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Abstract: Synthetic aperture radar (SAR) target discrimination is an important stage that distinguishes
targets from clutters in the radar automatic target recognition field. However, in complex SAR
scenes, the performance of some traditional discriminators will degrade. As an effective tool for
one-class classification (OCC), the max-margin one-class classifier has attracted much attention for
SAR target discrimination, as it can effectively reduce the impact of multiple clutters. However,
the performance of the max-margin one-class classifier is very sensitive to the values of kernel
parameters. To solve the problem, this paper proposes an adaptive max-margin one-class classifier
for SAR target discrimination in complex scenes. In a max-margin one-class classifier with a suitable
kernel parameter, the distance between a sample and classification boundary satisfies a certain
geometric relationship, i.e., edge samples in input space are transformed to the region in the kernel
space close to boundary, while interior samples in input space are transformed to the region in the
kernel space far away from boundary. Therefore, we define the information entropy of samples in the
kernel space to measure the distance between samples and classification boundary. To automatically
obtain the optimal kernel parameter of the max-margin one-class classifier, the edge and interior
samples in the input space are first selected, and then the parameter optimization is performed by
minimizing information entropy of interior samples and simultaneously maximizing the information
entropy of edge samples. Experimental results of the synthetic datasets and measured synthetic
aperture radar (SAR) datasets validate the effectiveness of our method.

Keywords: synthetic aperture radar (SAR); target discrimination; one-class classifier (OCC); kernel
parameter optimization; information entropy

1. Introduction

The development of synthetic aperture radar (SAR) imaging technology has resulted
in great attention to the field of SAR automatic target recognition (ATR) [1,2]. The SAR
ATR system usually contains three basic stages [3,4]: detection [5–7], discrimination [8–10],
and recognition [11,12]. The target detection stage aims to locate the targets of interest and
obtain the candidate target results, which contain the true targets and some clutters. The
main task of target discrimination is to remove the false alarm clutters from the candidate
target results and reduce the burden of the recognition stage that identifies the target type.
As the second stage of SAR ATR, target discrimination performs an important role in SAR
ATR systems and receives lots of attention in the remote sensing images processing field.

Many target discrimination methods have been developed, and many traditional
target discrimination methods mainly focus on discriminative feature extraction. In [8],
Wang et al. propose a superpixel-level target discrimination method that uses the multilevel
and multidomain feature descriptor to obtain the discriminative features. Wang et al. [9]
extract the local SAR-SIFT features that are then encoded to improve the category-specific
performance. Moreover, Li et al. [10] develop a discrimination method by extracting the
scattering center features of SAR images, which can effectively identify the targets from
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clutters. Although these methods [8–10] perform well on SAR target discrimination, they
ignore the design of discriminators, which may restrict their discrimination performance in
complex scenes.

Several classifiers have been proposed to solve one-class classifier (OCC) problems and
have been applied for discrimination. They can be categorized into three groups: statistical
methods, reconstruction-based methods, and boundary-based methods. In statistical
methods, the probability density function (PDF) [13] of the target samples is estimated
firstly, and then a threshold is predefined to determine whether test samples are generated
from this distribution. Reconstruction-based methods, such as Auto-encoder (AE) and
variational AE [14], learn a representation model by minimizing the reconstruction errors of
the training samples from the target class; the reconstruction errors of test samples are then
used to judge whether they belong to the target class. In boundary-based methods [15,16],
a boundary is constructed with the training samples only from target class to determine the
region where the target samples are located. The most well-known boundary-based method
are max-margin one-class classifiers, i.e., one-class support vector machine (OCSVM).
As discussed above, statistical methods are simple and carried out by estimating the
probability density of the target sample distribution, but they rely on a large number of
training samples to estimate a precise probability density, especially when the dimension of
training data are high. In addition, reconstruction-based methods are effective and explore
the representative features for one-class classification, but they also need sufficient training
samples in order to learn a suitable model for the target samples. In OCSVM, the kernel
transformation makes them handle nonlinear data easily, the relaxation items make them
generalize well, and the sparse support vectors help them save a lot of storage space, thus
they have gained significant attention for solving OCC problem. However, the performance
of the OCSVM is very sensitive to the values of the kernel parameters.

Recently, several methods [17–19] have been developed to select the suitable kernel
parameters for OCSVM. First, a kernel parameter candidate set is predefined and the
value of objective function for each element in the candidate set is computed. Next, the
optimal kernel parameter is selected based on the minimum/maximum objective function
values. In [17], Deng et al. propose a method referred to as SKEW for OCSVM based
on the false alarm rate (FAR) and missing alarm rate (MAR). Wang et al. [18] introduce
a MinSV+MaxL method for SVDD, which computes the objective function value VL and
the proportion Vs between the support vectors and training samples for each element in
the parameter candidate set, and the optimal parameter is determined by the maximum
difference between adjacent times of VL and Vs. Xiao et al. [19] put forward a MIES method
for OCSVM via the distance between the sample and classification boundary. Although
the methods [17–19] can select a suitable Gaussian kernel parameter, they suffer from
two main challenges: (1) it is difficult to predefine the kernel parameter candidate set
in the range of (0,+∞); (2) the computing burden of these methods is large, since the
value of objective function is computed for each parameter in the candidate set, especially
when there are many elements in the candidate set. Consequently, these kernel parameter
selection methods still restrict the performance of the one-class classifier.

