
Citation: He, X.; Pan, S.; Gao, W.; Lu,

X. LiDAR-Inertial-GNSS Fusion

Positioning System in Urban

Environment: Local Accurate

Registration and Global Drift-Free.

Remote Sens. 2022, 14, 2104.

https://doi.org/10.3390/rs14092104

Academic Editor: Francesco Nex

Received: 14 March 2022

Accepted: 25 April 2022

Published: 27 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

LiDAR-Inertial-GNSS Fusion Positioning System in Urban
Environment: Local Accurate Registration and Global Drift-Free
Xuan He 1,2, Shuguo Pan 1,2,*, Wang Gao 1,2 and Xinyu Lu 1,2

1 School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China;
hexuan@seu.edu.cn (X.H.); gaow@seu.edu.cn (W.G.); 220213597@seu.edu.cn (X.L.)

2 Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Southeast University,
Nanjing 210096, China

* Correspondence: psg@seu.edu.cn

Abstract: Aiming at the insufficient accuracy and accumulated error of the point cloud registration
of LiDAR-inertial odometry (LIO) in an urban environment, we propose a LiDAR-inertial-GNSS
fusion positioning algorithm based on voxelized accurate registration. Firstly, a voxelized point cloud
downsampling method based on curvature segmentation is proposed. Rough classification is carried
out by the curvature threshold, and the voxelized point cloud downsampling is performed using
HashMap instead of a random sample consensus algorithm. Secondly, a point cloud registration
model based on the nearest neighbors of the point and neighborhood point sets is constructed.
Furthermore, an iterative termination threshold is set to reduce the probability of the local optimal
solution. The registration time of a single frame point cloud is increased by an order of magnitude.
Finally, we propose a LIO-GNSS fusion positioning model based on graph optimization that uses
GNSS observations weighted by confidence to globally correct local drift. The experimental results
show that the average root mean square error of the absolute trajectory error of our algorithm is
1.58m on average in a large-scale outdoor environment, which is approximately 83.5% higher than
that of similar algorithms. It is fully proved that our algorithm can realize a more continuous and
accurate position and attitude estimation and map reconstruction in urban environments.

Keywords: LiDAR-inertial odometry; point cloud registration; multi-sensor fusion

1. Introduction

For any autonomous robot system, such as unmanned aerial vehicles and autonomous
vehicles, the accurate and robust localization of a mobile carrier is one of the fundamental
technologies [1]. Traditionally, the integrated navigation and positioning technology based
on the global navigation satellite system (GNSS) and inertial navigation system (INS) is
usually regarded as a reliable method to achieve high-accuracy positioning [2]. However,
in complex urban environments, there are a large number of GNSS multipath or rejection
areas due to the blockage of GNSS signals by urban objects such as tall buildings, tunnels
and street trees. As a result, the integrated positioning method based on GNSS/INS is
not effective in achieving a continuous and robust positioning of targets in large urban
environments. In summary, there is an urgent need to upgrade and expand the traditional
positioning techniques by introducing heterogeneous and complementary measurement
information from other sensors.

In recent years, the multi-sensor fusion positioning technology based on simultaneous
localization and mapping (SLAM) has received extensive attention from related enterprises
and researchers [3]. It can not only make use of the excellent characteristics of cameras,
LiDAR and other sensors, including the independence from environmental occlusion
and signal refraction in complex areas, but can also effectively make up for the signal
lock-out defect of GNSS signals in the parking lot or tunnel area. Moreover, incremental
map reconstruction can be achieved by sensing the external environment. Depending

Remote Sens. 2022, 14, 2104. https://doi.org/10.3390/rs14092104 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14092104
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14092104
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14092104?type=check_update&version=2

Remote Sens. 2022, 14, 2104 2 of 26

on the primary sensor, SLAM-based multi-sensor fusion positioning solutions can be
divided into vision-based SLAM and LiDAR-based SLAM [4]. Due to the superiority of
the sensors, the solution of LiDAR-based SLAM allows for a higher frequency and more
accurate acquisition of spatial fingerprint information, thus achieving a more accurate
positioning than vision-based SLAM [5–7]. Secondly, analyzed at the algorithm level,
LiDAR odometry is more lightweight in processing environmental features than visual
odometry and more suitable for vehicle-mounted platforms with limited computational
resources [8,9]. Therefore, the LiDAR-inertial odometry (LIO)-based SLAM scheme is
widely used to obtain 3D geographic information of a complex environment, as well as
carrier positioning and map reconstruction.

Throughout the development of the LiDAR-based SLAM, it can be seen that the
registration of the point cloud of LiDAR is a key step in the pose estimation of a mobile
carrier. It strictly affects the pose estimation and the map reconstruction results. The
commonly used point cloud registration methods include normal distribution transform
(NDT) [10], iterative closest point (ICP) [11], generalized iterative closest point (GICP) [12]
and other improved algorithms [13–16]. The core of NDT algorithm is used to take the
probability density function of the source point cloud and the target point cloud as the
objective function; then, it uses a nonlinear optimization method to minimize the probability
density between them to obtain the optimal solution. Andreasson et al. [17] avoids an
explicit nearest neighbor search by establishing segmented continuous and differentiable
probability distributions, and the registration speed is effectively improved. Although the
real-time performance is better, the covariance matrix needs to be constructed at multiple
points, which has a low robustness in the sparse area of the point cloud. Caballero et al. [18]
proposed an improved NDT algorithm that was used to model the alignment problem as
a distance field. The optimization equation is constructed by using the distance between
the feature points of the current frame and the prior map, which improves the speed
by an order of magnitude. However, the robustness of the localization algorithm is not
guaranteed for unknown sections where the priori map is missing or unreliable [19].

As another method of point cloud registration, the ICP algorithm has a higher posi-
tioning accuracy than NDT, but it needs to search for the nearest neighbor again and obtain
the transformation matrix in each iteration process, so the calculation efficiency needs to be
improved. Koide et al. [20] proposed a generalized iterative nearest point algorithm that
used a Gaussian probability model to fit the distribution of the point cloud to reduce the
computational complexity. However, its accuracy is still limited by the maximum number
of iterations. In addition, the algorithm is heavily influenced by the observation noise
and the accuracy of the initial positional transformation matrix, and there is a risk of the
algorithm falling into local minima. In order to break out of the logical limitation of being
limited to local optimal solutions, Yang et al. [21] proposed Go-ICP, a branch-and-bound
scheme to impose domain restrictions on the objective function of rigid alignment. This
processing reduced the abnormal influence of the local minimum, and made the registration
result of the point cloud approach to the global optimal solution. In 2021, Pan et al. [22]
proposed MULLS-ICP, which uses an improved ICP algorithm based on double-threshold
filtering and multi-scale linear least squares to realize the registration between the current
frame and local sub-map, but the high computational cost of multiple filtering is difficult
to adapt to the vehicle platform with limited computational resources. To sum up, on the
basis of reducing the calculation cost, a high-precision real-time point cloud registration
algorithm suitable for a vehicle platform still needs to be investigated.

