOLO series. The specific operation is to explicitly
define the 3 × 3 region of the truth frame projected to the center of the feature graph as the
positive sample region and predict the four values of the target position (the offset distance
of the upper left corner and the height and width of the frame). To better allocate fuzzy
samples, YOLOX uses the simOTA algorithm for positive and negative sample matching.
The general process of the simOTA algorithm is as follows: First, we calculated the match-
ing degree of each pair. Then, we selected the top k prediction boxes with the smallest
cost in a fixed central area. Finally, the grids associated with these positive samples were
marked as positive.

Since YOLOX represents various improvements to the YOLO series, including a
decoupling head, a new tag allocation strategy and an anchor-free mechanism, it is a high-
performance detector subject to a trade-off between accuracy and speed. In the face of the
SAR ship detection problem, these characteristics of YOLOX precisely match SAR image
target sparsity, small sample characteristics and target scattering, so we chose YOLOX as
the baseline of our network. Although YOLOX has achieved the performance of SOTA in
optical image detection, its model size is too large and its model complexity is too high such
that it cannot be applied in SAR image detection. Therefore, we redesigned the backbone
network of YOLOX.
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3.2. Lightweight Feature Enhancement Backbone: NLCNet

Most of the existing YOLO series backbones use DarkNet-53 and CSPNet architec-
tures. Such backbones are usually excellent in terms of detection effect, but there is still
a possibility for improvement of inference speed. The easiest way is to reduce the size of
the model. To this end, according to the characteristics of the SAR target, the backbone
network, namely, NLCnet, was designed to be lightweight so as to better balance speed
and accuracy.

NLCNet uses the deeply separable convolution mentioned by MobileNetV1 as the ba-
sic block. It is generally known that depthwise separable convolution is mainly divided into
two processes, namely, depthwise convolution and pointwise convolution. Compared with
conventional convolution, the number of parameters for depthwise separable convolution
is about one-third of that for conventional convolution. Therefore, given the same number
of parameters, the number of neural network layers using separable convolution can be
deeper. Based on the LCNet network, a new network design is carried out. We reorganized
and stacked these blocks to form a new backbone network which is mainly divided into
six blocks. The stem part uses standard convolution, which is activated by the h-swish
function. Block2 to block6 all use depthwise separable convolution. The main difference
is that the number of superimposed depthwise separable convolutions is different, and
in block5 and block6 5 × 5 convolution kernels are used in the depth-level convolution
process. The NLCNet network achieved the highest precision with respect to recent work in
the following two areas: (1) discarding of the squeeze-and-excitation networks (SE) module
and (2) design of the lightweight convolution block. The structural details of NLCNet are
shown in Figure 2.
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3.2.1. Discarding of the Squeeze-and-Excitation Networks (SE) Module

The SE module [33] is widely used in many networks. It can help the model weight the
channels in the network to obtain better features. However, we cannot blindly add the SE
module to the model because not all SE modules will be more effective. Recently, through
my own thinking and experiments, I found that the SE attention mechanism was added
to the network, which resulted in a certain improvement in the classification task, but for
target detection the effect is not obvious and sometimes it will affect the results, which may
be similar to the network model. There is also a certain correlation. Considering this issue,
we removed the SE module on the basis of LCnet in the experiments; the accuracy of the
model was not reduced and the parameters of the model were relatively few.
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3.2.2. Design of a Lightweight Convolution Block

Experiments showed that convolutional verification of different sizes would have a
certain impact on network performance. The larger the convolution kernel, the larger the
receptive field will be in the convolution process and the better it will be for constructing the
global information of the target. In light of this, we chose to use a larger convolution kernel
to balance speed and accuracy. It was found by YOLOX that placing the large convolution
kernel at the tail of the network was the best choice because the performance achieved by
these two methods was equivalent to replacing all layers of the network. Therefore, this
substitution was only performed at the end of the network.

Through simple stacking and the use of corresponding technologies, the lightweight
backbone used in this paper achieved a certain improvement in accuracy with respect to the
SSDD dataset, while the number of parameters has also significantly decreased. Therefore,
the advantages of NLCNet are obvious. The specific network structure is shown in Table 1.

Table 1. The details of NLCNet. PEA = position-enhanced attention.

