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Abstract: Autumn foliage color is an important phenological characteristic associated with climate
and appeals to populations as a cultural ecosystem service (CES). Land surface phenology (LSP)
analyzed using time-series remotely sensed imagery can facilitate the monitoring of autumn leaf color
change (ALCC); however, the monitoring of autumn foliage by LSP approaches is still challenging
because of complex spatio-temporal ALCC patterns and observational uncertainty associated with
remote sensing sensors. Here, we evaluated the performance of several LSP analysis approaches in
estimation of LSP-based ALCCs against the ground-level autumn foliage information obtained from
758 sightseeing (high CES) sites across Japan. The ground information uniquely collected by citizens
represented ALCC stages of greening, early, peak, late, and defoliation collected on a daily basis. The
ALCC was estimated using a second derivative approach, in which normalized difference vegetation
index (NDVI), kernel normalized difference vegetation index (kNDVI), enhanced vegetation index
(EVI), two-band enhanced vegetation index (EVI2), and green red vegetation index (GRVI) were
applied based on MODerate resolution Imaging Spectroradiometer (MODIS) MOD09A1 with four
(Beck, Elmore, Gu, and Zhang) double logistic smoothing methods in 2020. The results revealed
inconsistency in the estimates obtained using different analytical methods; those obtained using
EVI with the Beck model estimated the peak stage of the ALCC relatively well, while the estimates
obtained using other indices and models had high discrepancies along with uncertainty. Our study
provided insights on how the LSP approach can be improved toward mapping the CESs offered by
autumn foliage.

Keywords: autumn senescence; autumn foliage; land surface phenology; MODIS time-series; cultural
ecosystem services

1. Introduction

Leaf senescence is a unique autumn phenological event in temperate ecosystems [1,2].
It is a process of decline in leaf function due to leaf aging, observed as leaf color change,
ultimately resulting in the leaves dropping [1]. The ecological process is driven by a
combination of temperature and photoperiod [3,4] as well as soil moisture factors [5–7];
however, a comprehensive understanding of the underlying factors driving the process is
challenging, considering it is also influenced by biological and geographic conditions [8,9].

The spatio-temporal characteristics of leaf senescence events have been studied previ-
ously. Climate studies have focused on leaf senescence as an indicator of climate change [10].
Some studies have indicated that seasonal leaf senescence tends to be delayed by increasing
temperatures [1,2,4,8,11]; however, some studies have indicated that leaf senescence can
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occur earlier because of increasing spring and summer productivity due to elevated carbon
dioxide, temperature, or light levels [12]. Such leaf senescence patterns at the landscape
scale are often monitored by satellite sensors. Satellite observation systems are regularly
used to observe terrestrial surfaces on Earth and have been utilized for phenology stud-
ies [9,13,14]. The study of the spatio-temporal patterns and variations in vegetated land
surfaces using remote sensing-based phenological measurements is referred to as land
surface phenology (LSP) [13–16].

LSP has been used to infer the start and end of seasons, the length of the green season,
and associated phenophases based on the seasonal trajectory of a vegetation index (VI)
time-series, such as normalized vegetation difference index (NDVI) [13,14,17,18]. For
the phenophase estimation, applying a global threshold to a VI (i.e., 0.2 of an annual
NDVI trajectory) to extract phenophases may be inappropriate for LSP estimation because
such thresholds highly depend on geographic and land cover characteristics [19,20]. The
application of relative thresholds (i.e., 25% of the difference between the minimum and the
maximum of an annual NDVI trajectory) and derivatives of a VI trajectory, which determine
the date of the maximum increase and decrease in VI values, has also been proposed. Such
extraction methods are applied to modeled VI trajectories to smooth missing observations
and noise in the trajectory; for example, by double logistic function, asymmetric Gaussian
function, and Savitzky–Golay algorithm [13,14,17,18].