To access the above issues, this paper aims to develop an adaptive max-margin one-
class classifier by automatically obtaining the optimal kernel parameter, which is adaptive
to the complex scenes of SAR images. The motivations of our method are as follows:

(1) An adaptive max-margin one-class classifier is developed for SAR target discrimi-
nation in complex scenes, in which a suitable kernel parameter of the max-margin
one-class classifier is learned based on the geometric relationship between the sam-
ple and classification boundary without a parameter candidate set. In this way, the
proposed method can not only achieve the promising discrimination performance,
but also avoid the difficulty of determining the parameter candidate set and reduce
the computational cost in the training stage. In detail, for the max-margin one-class
classifier, the training samples in the input space are mapped to the kernel space via
the kernel transformation. Then, the classification boundary is constructed in the
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kernel space via the samples that are closest to the classification boundary, i.e., support
vectors (SVs). As discussed in [20], with a suitable kernel parameter, the max-margin
one-class classifier can ensure that the edge samples in the input space are transformed
to the region in the kernel space close to the classification boundary and more likely
to become SVs, and the interior samples in the input space are transformed to the
region in the kernel space far away from the boundary and unlikely to become the
SVs. Thus, an optimal kernel parameter for the max-margin one-class classifier can be
adaptively obtained based on the above geometric relationship.

(2) We define the information entropy of samples as the objective function of our method,
which measures the distance between a sample and the classification boundary in the
kernel space that can be automatically optimized by the gradient descent algorithm.
Specifically, the larger entropy value a sample has, the closer the sample is to the clas-
sification boundary. The optimal kernel parameter can be learned by maximizing the
information entropy of edge samples and simultaneously minimizing the information
entropy of interior samples. In this way, the optimal kernel parameter can ensure
that the edge samples in the input space are projected to the area in the kernel space
close to the classification boundary, while the interior samples in the input space are
projected to the area in the kernel space far away from the classification boundary.
Based on the above criterion, our method can obtain the optimal kernel parameter
that further devotes to the promising discrimination performance.

This paper focuses on the exploration of an adaptive max-margin one-class classifier
for SAR target discrimination in complex scenes, and the main contributions of this paper
are summarized as: (1) the geometric relationship between the sample and classification
boundary is utilized to learn a suitable kernel parameter for OCSVM without a parameter
candidate set, which can effectively reduce the computational cost in the training stage and
ensure a favourable performance for SAR target discrimination; (2) the information entropy
is defined for each sample to measure the distance between a sample and the classification
boundary in the kernel space, which is adopted as the objective function of our method
that can be automatically optimized by the gradient descent algorithm.

The remainder of this paper is organized as follows: a review about max-margin one-
class classifiers is given in Section 2, and the proposed method is presented in Section 3. In
Section 4, some experimental results on synthetic datasets and measured synthetic aperture
radar (SAR) datasets are presented. Finally, Sections 5 and 6 describe the discussion and
conclusions, respectively.

2. Max-Margin One-Class Classifier

One-class SVM is a domain-based classification method that looks for the classification
hyperplane to set the boundary of the target class sample; most of the training samples
are located above the hyperplane, and the distance from the origin to the hyperplane
is the largest. The maximum distance from the origin to the hyperplane is called the
“maximum-margin”, so the OCSVM is also called the max-margin one-class classifier. The
2D illustrations of OCSVM are shown in Figure 1.

Figure 1. The 2D illustration of OCSVM, where the red line denotes the hyperplane for classification.
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The objective function of OCSVM is shown in Equation (1):

min
w,ξi ,ρ

1
2‖w‖

2 + 1
ηN ∑

i
ξi − ρ

s.t.
(

wT ~
xi

)
≥ ρ− ξi; ξi ≥ 0, ∀i

(1)

with w being the slope of the classification hyperplane, η being a tradeoff parameter, and ξi

the slack term. Moreover,
~
xi is represented as follow:

~
xi = [κ(xi, r1), κ(xi, r2), · · · , κ(xi, rM)] (2)

where κ(·, ·) denotes the kernel function. As a most widely used feature transformation,
Gaussian kernel transformation possesses the special characteristics of similarity preserving
and its value is 0 < κ(·, ·) ≤ 1. The Gaussian kernel transformation transforms the data in
input space into the unit hypersquare of the first quadrant in the kernel sparse. The target
samples are transformed to the region far away from the origin, while the clutter samples
are projected into the region near the origin.