In addition, as a local sensor integrator, the LIO has a cumulative offset between its
local map and the global map when it performs a positional estimation of the current frame,
which largely limits the positioning accuracy of the LIO position building scheme in large
outdoor environments. Fortunately, the global observation information from GNSS can
provide a credible global constraint correction for LIO [23]. Conversely, LIO systems can
also compensate for the limitations of GNSS in terms of continuous precise positioning due
to multipath effects and non-line-of-sight (NLOS) problems. Therefore, LIO-GNSS fusion

Remote Sens. 2022, 14, 2104 3 of 26

positioning technology provides a feasible technical scheme for realizing globally weak
drift and locally accurate positioning and mapping targets.

The mainstream LIO-GNSS fusion algorithms can be divided into two categories,
filter-based methods and optimization-based methods, based on the method of sensor mea-
surement data fusion. Li et al. [24] used the filter-based method as the integration strategy.
They use the extended Kalman filter to realize LIO-GNSS tight coupling, but did not set
up an anomaly detection mechanism, so it was prone to the dispersion of the positional
estimates in GNSS multipath regions or point cloud degradation regions. To resolve this
issue, Li et al. [25] uses an edge fault-tolerant mechanism to improve the robustness of
the algorithm in case of single-sensor failure. However, it weakens the linearization error
at the cost of increasing the amount of computation, which is contrary to the lightweight
principle of large outdoor scenes. As another fusion method, the optimization-based
method uses multiple iterations to approach the optimal solution, which can effectively
handle such non-linear heterogeneous data fusion problems. Soloviev et al. [26] proposed
an optimization-based LIO-GNSS scheme, but only the horizontal components of GNSS
measurements were used to optimize the LIO pose estimation results, with low utilization
of the measurement information. Shan et al. [27] puts forward an optimization framework
that introduces 3D GNSS measurement factors to assist LIO, but the measurement informa-
tion of a single key frame is redundant, and the reliability of GNSS factors added when
driving to the GNSS multipath area is poor. Sun et al. [28] proposed a GNSS corner factor
to constrain the local pose, but it does not consider the shortage of corners on straight road
sections, so its application in a large-scale complex outdoor environment is limited.

From the above analysis, it can be seen that the research points of the LIO-GNSS fusion
scheme are as follows:

1. Realizing real-time and high-precision point cloud alignment based on compressed
computational costs.

2. On the basis of making full use of GNSS measurement information, global cumulative
error correction of LIO is carried out by GNSS.

To address the above issues, in this contribution, we propose a LiDAR-inertial-GNSS
fusion positioning system based on voxelized accurate registration. Firstly, a voxelized
point cloud downsampling method based on curvature segmentation is proposed. Rough
classification is carried out by a curvature threshold, and the voxelized point cloud down-
sampling is performed using HashMap instead of the random sample consensus algorithm.
Therefore, the spatial distribution attributes of the source point cloud are retained to a
greater extent. Secondly, a point cloud registration model based on the nearest neighbors
of the point and neighborhood point sets is constructed. Thirdly, an optimization-based
method is used to build a higher-order Markov model based on sliding windows, and a
GNSS factor and loop factor are introduced into the factor graph to constrain LIO globally.
Finally, on this basis, a GNSS residual construction method based on the GNSS reliability
weight is proposed to make full use of GNSS measurement information. Therefore, the
goal of positioning and mapping with a light weight, high precision and high applicability
in a complex urban environment can be achieved.

2. System Overview

The proposed algorithm framework is shown in Figure 1. The main functions of each
module are as follows.

The front-end of the system is mainly used to preprocess IMU observations and LiDAR
original point cloud sequences, and to optimize the generation of local maps by inter-frame
matching. The LiDAR raw point cloud sequence is clustered and segmented by a breadth-
first-search combined with the Euclidean angle threshold, and then edge and plane feature
point clouds are extracted. These two types of feature clouds are downsampled for point
cloud alignment, and the local inter-frame matching is optimized using the IMU pre-
integration as the initial pose estimate. Finally, the LIO local pose estimates are used to
pre-process the GNSS global observations, including the temporal interpolation alignment

Remote Sens. 2022, 14, 2104 4 of 26

of GNSS and LIO local observations and coordinate system alignment, so as to achieve the
space–time synchronization among sensors.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 28

plane feature point clouds are extracted. These two types of feature clouds are downsam-
pled for point cloud alignment, and the local inter-frame matching is optimized using the
IMU pre-integration as the initial pose estimate. Finally, the LIO local pose estimates are
used to pre-process the GNSS global observations, including the temporal interpolation
alignment of GNSS and LIO local observations and coordinate system alignment, so as to
achieve the space–time synchronization among sensors.

The back-end mainly uses the residuals of pose estimates of each sensor to optimize
the map. The residual factors from local sensors include the IMU pre-integration and Li-
DAR observation residual, whereas the global residual factors include the GNSS observa-
tion residual and loop residual. It should be noted that the global residual factors are
added only when their existence is detected, and, when there is no global residual factor,
the system only performs local position, such as when the carrier is travelling in a flat and
straight tunnel environment. When global corrections are available, the obtained global
positioning results are used to update the local pose estimates in the sliding window to
obtain the best pose estimates with local accurate registration and global drift-free.

Figure 1. General framework of the algorithm. LIO’s pose estimation results are used as local opti-
mization factors, and GNSS pseudo-range single point positioning (SPP) results are used as global
optimization factors for global constraint.

3. Point Cloud Voxelization Downsampling and Alignment
The accuracy of the registration of the environmental point cloud extracted by LiDAR

strictly affects the result of the subsequent local pose estimation. Therefore, the processing
steps of the front-end point cloud of the system need to be described in detail. This paper
mainly involves the improved point cloud downsampling method and registration
method.

3.1. Voxelized Downsampling Based on Curvature Segmentation
This paper presents a voxelized downsampling method based on curvature segmen-

tation. Given a set of raw point cloud sequences collected by LiDAR, all points in the raw
point cloud sequences are traversed and coarse clustering is performed using a breadth-
first algorithm. Furthermore, the geometric angle threshold based on Euclidean distance
is used to finely segment the point cloud clusters with similar depth. Let the scanning
center of LiDAR be O and the two adjacent edge points ap and bp in the point cloud
cluster with depths ad and bd , respectively (a bd d>). Let the number of point clouds in

Figure 1. General framework of the algorithm. LIO’s pose estimation results are used as local
optimization factors, and GNSS pseudo-range single point positioning (SPP) results are used as
global optimization factors for global constraint.