Operator Kernel Size Stride Input Output PEA

Conv2D 3× 3 2 6402 × 3 3202 × 16 -
DepthSepConv 3× 3 1 3202 × 16 3202 × 32

√

DepthSepConv 3× 3 2 3202 × 32 1602 × 64
√

DepthSepConv 3× 3 1 1602 × 64 1602 × 64
√

DepthSepConv 3× 3 2 1602 × 64 802 × 128
√

DepthSepConv 3× 3 1 802 × 128 802 × 128
√

DepthSepConv 3× 3 2 802 × 128 402 × 256
√

5 × DepthSepConv 5× 5 1 402 × 256 402 × 256
√

DepthSepConv 5× 5 2 402 × 256 202 × 512
√

DepthSepConv 5× 5 1 202 × 512 202 × 512
√

3.3. Position-Enhanced Attention

Squeeze-and-excitation attention is a widely used attention mechanism that signifi-
cantly enhances network performance and avoids many parameter calculations. Squeeze-
and-excitation attention is widely used in various network models to highlight important
channel information in features and is mainly used for the differential weighting of different
channels through global pooling and a two-layer full connection layer without considering
the influence of location information on features. Location information can further help the
model to obtain target details in the image, thus improving model performance.

To highlight the key location information of features, we designed a new attention
module in the network inspired by coordinate attention [17] called position-enhanced
attention. It can embed the location information of the target in the image into the channel
attention, which can better capture the interesting position information of the SAR target
against a complex background and obtain a good global perception ability. At the same
time, the computational cost of this process is relatively low. See Figure 3 for the position-
enhanced attention architecture.

Since 2D global pooling does not contain location information, position-enhanced
attention makes corresponding changes in 2D global pooling by splitting the original
channel attention and forming two 1D global pooling operations. The specific process is
that when the feature map is inputted, two 1D global pools are aggregated in a vertical and
horizontal direction to form two independent feature maps with orientation awareness.
The two generated feature maps with specific direction information are then encoded to
form two attention maps. The two attention maps capture the independent and mutually
dependent relationship of the input feature maps along a horizontal and vertical direction.
From the above process, position information is obtained in the generated attention map
and the two attention maps are applied to the input feature map, which can emphasize the
target of interest in the image for better recognition.
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For the accurate location information obtained, position-enhanced attention can be
applied to coding channel relationships and remote dependencies. See Figure 4 for details
of the position-enhanced attention architecture.
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With channel attention, the spatial information in the image can usually establish the
connection between channels through the global pooling operation, but it also causes the
loss of position information, which is the result of the compression of the global information
by the global pooling. In order to further utilize the location information of the target in
the image, we split the 2D global pooling in the SE module to form two 1D global pooling
operations. The 1D global pooling can extract the region of interest in the image in the
horizontal and vertical directions so as to obtain better global perception ability and the
two feature maps generated with specific directions save the position information of the
target so the image target can be better identified and located. Specifically, given input
X, two 1D global pooling operations are used to encode each channel in a horizontal and
vertical direction and the size of the pooling kernel is (H, 1) or (1, W). Therefore, at height h,
the output of channel c can be expressed as:

zh
c (h) =

1
W ∑

0≤i≤W
xc(h, i) (1)



Remote Sens. 2022, 14, 1908 10 of 19

At width w, the output of channel c can also be written as:

zw
c (w) =

1
H ∑

0≤j≤H
xc(j, w) (2)

Through the above transformation, we can aggregate the input features in two spatial
directions and obtain two feature maps with directional perception characteristics. These
two feature maps not only enable the corresponding attention module to save the remote
dependency relationship between features but also to maintain accurate position infor-
mation in the spatial direction, thereby helping the network to more accurately detect
the target.

As mentioned above, through the extraction process of Equations (1) and (2), the
attention branch channel can have a good global receptive field, can well retain global
feature information and can encode precise location information.

Further, considering that the strong scattering characteristics of SAR targets against
complex backgrounds cause their contours to be unclear and that the SAR target imaging
angle changes greatly, we have carefully designed the follow-up attention processing
flow. Previous studies have shown that 2D global pooling will lose position information.
For this reason, Hou et al. [17] adopted two 1D pooling strategies and then performed
channel concatenation. This method has difficulty handling the characteristics of SAR
targets, mainly due to the following two problems: first, after the feature extraction and
pooling operations of Equations (1) and (2), they are concatenated into a channel for
subsequent processing because the feature correlation degrees of SAR targets in different
spatial directions are very different, so this method loses the significant feature information
of the two spatial directions, which is not conducive to characterizing the unique features
of multi-oriented sparse SAR targets; second, this concatenation operation also increases
the computational complexity of the channel.