For dataset {xi}N
i=1, Gaussian kernel function defines the inner product of two samples

in the kernel space, and thus, κ(·, ·) can be further formulated as:

κ
(
xi, xj

)
=
〈
φ(xi), φ

(
xj
)〉

= exp

−∥∥xi − xj
∥∥2

2
2σ2

 (3)

where φ(·) is the Gaussian kernel transformation without explicated expression, and σ is the
Gaussian kernel parameter. It is obvious that 〈φ(xi), φ(xi)〉= exp(0) =1, thus ‖φ(xi)‖ = 1 for
every samples. In other words, samples are mapped to the unit hypersphere in the kernel space
with Gaussian kernel transformation. Moreover, the cosine of the central angle between two

samples in the kernel space, i.e., cos θ =
〈φ(xi),φ(xj)〉
‖φ(xi)‖‖φ(xj)‖ =

〈
φ(xi), φ

(
xj
)〉

= κ
(
xi, xj

)
. There-

fore, the value of κ
(
xi, xj

)
measures the similarity of two samples in the kernel space.

Different values of Gaussian kernel parameters correspond to different distributions
of samples in the kernel space. On the consideration of two extreme cases– σ→ +∞ and
σ→ 0–we can see that κ

(
xi, xj

)
is very close to 1 for any paired-samples when σ→ +∞ ,

thus the cosine of the angle between two samples in the kernel space is close to 1. In other
words, all samples are mapped to the same location in the kernel space if σ→ +∞ . On
the contrary, κ

(
xi, xj

)
is close to 0 for any paired samples when σ→ 0 , thus the cosine of

the angle between two samples in the kernel space is close to 0. Therefore, all samples
are mapped to the edge of each quadrant in the kernel space if σ→ 0 . Since different
values of Gaussian kernel parameters correspond to the different distributions of samples
in the kernel space, the decision boundaries of OCSVM are different when the selection of
Gaussian kernel parameters are different.

In addition, Equation (1) can be transformed as Equation (4) via Lagrange multiplier theory:

min
α

N
∑
i,j

1
2 αiαjκ

(
xi, xj

)
s.t. 0 ≤ αi ≤ 1

ηN , ∀i
N
∑

i=1
αi = 1

(4)

The problem of Equation (4) can be solved with a sequential minimal optimization
(SMO) algorithm [21]. Once the optimal solution α is obtained, the decision function of
OCSVM is given in Equation (5):

f (x∗) = sign

(
N

∑
i=1

αiκ(xi, x∗)− ρ

)
(5)
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The test samples x∗ belongs to the target class in the case of f (x∗) ≥ 0. Otherwise,
x∗ belongs to the non-target class. It is can be seen from Equation (5) that the parameters of
classification boundary in OCSVM are determined by the samples with coefficient α larger
than 0, i.e., SVs. In other words, the classification boundary of OCSVM is decided via SVs,
which is aligned with the analysis in the Introduction. According to the above analysis, this
paper chooses the Gaussian kernel function for the max-margin one-class classifier.

3. The Proposed Method

In this section, a detailed introduction to our method will be shown. In Section 3.1, the
algorithm of interior and edge samples selection is first presented. Then, the definition of
information entropy for each sample in the kernel space is shown in Section 3.2. Finally,
the objective function for automatically learning the optimal kernel parameter is given
in Section 3.3.

3.1. Sample Selection

First of all, our method chooses the edge and interior samples in the input space.
For 2D data, we can manually select samples via visual results of data distribution, but
it is beyond our reach to manually select samples in high-dimensional space. Therefore,
an algorithm that can automatically select edge and interior samples is a key step in
our method.

In general, for an interior sample xi, its nearest neighbors are evenly sitting on two
sides of the tangent plane passing through xi. On the contrary, most of the nearest neighbors
of an edge sample xi only sit on one side of the tangent plane passing through xi. Such local
geometric information between the samples and their nearest neighbors can be used for the
selection of interior and edge samples. We should point out that the edge sample selection
idea is from article [22], while the idea of interior sample selection is further induced in this
paper. To give an illustration to the geometric relation, Figure 2 presents the schematic of
an edge sample and an interior sample, including their k-nearest neighbors, normal vectors,
and target tangent planes.

Figure 2. Definition of edge and interior samples with k-nearest neighbors, normal vectors, and tangent
planes. The tangent plane is perpendicular to the normal vector. (a) Edge sample. (b) Interior sample.

In detail, based on the k-nearest neighbors of the sample xi, the normal vector Vi of
the tangent plane passing through sample xi can be approximated as follows:

Vi =
K

∑
j=1

xij − xi∥∥xij − xi
∥∥ (6)

where xij is the jth neighbor of xi. Then, the dot products between the normal vector and
the vectors from xi to its k-nearest neighbors can be computed:

θij =
(
xij − xi

)TVi (7)
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Thus, the fraction of nonnegative dot products is calculated based on θij:

li =
1
K

K

∑
j=1

I
(
θij > 0

)
(8)

In Figure 2b, the nearest neighbors sit evenly on two sides of the tangent plane for
the interior sample. Consequently, the value of li is close to 0.5. On the contrary, as shown
in Figure 2a, most of the nearest neighbors of the edge sample sit only on one side of
the tangent plane. Therefore, the value of li is close to 1. In other words, the criterion of
selecting the edge and interiors samples is expressed as:{

xi is an edge sample if li > 1− γ
xi is an interior sample if 0.5− η < li < 0.5 + η

(9)

where γ and η are predefined parameters with small values.
For the sample selection algorithm, there are three predefined parameters: K, γ, η.