The back-end mainly uses the residuals of pose estimates of each sensor to optimize the
map. The residual factors from local sensors include the IMU pre-integration and LiDAR
observation residual, whereas the global residual factors include the GNSS observation
residual and loop residual. It should be noted that the global residual factors are added
only when their existence is detected, and, when there is no global residual factor, the
system only performs local position, such as when the carrier is travelling in a flat and
straight tunnel environment. When global corrections are available, the obtained global
positioning results are used to update the local pose estimates in the sliding window to
obtain the best pose estimates with local accurate registration and global drift-free.

3. Point Cloud Voxelization Downsampling and Alignment

The accuracy of the registration of the environmental point cloud extracted by LiDAR
strictly affects the result of the subsequent local pose estimation. Therefore, the processing
steps of the front-end point cloud of the system need to be described in detail. This paper
mainly involves the improved point cloud downsampling method and registration method.

3.1. Voxelized Downsampling Based on Curvature Segmentation

This paper presents a voxelized downsampling method based on curvature segmenta-
tion. Given a set of raw point cloud sequences collected by LiDAR, all points in the raw
point cloud sequences are traversed and coarse clustering is performed using a breadth-first
algorithm. Furthermore, the geometric angle threshold based on Euclidean distance is used
to finely segment the point cloud clusters with similar depth. Let the scanning center of
LiDAR be O and the two adjacent edge points pa and pb in the point cloud cluster with
depths da and db, respectively (da > db). Let the number of point clouds in the point cloud
cluster where point pi is located be M. Then, the roughness of point cloud pi is:

c =
1

|M| · ‖di‖

∣∣∣∣∣
∣∣∣∣∣∑j 6=i

(
di − dj

)∣∣∣∣∣
∣∣∣∣∣, i, j ∈ M (1)

Remote Sens. 2022, 14, 2104 5 of 26

Set the roughness threshold as c, then traverse M. We classify the points of c < c as
the set of edge feature points, classify the points of c > c as the set of plane feature points
and perform downsampling operations on them, respectively.

This method is mainly used in the feature extraction step of LiDAR odometry [4];
we extend it to the downsampling step. This means that, for any application where
downsampling of point clouds is required, such as artefact inspection, the method can better
restore the spatial distribution properties of point clouds by downsampling in clusters.

Next, this paper proposes a point cloud downsampling strategy based on HashMap,
instead of the random sample consensus (RANSAC), so that the downsampling result of
the point cloud is closer to the approximate center of gravity of voxels. Let the coordinate of
a feature point in a set of point cloud sequences in the voxel space be p(x, y, z). If the voxel
grid size is r, the dimension of the voxel grid in the x direction is Dx = (xmax − xmin)/r,
and the index of p in the x direction within the voxel grid is hx = (x− xmin)/r. The same
applies to the y and z directions.

After obtaining the 3D index of feature points in the voxel space, if the random sorting
strategy of [11] is adopted, the sorting complexity will be O((m + n) ∗ log(m + n)), which
has a negative impact on the down-sampling time. Therefore, this paper uses the hash
function to sort the index of feature points quickly and map them to N containers (N = 80).
The hash function is:

hash(hx, hy, hz) = (hx + hy · Dx + hz · Dx · Dy) %N R3 → R (2)

To avoid hash conflicts, set the conflict detection conditions as follows:

hash(hx, hy, hz) = hash(h′x, h′y, h′z) (hx 6= h′x
∣∣∣hy 6= h′y

∣∣∣hz 6= h′z) (3)

Once the hash conflict is detected, the index value in the current container is output
and the container is emptied, and the new index value is put into the container.

To sum up, the main improvement of this section lies in extending the curvature
segmentation step originally used for feature extraction to the downsampling step, and
using hash mapping instead of the random sampling method for point cloud sampling. For
the LiDAR odometer, using the clustering line and surface features again after the feature
extraction step can improve the accuracy of downsampling single-frame or discontinuous
point clouds at a weak time cost, thus providing more accurate point cloud distribution re-
sults for the pose estimation step between consecutive frames. In addition, using HashMap
to downsample can further improve the sampling efficiency, and the time consumption of
quadratic curvature segmentation is almost negligible. For other applications that need to
downsample point clouds, the point cloud clustering method based on curvature segmen-
tation can restore the spatial distribution of point clouds more accurately, and the benefits
of this method are extensive and obvious.

The results and time consumption of the improved point cloud downsampling process
are shown in Figure 2 and Table 1. Cloud number M = 112624, the line feature extraction
threshold is 1, the surface feature extraction threshold is 0.1 and r = 0.3. It can be seen
from Figure 2c that the present method has a clearer reduction in the spatial distribution of
diagonal lines within a rectangular point cloud. Therefore, it can be proved that our method
can retain the texture feature information of the source point cloud to a greater extent, and
the accuracy and real-time performance of the downsampling results can be improved.

Remote Sens. 2022, 14, 2104 6 of 26

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 28

extent, and the accuracy and real-time performance of the downsampling results can be
improved.

(a) (b) (c)

Figure 2. Comparison of point cloud downsampling results. (a) Source point cloud; (b) downsam-
pling results before improvement; (c) downsampling results after improvement.

Table 1. Comparison of the number of point clouds and time consumption after downsampling.

Point Cloud Type Number of Point Clouds Time Consumption
Source point cloud 112,624 -

Before improvement 4100 0.004s
After improvement 5929 0.002s

3.2. Voxelized Point Cloud Registration
The purpose of point cloud registration is to update the rigid frame transformation

of a moving carrier by comparing two consecutive frames of point clouds or similar point
clouds detected by a loopback to solve for the carrier’s pose. Traditional LIO usually uses
ICP to realize the precise registration of point clouds. The ICP can be briefly described as
follows: given a set of source point cloud { }1 2, ,..., nA a a a= and target point cloud

{ }1 2, ,..., nB b b b= , the nearest neighbor search of KDTree is used to obtain the inter-frame

pose transformation relationship i ib Ta= , and the optimal solution is achieved through
multiple iterations. However, an unreasonable initial position selection will make ICP fall
into the misunderstanding of the local optimal solution, and the calculation resource con-
sumption of the single-point nearest neighbor search is large. In view of the defects of the
ICP algorithm, this paper utilizes a method based on the distribution of feature points in
voxels, as shown in Figure 3.

Figure 3. Comparison of point cloud registration strategies. (a) ICP/GICP; (b) NDT; (c) our algo-
rithm.

As shown in Figure 3. the problem of constructing the nearest neighbor model of a
point pair by using a tree diagram is transformed into constructing the nearest neighbor

Figure 2. Comparison of point cloud downsampling results. (a) Source point cloud; (b) downsam-
pling results before improvement; (c) downsampling results after improvement.

Table 1. Comparison of the number of point clouds and time consumption after downsampling.