The estimated phenophases of LSP are assessed based on in situ observations and
near-surface remote sensing techniques. Previous studies on phenology have introduced
near-surface remote sensing techniques that employ digital cameras, which enable the
provision of a permanent and continuous visual record of the environment over the years,
and in some cases, even decades [21]. Such sensors are currently widely used to cap-
ture environmental changes globally [21–23]. Using such data, Soudani et al. [24] and
Rodriguez-Galiano et al. [25] suggested an overall agreement between ground and satellite
measurements in homogeneous and internally consistent vegetation covers (such as pure
deciduous forests) in Europe, whereas landscape heterogeneity can be a significant source
of errors and uncertainties [26,27]. Regardless of the importance of ground-level data col-
lection at various landscapes, such equipment tends to be installed in homogeneous land
cover areas to avoid anthropogenic disturbance, such as at the center of a forest, because
most phenological studies aim to understand natural environments without the influence
of humans.

Citizen science approaches have been adopted in an attempt to address the limited
ground phenological information available. For example, USA National Phenology Net-
work involves volunteers in phenological observation activities and collection of ground-
level information [28–30]. Taylor et al. [29] reported that citizen science data is applicable
in phenology modeling. In Japan, the use of the most popular and reliable phenological
observation system by Japan Meteorological Agency has shrunk due to lack of observations,
particularly at urban sites, and inadequate funding [31]. Therefore, although the scientific
quality of monitoring may not be sufficient, non-professional observation data including
citizen science data with respect to autumn foliage has been explored. Recent studies
focusing on autumn foliage in Japan have employed data collected from weather websites
to acquire ground-level information and have successfully demonstrated ALCC in response
to climate [9,32]. Regardless of the potential application of such online data to capture
autumn foliage at the regional scale, studies are yet to integrate LSP.

Thus, to investigate the usefulness of the LSP-based autumn leaf color change (LSP-
ALCC), this study evaluated the performance of several approaches of estimating LSP-
ALCC against ground-level autumn foliage information. We explored popular but different
approaches of estimating LSP-ALCC from several vegetation indices and fitting curves
using the MODerate resolution Imaging Spectroradiometer (MODIS) MOD09A1 product
for 2020. We then assessed the LSP-ALCC using ground-level autumn foliage information
collected from a citizen reporting system provided by Weathernews across 758 popular
sightseeing spots for autumn foliage in Japan in 2020 as reference.
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The significance of this study is to progress the understanding of cultural ecosystem
services (CESs) by ALCC. CESs are key ecosystem services (ESs) and indicate the recreation
and ecotourism values of the ecosystem. Autumn foliage attracts populations when scenery
spots in temperate ecosystems turn colorful and pleasant [32,33]. Autumn foliage has been
long recognized as a component of the beautiful Japanese landscape [34] and is a part of
aesthetic values of Japanese culture related to haiku, noh theatre, diets, and other aspects
of life [32]. ALCC is a popular motivation for many tourists to visit sightseeing spots [32],
which highlights the direct linkage with the CESs. Therefore, it is important to understand
the CESs provided by ALCC; however, such studies have not yet been carried out due to
the difficulty in the estimation of the ALCCs over space. The LSP-based approach was
expected to estimate the ALCCs from a local to country scale and contribute to mapping the
CESs. To the best of our knowledge, this was the first attempt to evaluate LSP-ALCC using
data based on people’s perceptions, directly linking ALCC with CESs. The estimation of
autumn foliage from LSP can facilitate the assessment of CESs effectively and continuously;
thus, this study evaluated LSP-ALCC estimations by several vegetation indices and models
for the development of a CES map in the future.

2. Materials and Methods
2.1. Data

We used the MODIS data product MOD09A1 (collection 6) covering Japan for 2020.
The product includes calibrated surface reflectance data for seven spectral bands within
the 400 nm to 2500 nm spectral region, at a spatial resolution of approximately 500 m. At
every pixel, values are stored from the best possible observation taken every 8 days; thus,
46 observations were obtained.

We acquired ground-level data collected by Weathernews. Weathernews is a company
that collects a wide range of weather information from ground-level data (from service
member reports and live cameras) and meso-level data (from satellites) to provide as
accurate weather information as possible to clients. As one of its services, Weathernews
reports the autumn foliage condition at 758 popular destinations across Japan on a daily
basis to promote sightseeing (Figure 1). Considering the geographic characteristics of Japan,
autumn foliage is typically observed in regions that extend from Hokkaido to Kyushu and
is best observed during October–December. The forest type in Japan changes from north to
south. The deciduous forests are mainly dominant in the north and middle regions of Japan,
while evergreen forests are typically found in the west and south. Deciduous and evergreen
forests are often mixed near non-forest areas (mostly urban and agricultural areas), where
many popular sightseeing spots are distributed. Such geographic characteristics pose
challenges for LSP-ALCC estimation in high-potential CES areas, where people often visit
to observe autumn foliage.