When the value of η is 0, all of the nearest neighbors of a sample sit evenly on two sides of
its tangent plane. Similarly, when the value of γ is 0, all of the nearest neighbors of a sample
are only located on one side of the tangent plane. Such requirements for sample selection
are too strict. Therefore, the requirements for selecting samples are loose by setting small
values for parameters γ and η. Empirically, as discussed in reference [22], we set the range
of the parameters γ and η as [0, 0.1]. For the parameter K, the values of parameter K affects
the estimation accuracy of the normal vector, and a recommended value is K = 5 ln N [14],
with N being the number of training data.

3.2. Information Entropy of Samples

In the max-margin one-class classifier, the SVs are sparsely located on the decision
boundary in the kernel space, while the interior samples are densely distributed inside
the decision boundary. Therefore, if samples are close to the decision boundary, they are
located in the low-density region and far away from most of other samples, and more likely
to be CVs [13]. On the contrary, if samples are far away from the decision boundary, they
are located in the high-density region and close to most of other samples [14].

For the samples, we can calculate the Euclidean distance between two samples in the
kernel space as:

disij =
∥∥φ(xi)− φ

(
xj
)∥∥2

= κ(xi, xi) + κ
(
xj, xj

)
−2κ

(
xi, xj

)
(10)

with xi and xj denoting two samples in the training set and κ
(
xi, xj

)
the kernel function.

As discussed in Section 2, we choose the Gaussian kernel function for κ
(
xi, xj

)
, and then,

Equation (10) can be approximated as:

disij = 2
(
1− κ

(
xi, xj

))
(11)

which represents the Euclidean distance between the samples xi and xj.
Then, the probability of dissimilarity between xi and xj is defined via disij:

pij =
disij

N
∑

n=1
disin

(12)

with N denoting the number of samples in the training set. For a sample xi, if it is located
close to the decision boundary and far from most other samples xj, most of the values{

disij
}N

j=1 are very big, and thus the probability of dissimilarity pij is approximate to 1/N;
if xi is far from the decision boundary and close to most of the other samples xj, most
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of the values
{

disij
}N

j=1 are very small, and thus the probability of dissimilarity pij is
approximately to 0 or 1.

Finally, the information entropy function related to the samples’ Euclidean distance is
defined for ith sample based on the probability of dissimilarity pij:

Hi = −
N

∑
j=1

pij log2 pij (13)

To solve the problem of log 0 in Equation (13), we set pii = 1 instead of 0, and then the
terms pii log2 pii = 0 do not impact the calculation of other terms pij log2 pij = 0(j 6= i) for
Hi. According to the property of information entropy, Equation (13) shows that, for sample
xi close to the decision boundary with its probability of the dissimilarity pij approximate to
1/N, the entropy value Hi is very large; for sample xi far from the decision boundary with
its probability of the dissimilarity pij approximate to 0 or 1, the entropy value Hi is very
small. With the above analysis, the larger entropy value a sample has, the closer the sample
is to the decision boundary. Thus, the information entropy of samples in Equation (13) can
be utilized to measure the distance between the samples with the decision boundary in the
kernel space.

3.3. Objective Function of the Proposed Method

As analyzed in [19,20], for an appropriate kernel parameter, the distance between
samples and classification boundary satisfies a certain geometric relationship for the max-
margin one-class classifier, i.e., the edge samples in the input space are transformed to
the region in the kernel space close to boundary and more likely to become SVs, while
the interior samples in the input space are transformed to the region in the kernel space
far away from boundary and unlikely to become SVs. In Section 3.2, we can see that the
samples with large entropy values are close to boundary and more likely become SVs,
while samples with small entropy values are far away from decision boundary and unlikely
to become SVs. Therefore, for an appropriate kernel parameter, the entropy values of edge
samples are high, while the entropy values of interior samples are low. Based on the above
analysis, the optimal kernel is obtained via maximizing the subtraction of information
entropy between the edge and interior samples. The objective function of our method is
shown as:

σopt = argmax
σ

{
1

N1
∑

i∈C1

H(xi; σ)− 1
N2

∑
j∈C2

H
(
xj; σ

)}
(14)

where H(xi; σ) represents the entropy value of xi with kernel parameter σ, and C1 and C2
representing the set of edge samples and interior samples, respectively; N1 and N2 represent
the number of edge samples and interior samples, respectively. By maximizing the informa-
tion entropy of edge samples and minimizing the information entropy of interior samples,
we ultimately obtain the optimal kernel parameter. The optimization of Equation (13) can
be solved via the gradient descent algorithm. The gradient of Equation (14) with respect to
parameter σ is given in Equation (15):

∂J
∂σ

=
1

N1
∑

i∈C1

∂H(xi; σ)

∂σ
− 1

N2
∑

j∈C2

∂H
(
xj; σ

)
∂σ

∂H(xi; σ)

∂σ
= −

N
∑

n=1

(1 + log2 pin)

υin
N
∑

k=1
disik − disin

N
∑

k=1
υik(

N
∑

k=1
disik

)2


υik =

1
2
‖xi − xk‖2 exp

(
−‖xi − xk‖2

2σ2

)
(15)
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where disik is the square of Euclidean distance of two samples xi and xk in the kernel space,
and pin is the similarity between xi and xn. The formulations of disik and pin are predefined
in Section 3.2. We summarize the whole procedure of our method in Algorithm 1.