Point Cloud Type Number of Point Clouds Time Consumption

Source point cloud 112,624 -
Before improvement 4100 0.004 s
After improvement 5929 0.002 s

3.2. Voxelized Point Cloud Registration

The purpose of point cloud registration is to update the rigid frame transformation
of a moving carrier by comparing two consecutive frames of point clouds or similar point
clouds detected by a loopback to solve for the carrier’s pose. Traditional LIO usually uses
ICP to realize the precise registration of point clouds. The ICP can be briefly described
as follows: given a set of source point cloud A = {a1, a2, . . . , an} and target point cloud
B = {b1, b2, . . . , bn}, the nearest neighbor search of KDTree is used to obtain the inter-frame
pose transformation relationship bi = Tai, and the optimal solution is achieved through
multiple iterations. However, an unreasonable initial position selection will make ICP
fall into the misunderstanding of the local optimal solution, and the calculation resource
consumption of the single-point nearest neighbor search is large. In view of the defects of
the ICP algorithm, this paper utilizes a method based on the distribution of feature points
in voxels, as shown in Figure 3.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 28

extent, and the accuracy and real-time performance of the downsampling results can be
improved.

(a) (b) (c)

Figure 2. Comparison of point cloud downsampling results. (a) Source point cloud; (b) downsam-
pling results before improvement; (c) downsampling results after improvement.

Table 1. Comparison of the number of point clouds and time consumption after downsampling.

Point Cloud Type Number of Point Clouds Time Consumption
Source point cloud 112,624 -

Before improvement 4100 0.004s
After improvement 5929 0.002s

3.2. Voxelized Point Cloud Registration
The purpose of point cloud registration is to update the rigid frame transformation

of a moving carrier by comparing two consecutive frames of point clouds or similar point
clouds detected by a loopback to solve for the carrier’s pose. Traditional LIO usually uses
ICP to realize the precise registration of point clouds. The ICP can be briefly described as
follows: given a set of source point cloud { }1 2, ,..., nA a a a= and target point cloud

{ }1 2, ,..., nB b b b= , the nearest neighbor search of KDTree is used to obtain the inter-frame

pose transformation relationship i ib Ta= , and the optimal solution is achieved through
multiple iterations. However, an unreasonable initial position selection will make ICP fall
into the misunderstanding of the local optimal solution, and the calculation resource con-
sumption of the single-point nearest neighbor search is large. In view of the defects of the
ICP algorithm, this paper utilizes a method based on the distribution of feature points in
voxels, as shown in Figure 3.

Figure 3. Comparison of point cloud registration strategies. (a) ICP/GICP; (b) NDT; (c) our algo-
rithm.

As shown in Figure 3. the problem of constructing the nearest neighbor model of a
point pair by using a tree diagram is transformed into constructing the nearest neighbor

Figure 3. Comparison of point cloud registration strategies. (a) ICP/GICP; (b) NDT; (c) our algorithm.

As shown in Figure 3. the problem of constructing the nearest neighbor model of a
point pair by using a tree diagram is transformed into constructing the nearest neighbor
model of a point and a neighborhood point set. Firstly, the two sets of point cloud sequences
are approximated as Gaussian distributions, i.e., ai ∼ N(âi, ΣA

i) and bi ∼ N(b̂i, ΣB
i), where

i ∈ (1, n). ΣA
i and ΣB

i are covariance matrices of two sets of point cloud sequences,
respectively. Let the distance between a pair of corresponding points between the target
point cloud and the source point cloud be:

di = bi − Tai (4)

Remote Sens. 2022, 14, 2104 7 of 26

Let the neighborhood point set of ai be Bai =
{

bj
∣∣‖ai − bj‖ < λ

}
, where λ is the

neighborhood judgment threshold. Thus, the distance between the extended point and the
neighborhood point set is:

d̂i = ∑j

(
b̂j − Tâi

)
(5)

As a result of ai ∼ N(âi, ΣA
i) and bi ∼ N(b̂i, ΣB

i), the rigid body transformation error
ei is calculated as:

ei ∼ (∑j

(
b̂j − Tâi

)
, ∑j

(
ΣB

j − TΣA
i TT

)
) (6)

In this way, the smoothing of all neighboring point clouds in the neighborhood of
ai is achieved. Let µ = N(∑j

(
b̂j − Tâi

)
and Σ = ∑j

(
ΣB

j − TΣA
i TT

)
; because ei is a high-

dimensional Gaussian distribution, its probability density function expansion form is:

P(ei) =
1√

(2π)Ndet(Σ)
exp

{
−1

2
(ei − µ)TΣ−1(ei − µ)

}
(7)

The negative logarithmic form of Equation (7) is:

− ln(P(ei)) =
1
2

ln
[
(2π)Ndet(Σ)

]
+

1
2
(ei − µ)T(Σ)−1(ei − µ) (8)

Solving the inter-frame pose transformation matrix T by maximum likelihood method:

T = argmax
T

Π
i

P(ei) = argmin
T

∑i ei
T(ΣB

j − TΣA
i TT)ei

T (9)

Furthermore, after introducing the number Ni of point clouds in the neighborhood ai,
Equation (9) can be written as:

T = argmin∑
i
(Ni êT

i Σ−1
i êi)

êi =
∑j bj

Ni
− Tai

Σ̂i =
∑j ΣB

j
Ni

+ TΣA
i TT

(10)

In addition to the smoothing of all neighboring point clouds in the neighborhood of ai,
an iteration termination threshold ε was established to avoid falling into a blind region of
local optima after multiple iterations as follows:

|RMSEk+1 − RMSEk| > ε (11)

where RMSEk+1 and RMSEk are the root mean square error of the previous k + 1 iter-
ations and the previous k iterations, respectively. The iteration is completed when the
absolute value of the change in the root mean square error |RMSEk+1 − RMSEk| ≤ ε, or
the maximum number of iterations, is reached.

4. Graph Optimization Framework
4.1. Local Pose Map Structure

Authors should discuss the results and how they can be interpreted from the perspec-
tive of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

Remote Sens. 2022, 14, 2104 8 of 26

The local state vectors in the local coordinate system in which the LiDAR and IMU are
located are given as follows:

X L =
[

xb1, xb2, . . . , xbi, de
1, de

2, . . . , de
k, dp

1 , dp
2 , . . . , dp

k

]
xbi =

[
pL

bi, qL
bi, vL

bi, ba, bg
] (12)

where xbi denotes the state quantity after pre-integration of the ith IMU at tk, including
position pL

bi, rotation qL
bi, speed vL

bi and IMU bias ba, bg. de
k is the distance from the LiDAR

feature point at tk−1 to the matching edge feature at tk, and dp
k is the distance from the

feature point at tk−1 to the matching planar feature at tk.
From this, the Gauss–Newton method can be used instead of the fastest gradient

descent method used in [27] to minimize all cost functions so as to reduce the number
of iterations for rapid convergence to a locally optimal estimate. The local optimization
function is constructed as follows:

min
X

{
∑ de

k + ∑ dp
k+∑

k∈B
‖rB

(
ẑk

k+1,X
)
‖

2

Σb

}
(13)

where ∑ de
k + ∑ dp

k is used to solve the carrier pose xLiDAR
tk in the local coordinate system

of LiDAR at time tk. rB

(
ẑi−1

i ,X
)

and Σb are IMU measurement residuals and covariance
matrices, respectively. The meanings of the terms are described below.