The daily Weathernews reports represent autumn leaf color conditions in five cate-
gories: none (greening), start of leaf coloring, peak of leaf coloring, fading of leaf coloring,
and leaf fall. As expected, the levels vary spatio-temporally (Figure 2). Specifically, they
exhibit latitudinal and altitudinal gradients [9]. Notably, the levels represent how people
recognize autumn foliage at each site so that they are linked to CESs, although this unique
dataset may not accurately represent the autumn foliage condition. It may lack the scientific
robustness of observations because it is based on reports of non-scientific experts, and the
comprehensive labeling scheme is not disclosed. Therefore, the data may be biased with
respect to categorization of leaf color condition into five categories. However, such an
observation-rich dataset for the ground-level autumn foliage is a unique reference data
source found in high-potential CES areas in Japan and is a subjective modality for autumn
foliage. Therefore, we used the dataset as a reference to assess the LSP-ALCC.
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Figure 1. Spatial distribution of 758 Weathernews data available at popular sightseeing spots for
autumn foliage in Japan. Color represents the composition of deciduous forest, evergreen forest, and
non-forest land. Land cover information was obtained from https://www.eorc.jaxa.jp/ALOS/en/
dataset/lulc_e.htm (accessed on 1 October 2021).

https://www.eorc.jaxa.jp/ALOS/en/dataset/lulc_e.htm
https://www.eorc.jaxa.jp/ALOS/en/dataset/lulc_e.htm
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Figure 2. Four stages of autumn leaf color change at 758 sightseeing spots across Japan in 2020,
reported by Weathernews. Each map represents the first day of year (DOY) of (a) start of leaf coloring,
(b) peak of leaf coloring, (c) fading of leaf coloring, and (d) leaf fall.

2.2. Methods

To test the sensitivity of the index selection for LSP-ALCC, we applied multiple com-
binations of vegetation index (VI) and fitting curve methods. In detail, we calculated five
vegetation indices from the MOD09A1 time-series, namely, NDVI, kernel NDVI (kNDVI),
enhanced vegetation index (EVI), two-band enhanced vegetation index (EVI2), and green
red vegetation index (GRVI) (Equations (1)–(5)).

NDVI =
ρnir − ρred
ρnir + ρred

(1)

kNDVI = tanh

((
ρnir − ρred
ρnir + ρred

)2
)

(2)

EVI = 2.5 × (ρnir − ρred)

(ρnir + 6.0 × ρred − 7.5 × ρblue + 1.0)
(3)

EVI2 = 2.5 × (ρnir − ρred)

(ρnir + 2.4 × ρred + 1.0)
(4)

GRVI =
ρgreen − ρred

ρgreen + ρred
(5)
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where ρnir, ρred, ρblue, and ρgreen are the surface reflectances in the near-infrared, red, blue,
and green bands, respectively. These preprocessing steps were implemented using the
Google Earth Engine (GEE) platform [35].

The VI time-series were fitted to a double logistic curve to remove the outliers and
missing values, similar to in previous studies [36–39]. We applied four curve fitting
methods based on a conventional double logistic curve: Beck [36], Elmore [37], Gu [38],
and Zhang [39] to the five VI time-series (Equations (6)–(9)).

Beck:

f (t) = mn + (mx − mn)×
(

1
1 + e(−rsp×(t−sos))

+
1

1 + e(−rau×(t−eos))

)
(6)

Elmore:

f (t) = mn + (mx − m7 × t)×
(

1
1 + e(−rsp×(sos−t))

− 1
1 + e(−rau×(eos−t))

)
(7)

Gu:
f (t) = y0 +

a1[
1 + e−rsp×(t−sos)

]
c1

− a2[
1 + erau×(t−eos)

]
c2

(8)

Zhang:

f (t) =


(mx−mn)

1+e−rsp×(t−sos) (greeningstage)
(mx−mn)

1+erau×(t−eos) (dormancystage)
(9)

where mn, mx, rsp, rau, sos, eos, m7, a1, a2, c1, c2, and y0 are parameters that are fitted based
on the data.