Algorithm 1. The procedure of the proposed method

1: Input: Training set {xi}N
i=1, K, γ, η, δ, initial value σ = σ0, threshold ε.

2: Output: the optimal kernel parameter σopt.
3: for n = 1 : N
4: Select the k-nearest neighbors of sample xi:

{
xij

}K

j=1
;

5: Compute the normal vector Vi of the tangent plane passing through xi based on Equation (6);
6: Compute the fraction of nonnegative dot products li based on Equation (8);
7: end for
8: Construct the set of edge samples C1 and the set of interior samples C2 based on Equation (9);
9: While Di f f > ε

10: Calculate the gradient functions ∂J/∂σ based on Equation (14);
11: σnew = σold + δ ∂J

∂σ ;
12: Calculate the value of objective function OFnew based on Equation (13);

13: Di f f =
|OFnew−OFold|

OFold

14: σold=σnew, OFold = OFnew;
15: End
16: Output: the optimal kernel parameter σopt.

4. Results

To validate the target discrimination performance of our method, the synthetic datasets,
UCI datasets, and measured synthetic aperture radar (SAR) dataset are used in this section.
Three kernel parameter selection methods including MIES [19], MinSV+MaxL [18], and
SKEW [17]–a parameter learning method referred to as MD [23]–are used to compare with
our method. For parameter selection methods, the parameter candidate set for selection
is set as [0.1, 10] with the interval of 0.1. For our method, the initial kernel parameter is
set as 1. Moreover, some other discriminators, including k-means clustering [24], principle
component analysis (PCA) [25], minimum spanning tree (MST) [26], Self-Organizing Map
(SOM) [27], Auto-encoder (AE) [14], the minimax probability machine (MPM) [28], and
two-class SVM [29], are also taken as comparisons from which to illustrate the promising
performance of our method.

In the OCC problem, the confusion matrix reflects the primary source of the results,
which is presented in Table 1.

Table 1. The confusion matrix for the OCC problem.

Predicted Class

1 0

True class
1 True Positive (TP) False Negative (FN)
0 False Positive (FP) True Negative (TN)

The measurement standards of classification precision, recall, F1score, and accuracy
are defined as:

precision =
TP

TP + FP

recall =
TP

TP + FN

F1score =
2× percision× recall

percision + recall

accuracy =
TP + TN

TP + TN + FN + FP

(16)
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Moreover, the false positive rate (TRP) and true positive rate (TPR) are expressed as:

TPR =
TP

TP + FN
, TPR =

FP
FP + TN

(17)

which defines the Receiver Operating Characteristic (ROC) curve under different thresholds,
and where the Area Under the Curve (AUC) represents the area under the ROC curve. In
this paper, the precision, recall, F1score, accuracy, and AUC are taken as the quantitative
criteria with which to comprehensively evaluate the performance of our method.

The CPU of the PC used in our experiments is on a Dell PC with 3.40 GHz CPU
and 16 GB RAM. MATLAB software is utilized to achieve all algorithms based on three
MATLAB toolboxes (PR_tools, dd_tools, and LIBSVM).

4.1. Results on Synthetic Datasets

Two kinds of 2D toy datasets, including the banana-shaped dataset and Gaussian Mix-
ture Model (GMM) dataset, are generated to show the visualization results of our method,
in which the banana-shaped dataset is the single-mode datasets with both convex and
concave edge regions, while the Gaussian Mixture Model (GMM) dataset is the multimode
dataset. For the banana-shaped dataset, 400 samples are randomly sampled from a banana
distribution to obtain the target samples, in which 200 samples are randomly chosen as the
train target samples and the rest are used as the test target samples. Moreover, 200 samples
are randomly sampled from other banana distributions to obtain the outliers in the test
dataset. For the GMM dataset, 300 samples are randomly sampled from the GMM with
each mode having 100 samples to respectively form the target samples in the training and
test datasets, and 200 samples are sampled from other GMMs with each mode having
100 samples to form the outliers in the test dataset. Figure 3 presents the samples of targets
and clutters for two kinds of 2D synthetic datasets, which shows that the distribution of
targets are different from that of the outliers.

Figure 3. Samples of targets and clutters for two kinds of 2D synthetic datasets: (a) The banana-
shaped dataset; (b) The Gaussian Mixture Model (GMM) dataset.