4.1.1. IMU Pre-integration Factor

Let
[
αi+1

i , θi+1
i , βi+1

i

]T
be the IMU pre-integration calculation value between the ith

and i + 1th LiDAR key frames. Details of the derivation of the IMU pre-integration are
presented in Appendix A. ∆ti is the time interval between the two LiDAR key frames, and
the spatial transformation matrix from the IMU coordinate system to the LiDAR coordinate
system in ith frame is represented by Rbi

L . The IMU residual can be obtained as follows:

rB

(
ẑi+1

i ,X
)
=



δαi+1
i

δθi+1
i

δβi+1
i

δba

δbg


=



Rbi
L

(
pL

bi+1
− vL

bi
∆ti − pL

bi
+ 1

2 g∆t2
i

)
− α̂i+1

i

2
[
qL−1

bi
⊗ qL

bi+1
⊗ θ̂i+1−1

i

]
xyz

Rbi
L
(
vL

i+1 − vL
i + g∆ti

)
− β̂i+1

i

bai+1 − bai

bωi+1 − bωi


(14)

where the symbol [·]xyz represents extracting the real part of the quaternion used to calculate
the rotation state error, and ⊗ represents the quaternion multiplication.

After the pose estimation of the previous key frame is completed, the IMU acceleration

bias and gyroscope bigotry will be updated, the update amounts are set as δ
`
b

bi

a and δ
`
b

bi

g
and the pre-integration calculation value at this time is updated as follows:

αi+1
i = α̂i+1

i +
δα̂i+1

i
δba

δ
`
ba +

δα̂i+1
i

δbω
δ
`
bω

θi+1
i = θ̂i+1

i · Exp(δθ̂i+1
i

δbω
δ
`
bω)

βi+1
i = β̂i+1

i +
δβ̂i+1

i
δba

δ
`
ba +

δβ̂i+1
i

δbω
δ
`
bω

(15)

Remote Sens. 2022, 14, 2104 9 of 26

4.1.2. LiDAR Factor

The feature point cloud extracted by LiDAR can be divided into two types: line
features and surface features. The LiDAR residuals of the two types need to be constructed
separately and then summed to obtain the total LiDAR residuals. Details of the specific
derivation of LiDAR residuals are presented in Appendix B. Figure 4 shows the schematic
diagram of LiDAR residual construction.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 28

After the pose estimation of the previous key frame is completed, the IMU accelera-
tion bias and gyroscope bigotry will be updated, the update amounts are set as bi

abδ


 and
bi
gbδ


 and the pre-integration calculation value at this time is updated as follows:

1 1
1 1

1
1 1

1 1
1 1

ˆ ˆˆ

ˆˆ ()

ˆ ˆˆ

i i
i i i i
i i a

a

i
i i i
i i

i i
i i i i
i i a

a

b b
b b

Exp b
b

b b
b b

ω
ω

ω
ω

ω
ω

δα δαα α δ δ
δ δ

δθθ θ δ
δ

δβ δββ β δ δ
δ δ

+ +
+ +

+
+ +

+ +
+ +

= + +

= ⋅

= + +

 



 

 (15)

4.1.2. LiDAR Factor
The feature point cloud extracted by LiDAR can be divided into two types: line fea-

tures and surface features. The LiDAR residuals of the two types need to be constructed
separately and then summed to obtain the total LiDAR residuals. Details of the specific
derivation of LiDAR residuals are presented in Appendix B. Figure 4 shows the schematic
diagram of LiDAR residual construction.

Figure 4. Schematic diagram of LiDAR residual construction. (a) Line characteristic residual con-
struction; (b) surface characteristic residual construction.

As shown in Figure 4, let a feature point obtained in the 1k + th scan have the coor-
dinates of (1,)

L
k oX + in the LiDAR coordinate system, and the coordinates of two end points

of the line features matched with it in the k th scan are (,)
L
k aX and (,)

L
k bX . The residual

error of the line features can be expressed by the point-to-line distance:

() () ()()
()

(1,) (,) 1, ,

(,) ,

L L L L
k o k a k o k bL

ek L L
k a k b

X X X X
d

X X

+ +− × −
=

−
 (16)

Similarly, if the surface features that match it in the k th scan are represented as
(,)
L
k cX , (,)

L
k dX and (,)

L
k fX , then the surface feature residual can be represented by the

point-to-surface distance:

()() () ()()
() ()

(1,) (,) (,) (,) (,),

(,) (,) (,) (,)

 L L L L L L
k o k c k d k c k fk dL

pk L L L L
k c k d k c k f

X X X X X X
d

X X X X

+ − − × −
=

− × −


 (17)

4.2. Spatial Unification of Multi-Sensor Poses
Constructing the time—space correlation of each sensor is a fundamental task in

multi-sensor fusion optimization. For this system, it is necessary to spatially unify the po-
sitional estimation results of LiDAR and IMU in the local map with the GNSS measure-
ments in the global map. Therefore, the spatial unification strategy of the multi-sensor
pose involved in this paper is shown in Figure 5.

Figure 4. Schematic diagram of LiDAR residual construction. (a) Line characteristic residual con-
struction; (b) surface characteristic residual construction.

As shown in Figure 4, let a feature point obtained in the k + 1th scan have the coordi-
nates of XL

(k+1,o) in the LiDAR coordinate system, and the coordinates of two end points of

the line features matched with it in the kth scan are XL
(k,a) and XL

(k,b). The residual error of
the line features can be expressed by the point-to-line distance:

dL
ek =

∣∣∣(XL
(k+1,o) − XL

(k,a)

)
×
(

XL
(k+1,o) − XL

(k,b)

)∣∣∣∣∣∣XL
(k,a) − XL

(k,b)

∣∣∣ (16)

Similarly, if the surface features that match it in the kth scan are represented as XL
(k,c),

XL
(k,d) and XL

(k, f), then the surface feature residual can be represented by the point-to-surface
distance:

dL
pk =

∣∣∣(XL
(k+1,o) − XL

(k,d)

)
·
((

XL
(k,c) − XL

(k,d)

)
×
(

XL
(k,c) − XL

(k, f)

))∣∣∣∣∣∣(XL
(k,c) − XL

(k,d)

)
×
(

XL
(k,c) − XL

(k, f)

)∣∣∣ (17)

4.2. Spatial Unification of Multi-Sensor Poses

Constructing the time—space correlation of each sensor is a fundamental task in multi-
sensor fusion optimization. For this system, it is necessary to spatially unify the positional
estimation results of LiDAR and IMU in the local map with the GNSS measurements in the
global map. Therefore, the spatial unification strategy of the multi-sensor pose involved in
this paper is shown in Figure 5.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 28

Figure 5. Schematic diagram of the spatial unification of multi-sensor poses. The spatial association
of the poses of LiDAR and IMU in the local coordinate system is on the left, and the spatial associa-
tion of the poses of IMU and GNSS receivers in the global coordinate system is on the right.