Finally, we extracted the LSP-ALCC using a derivative-based method. The method
determines the estimated day of year (DOY) using the rate of change in the curvature of
the modeled curves. Based on the findings of our preliminary investigations, we opted to
use the second derivative [13]. Numerous other LSP studies have used the first derivative,
which yields the local minima of the transition (the rate of change in curvature) in the
fitted curve, to estimate the end of season (EOS) [39,40]. However, as seen in Figure 3, for
example, the local minima of the first derivative tends to indicate an early estimate of the
autumn foliage. Thus, the local maxima of the second derivative when the slope (the first
derivative) is negative was used to determine the LSP-ALCC. Another popular approach
for LSP-ALCC extraction is a threshold-based method; we did not employ this approach
because the result is highly sensitive to the threshold value [14,20] and there is no standard
for determining the threshold for the LSP-ALCC.

We applied these approaches using the R Phenofit package (version 0.2.7, https:
//github.com/kongdd/phenofit (accessed on 21 June 2021)). For preprocessing, we applied
the weighting scheme according to the value of the state quality assessment (stateQA) layer.
The weights were used when applying double logistic curves to the original time series.
A weight of 1 was assigned to the data if no cloud, cloud shadow, aerosol, cirrus, and
snow were found. A weight of 0.2 was assigned to the data if cloud was found, aerosol
quantity was high, or snow was covered. A weight of 0.5 was assigned to all the other
data excluding the conditions above. The process above functioned well compared to the
quality masking approach (which extracts only the best quality pixel) to avoid a shortage
in available data for the analysis.

https://github.com/kongdd/phenofit
https://github.com/kongdd/phenofit
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Figure 3. An example of vegetation index values of MODIS time series (black dots) and smoothed
line by a double logistic curve (gray line) and estimated phenophase using by the first and the second
derivative (gray points). Colors on plots represent categories (red: start to peak of leaf coloring,
yellow: peak to fading of leaf coloring, brown: fading of leaf coloring to leaf fall), according to
Weathernews data.

3. Results
3.1. Estimation of Land Surface Phenology-Based Autumn Leaf Color Changes

The derivative-based LSP-ALCCs from the five VIs with respect to the four models
mentioned above are shown in Figure 4. The LSP-ALCCs from NDVI were often saturated
around the end of the year (DOY: 340 to 366), while those from kNDVI also showed such
saturation around the end of summer in DOY: 260–280. The LSP-ALCCs from EVI and
EVI2 represented relatively reasonable spatial distribution patterns, with gradients from
north to south. The LSP-ALCCs from GRVI also represented spatial distribution patterns
similar to EVI and EVI2, but those in northern Japan where deciduous forests are dominant
tended to be earlier than those from EVI and EVI2. Compared to the four models, the Beck
and Zhang models show similar trends, portraying a smooth gradient across space, while
the Elmore and Gu models showed relatively spatially heterogeneous results. The Elmore
and Gu model may be too complex for this case study, as the input MODIS time-series had
only 46 observations for 2020.
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Figure 4. Estimated autumn leaf color change by the derivative-based method from four different
double logistic models (Beck, Elmore, Gu, and Zhang) for five vegetation indices (NDVI, kNDVI, EVI,
EVI2, and GRVI).

3.2. Comparison of Land Surface Phenology-Based Autumn Leaf Color Changes with Citizen
Reports Data

Figure 5 shows a map of the LSP-ALCCs based on the four models with five VIs
in five ALCC stages, based on the Weathernews database. Using labels defined by the
Weathernews database, five ALCC stages were established: greening stage (the start of the
year to the start of leaf coloring), early stage (the start to the peak of leaf coloring), peak stage
(the peak to fading of leaf coloring), late stage (the fading of leaf coloring to the leaf fall),
and defoliation stage (the leaf fall to the end of year). LSP-ALCC using NDVI in any model
tended to be categorized as the defoliation stage in most observations, while those using
kNDVI were categorized as the greening stage. LSP-ALCCs using EVI and EVI2 in the Beck
and Zhang models tended to fit well: some fit in the defoliation stage in the southern part of
Japan and some in the greening stage in the northern and the middle parts of Japan, while
relatively many observations fit within early stage to late stage. LSP-ALCC using EVI and
EVI2 by the Elmore and the Gu models tended to fit in the defoliation stage and such spatial
distributions showed less geographic trends. LSP-ALCC based on GRVI with any model
tended to show a relatively clear spatial distribution pattern, such that those fitting within
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the greening stage were observed in the northern part, while those fitting with the defoliation
stage were observed in the southern part of Japan.
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Figure 5. Maps of five stages of autumn foliage (greening stage, early stage, peak stage, late stage, and
defoliation stage) corresponding to the autumn leaf color change estimates based on the derivative-
based method from four double logistic models (Beck, Elmore, Gu, and Zhang) with five vegetation
indices (NDVI, kNDVI, EVI, EVI2, and GRVI).