The decision boundaries learned by different methods for the two toy datasets are
displayed in Figures 4 and 5, and the corresponding quantitative classification results are
presented in Tables 2 and 3, where the red bold denotes the best values on each dataset,
and the bold italic denotes the second-best results per column. As can be seen in Figure 4,
the decision boundaries of MIES and MinSV+MaxL are a litter tighter than our method,
and the targets outside the boundaries are greater in number, thus missing alarms are
more numerous and the recalls are lower. However, the decision boundaries of MD and
SKEW are much looser, with many outliers inside the boundaries, which devotes to more
false alarms and lower precision. Moreover, as shown in Figure 5, for the GMM-shaped
dataset, the decision boundaries of MinSV+MaxL, SKEW, and MD are loose, thus there
are many false alarms leading to low precision. The quantitative results in Tables 2 and 3
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also indicate the better performance of our method than other methods on the toy datasets,
with much higher precision, recall, F1score, accuracy, and AUC, since our method can learn
the suitable kernel parameter that is utilized to obtain the decision boundary that is neither
tight nor loose for the two toy datasets.

Figure 4. The learned decision boundaries by our method, MIES, MinSV+MaxL, SKEW, and MD on
the banana-shaped dataset. (a) Our method. (b) MIES. (c) MinSV+MaxL. (d) SKEW. (e) MD.

Figure 5. The learned decision boundaries by our method, MIES, MinSV+MaxL, SKEW, and MD on
the GMM dataset. (a) Our method. (b) MIES. (c) MinSV+MaxL. (d) SKEW. (e) MD.
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Table 2. The classification results (%) of different methods on the banana-shaped dataset.

Methods Precision Recall F1score Accuracy AUC

MIES 98.25 86.00 91.98 90.00 97.63

MinSV+MaxL 97.55 85.25 91.42 89.33 97.57

SKEW 83.00 92.00 88.16 83.17 71.72

MD 89.09 85.75 87.39 83.50 89.25

Our Method 98.41 92.75 95.50 94.17 98.76

Table 3. The classification results (%) of different methods on the GMMdataset.

Methods Precision Recall F1score Accuracy AUC

MIES 100.00 86.17 91.70 92.57 99.98

MinSV+MaxL 100.00 95.47 97.68 94.80 99.94

SKEW 58.59 94.33 72.29 56.60 7.60

MD 82.83 87.67 85.18 81.70 89.62

Our Method 100.00 95.50 97.70 97.30 100.00

To further analyze the effectiveness of our method on learning the optimal kernel
parameter, we present the test AUC curves with different kernel parameters, and point out
the selected/learned kernel parameters by different methods in Figure 6. As we see from
Figure 6, our method can learn the optimal kernel parameters on the curves, while other
methods select the parameters either larger or smaller than the optimal solutions. Therefore,
toy dataset results validate that our method can learn the optimal kernel parameter for
the max-margin one-class classifier, which further helps it to learn the suitable decision
boundaries to achieve the promising target discriminative performance.

Figure 6. The test AUC with different kernel parameters and the selected/learned kernel param-
eters by different methods. (a) The results for the banana-shaped dataset; (b) The results for the
GMM dataset.

4.2. Experiments on Measured SAR Dataset

In the following, a measured SAR dataset is utilized to verify the effectiveness of
our method. In the field of automatic target recognition (ATR), the OCC task for SAR
images is usually referred to the SAR target discrimination. The measured SAR dataset
we used here is the MiniSAR dataset [30–32], which was collected by the Sandia National
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Laboratories of America, Albuquerque, NM, USA, in 2005. Moreover, the resolution of the
images in the MiniSAR dataset is 0.1 m, and their size is 1638 × 2501. The MiniSAR dataset
contains 20 images, from which we choose 4 images: 3 images for training and 1 image for
testing. In Figure 7, we present the chosen four images, and we can see that their scenes
are very complex. There are numerous SAR targets in the four images, covering cars, trees,
buildings, grasslands, concrete grounds, roads, vegetation, a golf course, baseball field, and
so on. Among these SAR targets, the cars are the target of interest, and other targets are
regarded as the clutters.

Figure 7. The images in MiniSAR dataset. (a–c) show the three training SAR images and (d) shows
one test SAR image.

With the visual attention-based target detection algorithm [18], chips measuring
100 × 100 are obtained from SAR images of the MiniSAR dataset. Table 4 presents the
detection results for the four SAR images in the MiniSAR data, and some chips from the
MiniSAR dataset are given in Figure 8, where target samples are shown in the first row,
and the clutter samples are shown in the second row. Since only target chips are used in the
training stage, the training dataset only contains 135 target chips for the kernel parameter
selection/learning methods.

Table 4. The number of detected results for the 4 SAR images.