As shown in Figure 5, IMU
GNSSW is the external parameter conversion matrix from IMU

to GNSS and LiDAR
IMUW is the external parameter conversion matrix from LiDAR to IMU.

Since the hardware is fixed to the mobile carrier, both are calibrated to a constant value.
The left figure shows the positional conversion between LiDAR and IMU in the local co-
ordinate system, whereas the right figure shows the multi-sensor positional spatial unifi-
cation from the local to the global coordinate system. Here, it is necessary to introduce the
spatial transformation parameters L

GF (including translation L
Gp and rotation L

Gq) to
correlate the two positional spaces. The spatial unification of the multi-sensor pose at the
moment of t can be expressed as:

() ()() 2

, 21

1min
2G G

L L

j TG L L IMU L G
t G t GNSS t L

q p i
P q q W p p

=

− ⋅ ⋅ + + (18)

where the initial value of L
GF is set as the unit matrix. Every time the GNSS factor is

added to solve the global optimum, the value of L
GF at the next moment will be updated,

thus correcting the cumulative offset between the local and global coordinate systems.

4.3. Global Pose Map Structure
Global pose map construction can be regarded as a nonlinear optimization problem;

that is, the nonlinear optimization of the state vector in the sliding window. Different from
the factor graph method adopted in [27], this paper adopts the graph optimization method
to directly construct the residual block in the original pose graph structure for nonlinear
optimization, and only optimizes the key frames in the sliding window. However, the
factor graph based on GTSAM [29] needs to construct the optimization problem into a
new graph corresponding to the original pose graph, with the optimization variables as
the vertices and error terms as the edges. The complicated constraint relationship among
the vertices is more favorable toward the optimization accuracy. However, once a new
key frame is detected, all of its associated constraint nodes will be updated, which is com-
plicated and takes too long in the engineering field. Therefore, in order to meet the re-
quirements of the lightweight and real-time performance of the vehicle platform, we
choose not to build a new constraint-related Bayesian network, but to construct the resid-
ual error and nonlinear optimization in the original pose map structure. The global pose
optimization framework proposed in this paper is shown in Figure 6.

Figure 5. Schematic diagram of the spatial unification of multi-sensor poses. The spatial association
of the poses of LiDAR and IMU in the local coordinate system is on the left, and the spatial association
of the poses of IMU and GNSS receivers in the global coordinate system is on the right.

Remote Sens. 2022, 14, 2104 10 of 26

As shown in Figure 5, W IMU
GNSS is the external parameter conversion matrix from IMU to

GNSS and WLiDAR
IMU is the external parameter conversion matrix from LiDAR to IMU. Since

the hardware is fixed to the mobile carrier, both are calibrated to a constant value. The left
figure shows the positional conversion between LiDAR and IMU in the local coordinate
system, whereas the right figure shows the multi-sensor positional spatial unification from
the local to the global coordinate system. Here, it is necessary to introduce the spatial
transformation parameters FL

G (including translation pL
G and rotation qL

G) to correlate the
two positional spaces. The spatial unification of the multi-sensor pose at the moment of t
can be expressed as:

min
qG

L ,pG
L

1
2

j

∑
i=1
‖PG

t −
((

qL
G

)T
·
(

qL
t ·W IMU

GNSS + pL
t

)
+ pG

L

)
‖

2

2
(18)

where the initial value of FL
G is set as the unit matrix. Every time the GNSS factor is added

to solve the global optimum, the value of FL
G at the next moment will be updated, thus

correcting the cumulative offset between the local and global coordinate systems.

4.3. Global Pose Map Structure

Global pose map construction can be regarded as a nonlinear optimization problem;
that is, the nonlinear optimization of the state vector in the sliding window. Different from
the factor graph method adopted in [27], this paper adopts the graph optimization method
to directly construct the residual block in the original pose graph structure for nonlinear
optimization, and only optimizes the key frames in the sliding window. However, the factor
graph based on GTSAM [29] needs to construct the optimization problem into a new graph
corresponding to the original pose graph, with the optimization variables as the vertices
and error terms as the edges. The complicated constraint relationship among the vertices
is more favorable toward the optimization accuracy. However, once a new key frame is
detected, all of its associated constraint nodes will be updated, which is complicated and
takes too long in the engineering field. Therefore, in order to meet the requirements of the
lightweight and real-time performance of the vehicle platform, we choose not to build a
new constraint-related Bayesian network, but to construct the residual error and nonlinear
optimization in the original pose map structure. The global pose optimization framework
proposed in this paper is shown in Figure 6.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 28

Figure 6. LiDAR-IMU-GNSS fusion framework based on graph optimization.

The global optimization function is constructed as follows:

() ()() ()2 2

0
arg min ,


    k k

t t

n
L L G G W
t t t t loop k k k

t
z h z h r Tρ

Σ Σ
=

= − + − + (19)

where ρ is the GNSS confidence level expressed by the covariance of the error in the
GNSS observations obtained by the pseudo-range single point positioning (SPP) algo-
rithm solution. W

kT is the pose transformation matrix between the current global point
cloud k and the local point cloud k derived from the inter-frame local matching. The
specific meaning of each sensor cost function in the formula are as follows.

4.3.1. LIO Factor
According to Section 4.1, the position L

tp and rotation L
tq of the carrier in the local

coordinate system at the moment t can be obtained. Therefore, the LIO local residual
factor can be constructed as follows:

() () ()1 1
1 1 1 1 1

1 1
1 1

, 
L L L G G G

t t t t t t t
tD L L G G

t t t t

q p p q p p
r z

 q q q q

− −
− − − − −

− −
− −

   − −
   =
      

 (20)

where the symbol  represents the quaternion subtraction.