To this end, we designed an attention strategy different from Hou et al.’s [17], namely,
position-enhanced attention. Our starting point was to overcome the two problems of the
above analysis, namely, directly designing two parallel branches to extract depth feature
information in different spatial directions respectively. This operation can better extract
salient feature information in two spatial directions and so can better characterize the
characteristics of sparse SAR targets with different orientations; in addition, this parallel
branch extraction can obtain a wider receptive field area so that better global awareness
can be obtained.

Therefore, the aggregated feature maps in the two spatial directions were generated
based on Equations (1) and (2). They respectively perform convolution operations along the
spatial direction and the convolution function F is used for transformation, thereby generating:

fh = δ
(

Bn
(

F
(

zh
c (h)

)))
(3)

fw = δ(Bn(F(zw
c (w)))) (4)

Among these:

h− swish(x) = x
ReLU(x + 3)

6
(5)

In the Equations (3) and (4), δ is the h-swish activation function and x is Bn(F(·)). Bn
is the batchnorm. fh and fw is the intermediate feature graph. fh and fw are transformed
into tensors by using the other two 1 × 1 convolution transforms Fh and Fw.

gh = σ
(

Fh

(
fh
))

(6)

gw = σ(Fw(fw)) (7)
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where σ is the sigmoid function. Then, gh and gw are used in the position-enhanced
attention block:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (8)

Position-enhanced attention considers the encoding of spatial information. As men-
tioned above, attention along both horizontal and vertical directions applies to the input
tensor. This coding process allows position-enhanced attention to more accurately locate
the target position in the image, thus helping the whole model to achieve better recognition.
Experiments show that our method does achieve good results.

4. Experiments

To verify the proposed method, we conducted a series of related experiments to
evaluate the model’s detection performance. The content of this section includes details of
some settings in the experiment and the main content of the SSDD dataset, followed by
the evaluation indicators used in the experimental results, the influence of each module
proposed in the ablation experiment on the model and a comparison with other target
detection algorithms. Finally, LPEDet is compared with other recent SAR imaging methods.

4.1. Dataset and Experimental Settings

In our experiment, the datasets used were SSDD [34] and HRSID. For each ship, the
detection algorithm predicts the frame of the ship target and gives the confidence of the
ship target. The SSDD process is based on the PASCALVOC dataset and its data format is
algorithmically compatible, making it easier to use with fewer code changes.

SSDD data are obtained by downloading public SAR images from the internet. Figure 5
shows part of the images in the dataset. The target area was cropped to approximately
500 × 500 pixels and the ship target location was manually marked. As long as there is a
ship in the dataset, there are no requirements regarding ship type. The data in this dataset
mainly include HH, HV, VV and VH polarization modes. There are 1160 images in the
dataset and each image contains 2456 ships of different numbers and sizes. Although SSDD
has few pictures, for the detection network, the number of targets that only recognize
ships is sufficient. The corresponding relationship between the number of pictures and the
number of ships in the dataset is shown in Table 2.
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Table 2. Correspondence between NoS and NoI in the SSDD dataset.

NoS 1 2 3 4 5 6 7 8 9 10 11 12 13 14
NoI 725 183 89 47 45 16 15 8 4 11 5 3 3 0

NoS = number of ships; NoI = number of images.

In addition, to verify the detection performance of our proposed method in different
scenarios, we introduced another large-scale SAR target detection dataset, namely, the
HRSID dataset. The images in this dataset are high-resolution SAR images, which are
mainly used for ship detection, semantic segmentation and instance segmentation tasks.
The dataset contains a total of 5604 high-resolution SAR images and 16,951 ship instances.
The HRSID dataset borrows from the construction process of the Microsoft Common Objects
in Context (COCO) dataset, including SAR images with different resolutions, polarizations,
sea states, sea areas and coastal ports. For HRSID, the resolutions of the SAR images are:
0.5 m, 1 m and 3 m, respectively.