Number of Total Chips Number of Targets Number of Clutters

Training dataset 250 135 115

Test dataset 74 45 29

First of all, we conduct the target discrimination experiments compared with some
kernel parameter selection/learning methods for the max-margin one-class classifier to
illustrate the better performance of our adaptive method. The values of precision, recall,
F1score, accuracy, and AUC results for different parameter selection/learning methods for
the MiniSAR dataset are listed in Table 5, where the red bold denotes the best values on
each dataset, and the bold italic denotes the second-best results per column. In Table 5, it is
obvious that the best results for the measured dataset are obtained by our method in all
criteria, which indicates our method can achieve significantly less false alarms and missing
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alarms, and thus gain much higher precision, recall, F1score, accuracy, and AUC results. In
addition, in Figure 9 we further plot the test AUC curves with different kernel parameters
and indicate the selected or learned kernel parameters by different methods for the dataset,
in which our method reaches the optimal values with maximum test AUC. Therefore, we
can conclude that our method can learn the optimal kernel parameter for the MiniSAR
dataset, which demonstrates the effectiveness of our method for target discrimination.

Figure 8. Some chips in the MiniSAR dataset. (a) The target samples; (b) the clutter samples.

Table 5. The test results (%) of different kernel parameter selection and optimization methods on
MiniSAR dataset.

Methods Precision Recall F1score Accuracy AUC

MIES 78.05 71.11 74.42 71.27 79.08

MinSV+MaxL 75.56 72.37 73.93 70.27 78.70

SKEW 71.23 70.58 70.90 39.19 75.94

MD 76.74 73.33 75.00 70.27 80.23

Our Method 86.84 73.43 79.52 77.03 83.07

Figure 9. The test AUC with different kernel parameters and the selected/learned kernel parameters
of different methods for MiniSAR dataset.

In SAR target discrimination, two-class SVM [29] is also a common discriminator.
Therefore, the performance of our method is compared with the two-class SVM on the
MiniSAR dataset. Figure 10 shows the visualization results of our method and two-class
SVM on the test SAR image, where green boxes denote the chip correctly discriminated,
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blue boxes denote the target chip correctly discriminated, and red boxes denote the clutter
chip wrongly discriminated. From the discrimination results in Figure 10, our method
gains much less false alarms, less missing alarms, and more corrected targets, illustrating
the better discrimination performance of our method than that of the two-class SVM.

Figure 10. The visualization results of our method and two-class SVM on test SAR image, where
green boxes denote the chip correctly discriminated, blue boxes denote the target chip correctly
discriminated, and red boxes denote the clutter chip wrongly discriminated. (a) Two-class SVM.
(b) Our method.

To quantitatively compare the discrimination performance of our method with some
other commonly used target discriminative methods, Table 6 lists the results of our method
with some other discriminators. As shown in Table 6, the precision of our method is far
higher than other methods, since the proposed method is a one-class classifier, while other
methods are two-class methods that are trained with the targets and clutters. In complex
SAR scenes, the SAR images contain multiple clutters. When the clutters in the training
images are different from those in the test images, the performance of these methods will
degrade a lot. Thus, these two-class classification methods tend to classify the background
clutters as targets, and then the false alarms are very high, which leads to low precision.
In addition, since these two-class classification methods learn the features of targets and
clutters, most of the targets can be truly classified by these two-class classification methods,
and then the number of false alarms FP is small, which further aids high recall. Since our
method is trained only with target samples, it can effectively decrease false alarms and
cause some missing alarms, which respectively leads to high precision and low recall. The
F1score presents the harmonic mean between the precision and recall. According to other
quantitative results in Table 7, our method performs well on the SAR dataset in complex
scenes with much higher values of F1score, accuracy and AUC, which comprehensively
illustrates the promising target discrimination performance of our method.

Table 6. The test results (%) of different methods on the MiniSAR dataset.

Methods Precision Recall F1score Accuracy AUC

k-means 41.38 93.33 57.33 67.36 75.10

PCA 34.38 93.33 50.24 63.91 69.27

Gauss 41.38 93.33 57.33 67.36 70.73

MST 31.34 91.11 46.63 61.07 71.57

SOM 44.83 93.33 60.56 69.08 74.79

AE 34.38 93.33 50.24 63.91 69.81

MPM 51.72 82.22 63.49 66.97 75.63

Two-class SVM 58.62 68.89 63.34 72.94 72.64

Our Method 86.84 73.43 79.57 77.03 83.07
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Table 7. The learned values l for an edge sample and an interior sample.

Samples Edge Sample Interior Sample

The learned values l 0.9355 0.5160

5. Discussion
5.1. Model Analysis

To visualize the effect of the algorithm of edge and interior samples selection in our
method, we randomly choose an edge sample and an interior sample from the GMM dataset
to present their k-nearest neighbors, normal vectors, and tangent planes. In Figure 11a, the
near neighbors of the edge sample are mainly located on one side of its tangent plane, while
Figure 11b shows that the near neighbors of the interior sample are well-distributed on the
two sides of its tangent plane, which validates the theoretical local geometric relationship
between the edge and interior samples with their nearest neighbors. Moreover, the values l
of the edge samples and interior samples are listed in Table 7, which are very close to 1 and
0.5, respectively. Therefore, the results in Figure 11 and Table 7 verify the effectiveness of
the sample selecting algorithm.

Figure 11. The k-nearest neighbors, normal vector and tangent planes for an edge sample and an
interior sample. (a,b) show the results of the edge sample and interior sample, respectively.