4.3.2. GNSS Factor
Set the time interval between two frames of GNSS observations as tΔ and realize

the time alignment with LIO pose estimation by interpolation. Cubic spline interpolation
is used for position interpolation and spherical linear interpolation is used for quaternion
interpolation. Now, given the GNSS measurement GNSS

tp in the ENU coordinate system
and the LIO positional observations G

tp in the global coordinate system, the GNSS re-
sidual factor is expressed as follows:

()1
,

t G GNSS
tG t tr z p p
−

= − (21)

When the carrier moves to the GNSS signal confidence region, in order to fully and
reliably utilize the GNSS observations, the GNSS factor is added with the GNSS confi-
dence as the weight. The GNSS confidence is determined by the number of visible and
effective GNSS satellites. After GNSS participates in the global pose estimation, it will

Figure 6. LiDAR-IMU-GNSS fusion framework based on graph optimization.

Remote Sens. 2022, 14, 2104 11 of 26

The global optimization function is constructed as follows:

X = argmin
X

n

∑
t=0

(
‖zL

t − hL
t (X)‖2

Σk
t
+ ρ‖zG

t − hG
t (X)‖2

Σk
t

)
+ rloop

(
TW

k Pk,Sk

)
(19)

where ρ is the GNSS confidence level expressed by the covariance of the error in the
GNSS observations obtained by the pseudo-range single point positioning (SPP) algorithm
solution. TW

k is the pose transformation matrix between the current global point cloud
Pk and the local point cloud Sk derived from the inter-frame local matching. The specific
meaning of each sensor cost function in the formula are as follows.

4.3.1. LIO Factor

According to Section 4.1, the position pL
t and rotation qL

t of the carrier in the local
coordinate system at the moment t can be obtained. Therefore, the LIO local residual factor
can be constructed as follows:

rD

(
ẑt−1

t ,X
)
=

[
qL

t−1
−1(pL

t − pL
t−1
)

qL
t−1
−1qL

t

]
	
[

qG
t−1
−1(pG

t − pG
t−1
)

qG
t−1
−1qG

t

]
(20)

where the symbol 	 represents the quaternion subtraction.

4.3.2. GNSS Factor

Set the time interval between two frames of GNSS observations as ∆t and realize the
time alignment with LIO pose estimation by interpolation. Cubic spline interpolation is
used for position interpolation and spherical linear interpolation is used for quaternion
interpolation. Now, given the GNSS measurement pGNSS

t in the ENU coordinate system
and the LIO positional observations pG

t in the global coordinate system, the GNSS residual
factor is expressed as follows:

rG

(
ẑt−1

t ,X
)
= pG

t − pGNSS
t (21)

When the carrier moves to the GNSS signal confidence region, in order to fully and
reliably utilize the GNSS observations, the GNSS factor is added with the GNSS confidence
as the weight. The GNSS confidence is determined by the number of visible and effective
GNSS satellites. After GNSS participates in the global pose estimation, it will update
the pose conversion parameter FL

G between the local coordinate system and the global
coordinate system. This ensures that, even if the mobile carrier enters a GNSS-rejected
environment (e.g., indoor car parks and tunnels), our algorithm can provide a more accurate
initial observation after GNSS correction.

4.3.3. Loop Factor

Considering the possible overlap of the moving vehicle driving areas, it is necessary
to add a loop detection link to establish possible loop constraints between non-adjacent
frames. According to Equation (5), the loop factors can be constructed as follows:

rL

(
TW

k Pk,Sk

)
=


TW

k = argmin∑
k
(Nk êT

k Σ−1
k êk)

êk =
∑k Pk

Nk
− TW

k Sk

Σ̂k =
∑k ΣPk

Nk
+ TW

k ΣSk TWT
k

(22)

Using the optimized point cloud registration method in Section 3.2, we optimize and
correct the historical trajectory through the registration between the point cloud of the
prior local map and the current global point cloud. This method ensures that the positional
estimates converge to the global optimum result.

Remote Sens. 2022, 14, 2104 12 of 26

5. Experimental Setup and Results
5.1. Point Cloud Registration Results

To verify the superiority of the point cloud registration algorithm used in this paper, we
compared the registration results of the ICP algorithm used in traditional LiDAR odometry
with our algorithm. The comparison results are shown in Figures 7–9.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 29

update the pose conversion parameter L
GF between the local coordinate system and the

global coordinate system. This ensures that, even if the mobile carrier enters a GNSS-re-
jected environment (e.g., indoor car parks and tunnels), our algorithm can provide a more
accurate initial observation after GNSS correction.

4.3.3. Loop Factor
Considering the possible overlap of the moving vehicle driving areas, it is necessary

to add a loop detection link to establish possible loop constraints between non-adjacent
frames. According to Equation (5), the loop factors can be constructed as follows:

()

1ˆ ˆarg min ()

ˆ,

ˆ

W T
k k k k k

k

kW Wk
L k k k k k k

k

k W W Tk
k k k k

k

T N e e

r T e T
N

T T
N

−


= Σ

= = −

 ΣΣ = + Σ






 



    (22)

Using the optimized point cloud registration method in Section 3.2, we optimize and
correct the historical trajectory through the registration between the point cloud of the
prior local map and the current global point cloud. This method ensures that the positional
estimates converge to the global optimum result.

5. Experimental Setup and Results
5.1. Point Cloud Registration Results

To verify the superiority of the point cloud registration algorithm used in this paper,
we compared the registration results of the ICP algorithm used in traditional LiDAR
odometry with our algorithm. The comparison results are shown in Figures 7–9.

(a) (b) (c)

Figure 7. Point cloud registration results. (a) Original source and target point clouds. (b) Alignment
results using ICP algorithm. (c) Alignment results using our algorithm.

(a) (b) (c)

Figure 7. Point cloud registration results. (a) Original source and target point clouds. (b) Alignment
results using ICP algorithm. (c) Alignment results using our algorithm.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 28

update the pose conversion parameter L
GF between the local coordinate system and the

global coordinate system. This ensures that, even if the mobile carrier enters a GNSS-re-
jected environment (e.g., indoor car parks and tunnels), our algorithm can provide a more
accurate initial observation after GNSS correction.

4.3.3. Loop Factor
Considering the possible overlap of the moving vehicle driving areas, it is necessary

to add a loop detection link to establish possible loop constraints between non-adjacent
frames. According to Equation (5), the loop factors can be constructed as follows:

()

1ˆ ˆarg min ()

ˆ,

ˆ

W T
k k k k k

k

kW Wk
L k k k k k k

k

k W W Tk
k k k k

k

T N e e

r T e T
N

T T
N

−


= Σ

= = −

 ΣΣ = + Σ






 



    (22)

Using the optimized point cloud registration method in Section 3.2, we optimize and
correct the historical trajectory through the registration between the point cloud of the
prior local map and the current global point cloud. This method ensures that the positional
estimates converge to the global optimum result.

5. Experimental Setup and Results
5.1. Point Cloud Registration Results

To verify the superiority of the point cloud registration algorithm used in this paper,
we compared the registration results of the ICP algorithm used in traditional LiDAR
odometry with our algorithm. The comparison results are shown in Figures 7–9.