Table 1 shows a quantitative summary of how frequently LSP-ALCCs estimated from
different models and vegetation indices fit in each category. To explore the fitness of
whether LSP-ALCCs were within the autumn foliage stage or not, early to late stages were
aggregated into the autumn foliage stage. NDVI models often estimated LSP-ALCC at the
defoliation stage, while kNDVI models did at the greening stage. Models with EVI, EVI2, and
GRVI estimated LSP-ALCC relatively well, and a large number of estimates were within
the autumn foliage stage.
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Table 1. Proportions (%) of autumn leaf color change estimates categorized as greening, early,
peak, late, and defoliation stages, based on citizen reported data in the Weathernews database.
Autumn foliage is the aggregation of early to late stages. NA column represents the percentage of
missing values.

Greening Early Peak Late Defoliation NA Autumn Foliage

NDVI Beck 2.9 2.6 4.9 5.9 57.9 25.7 13.5
Elmore 2.0 2.0 3.6 5.0 47.5 40.0 10.6

Gu 5.5 2.6 3.6 5.8 72.0 10.4 12.0
Zhang 2.8 2.9 4.8 6.3 57.5 25.7 14.0

kNDVI Beck 42.4 14.4 13.6 5.3 14.4 10.0 33.2
Elmore 30.9 11.5 17.8 6.7 24.5 8.6 36.0

Gu 23.7 11.2 14.9 6.2 28.1 15.8 32.3
Zhang 41.8 14.5 13.2 4.9 14.0 11.6 32.6

EVI Beck 17.1 13.8 18.9 7.9 39.0 3.2 40.6
Elmore 9.6 9.1 11.3 9.0 47.2 13.7 29.4

Gu 12.4 7.9 14.5 8.2 49.6 7.4 30.6
Zhang 17.9 13.6 18.5 8.3 38.1 3.6 40.4

EVI2 Beck 16.4 13.3 17.9 8.7 39.5 4.2 40.0
Elmore 7.1 8.4 11.9 8.4 49.1 15.0 28.8

Gu 9.8 4.6 11.3 8.7 52.5 13.1 24.7
Zhang 17.3 12.9 17.0 8.6 39.5 4.8 38.5

GRVI Beck 19.9 11.6 16.2 9.0 36.8 6.5 36.8
Elmore 17.0 10.6 14.1 7.0 39.6 11.7 31.7

Gu 24.5 12.0 15.4 9.6 29.8 8.6 37.1
Zhang 19.8 11.7 15.6 9.2 36.0 7.7 36.5

The Beck model with EVI yielded the highest fits in the peak stage (18.9%) and in the
aggregated autumn foliage stage (40.6%). The Zhang model with EVI yielded the second-best
fit in the peak stage (18.5%) and in the autumn foliage stage (40.4%). The estimates with EVI2
were slightly poorer than those with EVI in all models. GRVI was expected to represent
autumn foliage reliably as the index considers differences in visible wavelength values;
however, the estimates were not as reliable as those with EVI and EVI2. The Elmore and Gu
models performed relatively poorly with all VIs, which could be attributed to the model’s
complexity. Specifically, numerous parameters have to be fitted, whereas insufficient
observations were available in the present study. Even though the results were explored
based on the fitness within the peak stage or the autumn foliage stage, the correspondence
rate was not adequately high, implying high uncertainty.