To make a fair comparison with previous work, we attempted to use the same settings
that previous workers used. We randomly divided the original SSDD dataset according
to the ratio of 8:2 commonly used in existing studies and 80% of the datasets were used
for the training of all methods. The remaining 20% was used as a test set to evaluate the
detection performance of all methods. The data in the training set and test set were not
repeated at all among the methods to ensure the rigor and fairness of the experiment.
Other parameters included a batch size of 8 and an image size for the input model of
640, RandomHorizontalFlip was adopted, ColorJitter and multiscale were used for data
augmentation, and Mosaic and MixUp enhancement strategies were employed. Using the
lr×batchsize/64 learning rate, the cosine lr schedule and initial lr = 0.01 were employed.
The weight decayed to 0.0005 and the SGD momentum was 0.9. A total of 600 epochs were
trained. In the HRSID [35] dataset, we used a ratio of 6.5:3.5 to split the dataset, with 65%
data for training and 35% for testing, the same as the original author split. The image size
of the input model was 800. All experiments in this paper were carried out on an Ubuntu
18.04 operating system equipped with a GeForceRTX2060.

4.2. Evaluation Indicators

We used average precision (mAP) to analyze and verify the detection performance of
our proposed method. Average accuracy can be derived from accuracy and recall.

Accuracy is the percentage of targets that are correctly identified in the test set. The
percentage is defined by true positives (TPs) and false positives (FPs):

P =
TP

TP + FP
(9)

TP means that the prediction of the classifier is positive and the prediction is correct;
FP indicates that the prediction of the classifier is positive and the prediction is incorrect.

The recall rate is the probability that all positive samples in the test set are correctly
identified, which is derived from true positives (TPs) and false negatives (FNs):

R =
TP

TP + FN
(10)

FN indicates that the prediction of the classifier is negative and the prediction is incorrect.
Based on the accuracy and recall rate, an average accuracy value is also obtained. The

graphical meaning can be clearly seen in the coordinate axis, that is, the area under the
accuracy and recall rate curve, which is defined as follows:

mAP =
∫ 1

0
P(R)dR (11)
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4.3. Experimental Results and Analysis
4.3.1. Ablation Experiments on SSDD Datasets

To clearly compare the advantages of the added modules, we conducted the following
ablation experiments. The first experiment ensured that other settings remained unchanged
while replacing the backbone network Darknet-53 with a lightweight backbone NLCNet.
Second, the attention module position-enhanced attention was added on the basis of the
original network. This process did not change other settings and parameters.

It should be noted that the methods in the ablation experiment were reproduced
according to the official open-source code of the comparison method and applied to the
SSDD dataset for experimental comparison. The dataset used by the comparison method
was exactly the same as that used by our proposed method; the hyperparameters of the
comparison method were all set with standard default settings and the number of training
epochs was also consistent with our method.

Influence of the NLCNet Backbone Network on the Experimental Results

The backbone Darknet-53 was replaced with our proposed NLCNet based on YOLOX,
as previously shown in Figure 2. The mAP increased by 0.6% from 96.2% to 96.8% and the
FLOPs dropped by 8.37 from 26.64 to 18.27. According to the data, our redesigned NLCNet
showed advantages in feature extraction with respect to SAR image ship targets, not only
improving accuracy but also reducing the number of parameters, making the model more
lightweight and easier to transplant in industrial settings.

Influence of Position-Enhanced Attention on Experimental Results

To verify the effectiveness of our proposed position-enhanced attention and its ad-
vantages, we conducted ablation experiments with the original network without atten-
tion, the network with coordinate attention and the new network with our proposed
position-enhanced attention in our dataset, respectively. The experimental results are
shown in Table 3. The mAP of the network with our proposed position-enhanced atten-
tion was greatly improved compared to the network without attention, which increased
from 96.8% to 97.4%. At the same time, the increase in FLOPs and params was negligible.
The results show the effectiveness of our proposed position-enhanced attention. Compared
with the original network with coordinate attention, the detection accuracy of our proposed
model increased from 97.1% to 97.4% with the parameters and FLOPs unchanged. It should
be noted that we kept two significant digits after the decimal point when we counted the
experimental results. Therefore, it was calculated that the parameters of FLOPs and params
of our position-enhanced attention model and the original coordinate attention model were
the same size. Thus, the advantages of our designed positional attention are demonstrated
by the results. The visualization results are shown in Figure 6.

Table 3. Results of ablation experiments. (mAP, FLOPs, Params and average inference time represent
detection accuracy, computational complexity, parameter amount and average inference time, respectively).