Moreover, we also take the GMM dataset as an example to analyze the effect of samples
selection on the learning of optimal kernel parameter and the boundary. Figure 12a–c
shows the edge and interior samples selected by the algorithm in Section 3.1 with different
parameters, in which red marks ‘∗’ denote the interior samples, and black marks ‘�’ denote
the edge samples. From Figure 12a–c, we can see that the number of these selected samples
gradually decreases. Moreover, in the three cases of selecting different numbers of samples,
the corresponding curves of the objective function are presented in Figure 12d. As presented
in Figure 12d, the respective maximums of the three objective function curves are reached
when the kernel parameter equals the same values, i.e., s∗ = 1.32, which are marked with
the red points. Moreover, in Figure 12a–c, the learned decision boundaries by our method
are almost the same even though the number of selected edge samples and interior samples
varies. Therefore, within a certain range, the objective function of our method is not very
sensitive to the number of selected samples and can learn the optimal kernel parameter to
build the suitable decision boundary.

In addition, we take the GMM dataset as an example to analyze the relationship
between the distance from the samples to the boundary and the entropy values of samples.
Under the optimal kernel parameter, we calculate the samples’ information entropy in the
kernel space, and in Figure 13, we indicate the samples with M-maximum information
entropy with a black mark ‘�’ and N-minimum information entropy with a red mark ‘∗’.
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As presented in Figure 13, the samples with large entropy values are located very close to
the decision boundary, while the samples with small entropy values are mainly located
in the center of Gaussian distributions that is far from the decision boundary. To sum up,
Figure 13 shows that the larger entropy value a sample has, the closer the sample is to the
boundary, which further validates the effectiveness of the defined information entropy for
measuring the distance between a sample and the classification boundary.

Figure 12. (a–c) show the results of selected edge and interior samples and learned decision bound-
aries. (d) shows the objective function of our method varying with kernel parameters.

Figure 13. The samples with large and small entropy values for the GMM training target data.

5.2. Computational Complexity

Moreover, computational complexity is an important criterion with which to measure
the practicality of a method. To analyze the computational complexity of our method with
several one-class classification methods, Table 8 presents the results. The computational
complexity of the max-margin one-class classifier is O

(
N3) [9], and the computational com-

plexity of SKEW and MinSV+MaxL is O
(

MN3), with M denoting the number of elements
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in the kernel parameter candidate set and N denoting the number of training samples. The
computational complexity of MIES is given in [14], e.g., O

(
MN3 + MN2

SV + MNSV NIE
)
,

where NSV represents the number of support vectors, and NIE denotes the number of
selected edge and interior samples. In [17], the computational complexity of MD is O

(
N2).

In the first step of our method, the edge and interior samples are selected from the training
set and the computational complexity of this step is O

(
N2). Then, in the second step, the

entropy values for the edge and interior samples are calculated, and the computational
complexity of this step is O(NIEN). Therefore, the computational complexity of our method
is O

(
N2 + NIter NIEN

)
, where NIter denotes the number of iterations in gradient descent

algorithm. Based on the above analysis, we list the computational complexity of different
methods in the second row of Table 8. It is obvious that the computational complexity of
our method is lower than those of MIES, MinSV+MaxL, and SKEW, and higher than that
of MD.

Table 8. The computational complexity and computation time (s) of different methods.

Methods MIES MinSV+MaxL SKEW MD Our Method

Computational complexity O
(

M
(

N3 + N2
SV + NSV NIE

))
O
(

MN3) O
(

MN3) O
(

N2) O
(

N2 + NIter NIE N
)

Computation time (s) 36.58 9.20 10.16 0.53 0.76

Finally, the third row of Table 8 shows the computation time of the different kernel
parameter selection/learning methods from the MiniSAR dataset. The red bold denotes
the best values on each dataset, and the bold italic denotes the second-best results per
column. It is obvious that the computation cost of our method is much less than those
of MIES, MinSV+MaxL, and SKEW, and only a little more than that of MD. Although
the computation burden of MD is smallest, there is almost no difference between the
MD and our method, while the discrimination performance of MD is far lower than
our method on used datasets. Therefore, on the consideration of computation cost and
discrimination performance, our method can obtain the best discrimination results with a
small computation burden compared with some parameter selection/learning one-class
classification methods.

6. Conclusions

This paper focuses on the construction of a novel adaptive max-margin one-class
classifier for SAR target discrimination in complex scenes. On the basis of the geometric
relationship between the sample and classification boundary, we define the information
entropy of samples in kernel space to measure the distance between a sample and the
boundary. Thus, our method can automatically obtain the optimal kernel parameter of the
max-margin one-class classifier, which is adaptive to SAR images with multiple clutters.
The experiments on the synthetic datasets validate that our method is effective to learn
the optimal kernel parameter of the max-margin one-class classifier, and then achieves the
optimal target discrimination performance. Moreover, the experiments on the measured
SAR dataset further verify the effectiveness of our method on SAR target discrimination in
complex scenes. In addition, the analysis of computational complexity shows the promising
practicality of our method.
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