3.3. Validation at Example Sites

Figure 6 demonstrates how the Beck double logistic model was fitted to the five VIs
(NDVI, kNDVI, EVI, EVI2, and GRVI) at example sites. In plots (A)–(D), the estimated
LSP-ALCCs are shown as red points, and autumn foliage stages based on Weathernews
data are shown as colored strips: early stage, peak stage, and late stage, are shown in red,
yellow, and brown, respectively. The fitting and LSP-ALCCs were inconsistent across
different VIs. Time-series plot indicated that the fitting for NDVI was likely to show less
seasonality than others, which often causes failure of estimates of LSP-ALCC. At site A, the
main campus of Hokkaido University, which is famous for its ginkgo trees, models based
on NDVI, EVI, EVI2, and GRVI estimated the LSP-ALCC; however, the estimates were
later than the peak stage on the ground. At site B, Mt. Asamakakushisan, a famous autumn
foliage site for maple and beech trees, models by kNDVI, EVI, EVI2, and GRVI yielded
good estimates. In particular, LSP-ALCC based on EVI and EVI2 fit within the peak stage.
LSP-ALCC based on kNDVI was estimated at a relatively early period, and that based
on GRVI was estimated at a relatively late period. At site C, Kobe Municipal Arboretum,
where diverse types of trees are found, fittings showed relatively low seasonality and only
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models based on kNDVI and GRVI estimated LSP-ALCCs; however, the estimates were
at the post-defoliation stage. At site D, Okajyoshi, a famous autumn foliage spot for maple
trees, models based on kNDVI, EVI, and EVI2 estimated LSP-ALCCs much earlier than
the autumn foliage stage, whereas the model based on GRVI estimated LSP-ALCCs at the
defoliation stage. The results suggest that the validity of LSP-ALCC estimates was influenced
by the seasonality of VI time-series.
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Figure 6. Four examples of land surface phenology-based autumn leaf color changes (red points) from
the Beck double logistic model fittings (gray lines) based on five vegetation indices, including NDVI,
kNDVI, EVI, EVI2, and GRVI (black dots) at (A) Hokkaido University, (B) Mt. Asamakakushisan,
(C) Kobe Municipal Arboretum, and (D) Okajyoshi. Colors on plots represent categories (red: early
stage, yellow: peak stage, brown: late stage, according to Weathernews data).

Figure 7 shows the difference in estimated LSP-ALCCs from the Beck double logistic
model with EVI against the middle day of the peak stage of ALCC according to the
Weathernews data. As the peak period of the Weathernews data was 14.48 days on average
with a standard deviation of 11.51 days, such a difference was expected. While the map
shows the bias, the histogram represents the unimodal distribution with the mean as 6.28,
suggesting the LSP-ALCCs tended to estimate the peak ALCC late. The spatial distribution
of outliers of the difference is found in Figure 7, but it does not show a clear pattern. The
difference could be caused by observations such as cloud cover and mixed land cover
within a pixel or model fitting due to inexplicit seasonal patterns of EVI.
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4. Discussion
4.1. Uncertainty of Land Surface Phenology-Based Autumn Leaf Color Change Estimates

Accurate estimation of ALCC using NDVI from MODIS MOD09A1 was difficult,
especially in the west and south of Japan, where laurel forests are dominant. As laurel
forests consist of a mixture of evergreen and deciduous trees, vegetation in evergreen
forests is relatively active throughout the year in such areas (see Figure 6). Although NDVI
is a popular index, its value is often saturated in dense vegetation [41], making it difficult
to use NDVI to track seasonal changes in the vegetation in evergreen forests. However,
considering deciduous forests are dominant in northern Japan, seasonal vegetation activities
tend to be relatively clear, and the surface reflectance time-series enable characterization
of leaf senescence. The saturation problem of NDVI may be critical, leading to difficulties
in LSP-EOS estimation at low latitudes. kNDVI was expected to be a better choice for
LSP-ALCC estimation, considering it is less sensitive to the saturation problem. However,
the results were opposite to those obtained based on NDVI, such that LSP-ALCCs were
in the greening stage at many sites (Figure 5 and Table 1). Consequently, EVI and EVI2
performed relatively well by avoiding the problem and capturing the changing signals
of autumn foliage. Color-based VI of GRVI was expected to represent the seasonal color
change of vegetation; however, the approach estimated autumn foliage events relatively
late, which may be due to the mixed pixel problem, as the spatial resolution of MODIS
MOD09A1 is coarse (500 m). Heterogenous land cover and/or tree species, especially in
the west and south of Japan (see Figure 6C,D), would influence the result because the GRVI
time-series directly represent signal change for color.