Model Backbone Attention mAP (%) FLOPs (GMac) Params (M) Average Inference
Time (ms)

YOLOX Darknet-53 - 96.2 26.64 8.94 8.20
YOLOX NLCNet - 96.8 18.27 5.58 5.27
YOLOX NLCNet Coordinate attention 97.1 18.38 5.68 7.01
YOLOX NLCNet Position-enhanced attention 97.4 18.38 5.68 7.01

4.3.2. Comparison with the Latest Target Detection Methods Using SSDD Datasets

To further demonstrate the validity of our work, we compared LPEDet with some of
the latest target detection methods, including the one-stage RetinaNet, SSD300, YOLOv3,
YOLOX, YOLOv5, AFSar, two-stage Faster R-CNN, Cascade R-CNN, FPN and anchor-free
CornerNet, CenterNet and FCOS methods. Among them, considering that our model
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mainly focuses on the lightweight design of the backbone network, for a fair comparison of
performance, we cite the results of the backbone ablation experiments of AFSar [14]. The
results are shown in Table 4. As seen from the table, our work not only outperformed other
methods in terms of precision but also in terms of speed.
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Table 4. Comparison with the latest target detection methods.

Method mAP (%) FLOPs (GMac) Params (M) Average Inference Time (ms)

One-stage

RetinaNet [10] 91.2 81.69 36.1 44.10
SSD300 [11] 93.1 154.45 34.31 53.62

YOLOv3 [12] 96.2 77.54 61.52 45.81
YOLOX 96.2 26.64 8.94 8.20
YOLOv5 97.0 16.54 7.23 8.61

AFSar [14] 96.7 8.66 - -

Two-stage
Faster R-CNN [36] 96.4 91.41 41.12 45.36

Cascade R-CNN [37] 96.8 119.05 69.17 65.56
FPN [38] 96.5 71.65 63.56 78.30

Anchor-free

CornerNet [39] 94.7 707.75 201.04 95.61
CenterNet [40] 95.1 20.4 14.21 31.54

FCOS [41] 95.3 78.63 60.97 48.67
LPEDet 97.4 18.38 5.68 7.01
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It should be noted that, except for AFSar, the methods in the comparison experiments
were reproduced according to the official open-source code of the comparison method
and applied to the SSDD dataset for experimental comparison. The dataset used by the
comparison method was exactly the same as that used by our proposed method; the
hyperparameters of the comparison method were all set with standard default settings and
the number of training epochs is also consistent with our method.

We also visualized the detection results of these methods. As shown in Figure 7,
compared with the proposed LPEDet method, the detection rate of the above methods
was significantly higher than that of the proposed LPEDet method. Our method has good
performance with small target images, complex backgrounds and intensive target image
detection. These findings show the effectiveness of our approach.

4.4. Comparison with the Latest SAR Ship Detection Methods Using SSDD Datasets

To further verify the performance of our method, we also compared it with the latest
SAR ship detection methods, as shown in Table 5.

Table 5. Comparison with the latest SAR ship detection methods.

Methods mAP (%) FLOPs (GMac) Params (M) Average Inference Time (ms)

DCMSNN [30] 89.43 - 41.1 46.2
NNAM [31] 79.8 - - 28
FBR-Net [42] 94.10 - 32.5 40.1

CenterNet++ [43] 95.1 - - 33
EFGRNet [44] 91.1 - - 33

Libra R-CNN [45] 88.7 - - 57
DAPN [32] 89.8 - - 41

LPEDet 97.4 18.38 5.68 7.01

The comparison methods and related experimental results in Table 5 need special
explanation. Since none of these comparison methods have open-source original codes, it is
difficult for us to completely reproduce the codes and parameter settings of the comparison
methods. Therefore, to fairly compare the performance of different detection methods, we
directly cite the highest detection results reported in the original reference of the comparison
methods. Especially for the two indicators of FLOPs and params, most of the comparison
methods have no relevant results. Therefore, we only cite the best experimental results
for other indicators published in the references. In addition, the results of the comparison
methods listed in Table 5 are mainly from references [42,43].

The results show that not only does our LPEDet achieve SOTA in accuracy but it also
has a relatively faster inference speed, which shows the high efficiency of our method.

4.5. Comparison with the Latest SAR Ship Detection Methods Using HRSID Datasets

In order to fully verify the performance stability of the LPEDet method proposed in
this paper with respect to different datasets, we introduce a new large-scale SAR target
detection dataset, namely, HRSID, and compare a variety of state-of-the-art SAR target
detection methods using this dataset. The specific results are shown in Table 6, below. By
comparing the experimental results, it was found that, compared with the current latest
SAR ship target detection methods, the LPEDet method proposed in this paper is superior
in terms of accuracy, while the parametric and computational complexity of the model are
also the lowest, which proves the stability of our method in relation to different datasets.
As can be seen in Table 6, except for the fact that the data for CenterNet2 on AP, AP75,
APM and APL are slightly higher than for our model, the difference is not big, and the
number of parameters in our model is almost 1/15 the number of its parameters, such that,
considering accuracy and speed, our model still has better performance in comparison.
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Table 6. Comparison of the latest SAR target detection methods on HRSID.

Method AP AP50 AP75 APS APM APL FLOPs (GMac) Params (M) Average Inference
Time (ms)

YOLOv3 [12] 50.9 85.0 53.1 51.0 56.1 25.5 121.15 61.52 136

SAR-net [46] - 84.7 - - - - 104.2 42.6 118

CenterNet2 [47] 64.5 89.5 73.0 64.7 69.1 48.3 - 71.6 -

RetinaNet [10] 59.8 84.8 67.2 60.4 62.7 26.5 127.91 36.3 122

YOLOX [13] 61.4 87.2 68.9 63.0 57.0 21.8 26.64 8.94 8.20
LPEDet 64.4 89.7 71.8 65.8 63.4 24.2 18.38 5.68 7.01

4.6. The Effect of the Number of Training Sets on Detection Performance

In order to verify the robust performance of our proposed method under the condi-
tions of different training data, we redivided the training and testing ratios of the dataset
under the conditions of 33% and 66% of the training set data, respectively, to validate the
performance of our model. The results are shown in Table 7 below. We combined the
results of Table 4 in the paper for the analysis (the training data volume of all methods in
Table 4 is 80% and above): when we only use 66% of the training data volume, mAP can
still reaching 96.8%, the performance is still better than most state-of-the-art SAR target
detection methods; and when we use only 33% of the training data volume, mAP can
still reach 94.6%, outperforming RetinaNet and SSD300, such that, compared to other
state-of-the-art SAR target detection methods, the results are not much different. The
analysis of the above results shows that the proposed LPEDet method can still achieve
better performance than the latest SAR target detection methods with fewer training data,
that it still has good robustness and that it can greatly reduce the labor costs involved in
manual labeling of data.

Table 7. Comparison of experimental results for different data volumes on SSDD.

Method Datasets Rate mAP (%)

LPEDet
33% 94.6
66% 96.8
80% 97.4

5. Conclusions

Multi-platform SAR earth observation equipment has accumulated massive amounts
of high-resolution SAR target image data, and SAR image target detection has great en-
gineering application value in military/civilian fields. Aimed at the problems of unclear
target contour information, complex backgrounds, strong scattering and multiple scales in
SAR images, a new anchor-free SAR ship detection algorithm, LPEDet, was proposed to
improve the accuracy and speed of SAR ship detection in a balanced manner. First, YOLOX
was used as the benchmark detection network; then, a new lightweight backbone, NLCNet,
was designed. At the same time, to further improve localization accuracy, we designed a
location-enhanced attention strategy. The experimental results based on the SSDD dataset
showed that the mAP of our LPEDet reached 97.4%, achieving SOTA. Meanwhile, the
average inference time for a single image is only 7.01ms when the input size is 640. With
respect to the HRSID dataset, our model is also stable, with an AP50 of 89.7%, which is
superior to other state-of-the-art object detection methods, while the computational com-
plexity, the number of parameters and the average inference time are lowest. In the future,
based on the Hisea-1 SAR satellite that our research group participated in launching, our
group independently constructed a larger-scale multi-type SAR target image dataset. We
will verify the effectiveness of our proposed LPEDet algorithm on this large-scale dataset.
Common SAR image artifacts such as speckle noise can affect SAR target detection results,
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and Mukherjee et al. [48] has demonstrated that their methods can respond to various
types of image artifacts. Therefore, in the future, we will consider introducing image
quality metrics to evaluate and correct the quality of the input SAR images so as to more
comprehensively iterate and verify the robust performance of our designed SAR target
detection method.
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