The extraction methods also influenced the results. The results imply that the Elmore
and Gu models, which require more parameters, estimated the LSP-ALCC poorly compared
to the simpler asymmetric double logistic curves of the Beck and Zhang models. This could
be caused by the relatively small number of observations (with respect to the number of
parameters). The Beck and Zhang models require six parameters to be fitted, whereas the
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Elmore and Gu models require seven and nine parameters, respectively. As the MODIS
MOD09A1 time-series had 46 observations, models with fewer parameters were stable for
fitting in this study. Future studies should examine this issue using frequent observation
data, such as those obtained using Advanced Himawari Imager (AHI) 8, as seen in [42].

We only employed the derivative approach for LSP-ALCC extraction from the fitting
curve. The popular threshold approach could also be applied, for example, with a thresh-
old of 0.2 and 0.5 for all models (results are not presented). However, determining the
appropriate threshold is not straightforward. The well-fitted threshold varies according
to space and time, and such inconsistency can be a major obstacle in this approach. For
example, we estimated the LSP-ALCCs with a threshold of 0.5, which tended to show
earlier autumn foliage, whereas the 0.2 threshold tended to show later autumn foliage;
therefore, the optimal threshold was between 0.2 and 0.5. However, such a threshold would
be inconsistent across space and time.

4.2. Limitations

Although the derivative approach is the most reasonable method of extracting phenop-
hases, sometimes, it cannot estimate phenophases in case of failure in finding the local
maxima of the second derivative in time-series. Such an issue can be overcome by adding
observation inputs in the pre- and post-target periods to the model for better fitting. The
data-fitting approach used in our study has a technical limitation if the available data are
insufficient. A logistic function curve fits well when the vegetation activity or the leaf color
at a certain stage (e.g., greening in the summer) changes drastically to another stage in the
dormancy stage, transitioning into the next stage (e.g., leaf fall in the winter) (see Figure 6B)
as an example). If such dormancy is not found within the observation period because of the
poor observation at a certain period or the seasonal change being inexplicit, the derivative
method may fail to capture the ALCC. As the double logistic approach is a data-fitting
approach, the development of a process-based model is crucial.

Our results suggest that the LSP-ALCC based on the second derivative method for
EVI with Beck model yielded reliable results. However, improvements are still required
because the percentage of the LSP-ALCC found in the peak stage was only 18.9%. In addition,
other high-frequency observation data should be explored for better ALCC estimation in
future studies.

We used the citizen report data as reference for the autumn foliage, and such data
suffer from uncertainty with regard spatial resolution, which is different from that of remote
sensing [43]. All citizen reports may not be georeferenced precisely; therefore, high spatial
resolution remote sensing data, such as those obtained from Landsat-8 and Sentinel-2,
were not used. It should also be considered that the landscape level of the sightseeing
spots ranges from a natural scenery level to an architectural level. Such heterogeneous
characteristics of spots may lead to uncertainty under remote sensing-based observation
and LSP models. Such issues in the integration of citizen reports with remote sensing data
should be investigated further in future studies.

4.3. Future Directions toward Mapping Cultural Ecosystem Services

The present study evaluated the uncertainty of LSP-ALCC in illustrating the CESs
provided by autumn foliage. Not only developing a better LSP-ALCC model, but also
mapping the CESs is a future research direction. The socioeconomic aspects of the CESs
with respect to autumn foliage, including the accessibility and attractiveness of sites [44],
should also be considered in future studies. Although CESs substantially contribute to
human well-being [45], the sustainable management of CESs is key to quantifying their
value. Additionally, landscape planning should be updated based on CES assessment for
environmental sustainability [46].
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5. Conclusions

We evaluated autumn leaf color change using a land surface phenology approach
based on ground-level autumn leaf reports at spatially distributed 758 sightseeing sites
across Japan. LSP-ALCCs were estimated using MODIS MOD09A1 time-series data for the
year 2020. The estimated LSP-ALCCs by the second derivative-based extraction method
with five VIs and four fitting curves were highly inconsistent, and most of them were
not fitted well with the referenced information. Even though we determined that the
optimal approach of estimating LSP-ALCC was using EVI with the Beck model, further
investigations are required to improve the ALCC estimation for the use of mapping cultural
ecosystem services based on both citizen reports and remote sensing.
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