(a) (b) (c)

Figure 7. Point cloud registration results. (a) Original source and target point clouds. (b) Alignment
results using ICP algorithm. (c) Alignment results using our algorithm.

(a) (b) (c)

Figure 8. Detail diagram of point registration results of the point cloud registration results.
(a) Original source and target point clouds. (b) Alignment results using ICP algorithm. (c) Alignment
results using our algorithm.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 28

Figure 8. Detail diagram of point registration results of the point cloud registration results. (a) Orig-
inal source and target point clouds. (b) Alignment results using ICP algorithm. (c) Alignment results
using our algorithm.

(a) (b) (c)

Figure 9. A circular expansion of the point cloud alignment results. (a) Original source and target
point clouds. (b) Alignment results using ICP algorithm. (c) Alignment results using our algorithm.

Compared with the typical indoor environment, for mobile carriers in complex urban
environments, the angles and translations between the source and target point clouds dur-
ing the continuous frame and the loopback detection may be larger. As shown in Figure
7, when the initial position is unreasonable, the registration results of the ICP algorithm
cannot fully approach the global optimal solution, which is detrimental to both the local
pose estimation and loopback correction of the mobile carrier. However, the registration
accuracy of our algorithm is not affected by the large positional transformation of the ve-
hicle platform. Compared with the traditional ICP algorithm, the registration result of our
algorithm suited the needs of the vehicle platform better.

Furthermore, in order to avoid the contingency of the registered objects, we made a
comparative experiment on the source point clouds with different rotation angles and
translation distances, and quantitatively compared the registration accuracy and time con-
sumption of each algorithm. The test results are shown in Table 2 and Table 3.

Table 2. Registration results of different algorithms for point clouds with different angles.

Rotation
Angles

4° 15° 30° 60° 90°

 Time Consumption (ms)/Root Mean Square Error (m)
PCL_ICP 212.79/0.00055 244.08/0.00138 314.76/0.15597 393.49/6.01775 350.92/8.04554

PCL_GICP 244.45/0.00055 319.93/0.00056 861.81/0.00057 1763.89/24.3384 1375.59/25.1845
PCL_NDT 267.46/0.00350 563.40/0.01668 332.04/6.11404 202.97/17.9595 346.27/29.0983
Proposed 31.71/0.00023 37.25/0.00037 46.72/0.00050 51.80/1.72794 40.80/2.67116

Table 3. Registration results of different algorithms for point clouds with different translation dis-
tances.

Translation
Distances 0.5 m 1 m 2 m 4 m 5 m

 Time Consumption (ms)/Root Mean Square Error (m)

PCL_ICP 213.11/0.02398 221.52/0.02398 254.83/0.02409 312.12/0.04216 303.797/0.862
12

PCL_GICP 215.33/0.02415 222.46/0.24152 254.359/0.02415 303.31/0.02415
354.088/0.024

15

PCL_NDT 456.43/0.03024 723.031/0.03375 1186.57/0.02511 577.64/2.28457
279.047/2.688

36
Proposed 31.9215/0.00106 33.44/0.01716 41.26/0.01265 31.19/0.03011 33.88/0.03047

From the vertical comparison between Table 2 and Table 3, it can be seen that the
point cloud registration algorithm is more sensitive to rotation, which means that, if the

Figure 9. A circular expansion of the point cloud alignment results. (a) Original source and target
point clouds. (b) Alignment results using ICP algorithm. (c) Alignment results using our algorithm.

Compared with the typical indoor environment, for mobile carriers in complex urban
environments, the angles and translations between the source and target point clouds
during the continuous frame and the loopback detection may be larger. As shown in
Figure 7, when the initial position is unreasonable, the registration results of the ICP
algorithm cannot fully approach the global optimal solution, which is detrimental to both
the local pose estimation and loopback correction of the mobile carrier. However, the
registration accuracy of our algorithm is not affected by the large positional transformation
of the vehicle platform. Compared with the traditional ICP algorithm, the registration
result of our algorithm suited the needs of the vehicle platform better.

Remote Sens. 2022, 14, 2104 13 of 26

Furthermore, in order to avoid the contingency of the registered objects, we made
a comparative experiment on the source point clouds with different rotation angles and
translation distances, and quantitatively compared the registration accuracy and time
consumption of each algorithm. The test results are shown in Tables 2 and 3.

Table 2. Registration results of different algorithms for point clouds with different angles.

Rotation
Angles 4◦ 15◦ 30◦ 60◦ 90◦

Time Consumption (ms)/Root Mean Square Error (m)

PCL_ICP 212.79/0.00055 244.08/0.00138 314.76/0.15597 393.49/6.01775 350.92/8.04554
PCL_GICP 244.45/0.00055 319.93/0.00056 861.81/0.00057 1763.89/24.3384 1375.59/25.1845
PCL_NDT 267.46/0.00350 563.40/0.01668 332.04/6.11404 202.97/17.9595 346.27/29.0983
Proposed 31.71/0.00023 37.25/0.00037 46.72/0.00050 51.80/1.72794 40.80/2.67116

Table 3. Registration results of different algorithms for point clouds with different translation
distances.

Translation
Distances 0.5 m 1 m 2 m 4 m 5 m

Time Consumption (ms)/Root Mean Square Error (m)

PCL_ICP 213.11/0.02398 221.52/0.02398 254.83/0.02409 312.12/0.04216 303.797/0.86212
PCL_GICP 215.33/0.02415 222.46/0.24152 254.359/0.02415 303.31/0.02415 354.088/0.02415
PCL_NDT 456.43/0.03024 723.031/0.03375 1186.57/0.02511 577.64/2.28457 279.047/2.68836
Proposed 31.9215/0.00106 33.44/0.01716 41.26/0.01265 31.19/0.03011 33.88/0.03047

From the vertical comparison between Tables 2 and 3, it can be seen that the point
cloud registration algorithm is more sensitive to rotation, which means that, if the vehicle
rotates at a large angle in the city, the point cloud registration between consecutive frames
is perhaps less reliable. It may even lead to a failure of the pose estimation, as has been
demonstrated in [5]. However, as the rotation angle increases, it can be seen from Table 2
that the registration accuracy of our algorithm decreases the least, and, at the extreme 90◦

rotation angle, the accuracy is still more than four times better than the other algorithms,
with a root mean square error of approximately 2.67116 m. On the other hand, for large
translations (5 m) between the source and target point clouds, our algorithm also shows an
excellent registration accuracy, with a root mean square error of approximately 0.03047 m.
It is worth noting that, in the aspect of single-point cloud registration, the registration time
of our algorithm is increased by approximately one order of magnitude compared with
others. To sum up, it is sufficient to verify the superiority of the proposed registration
algorithm in terms of compressing time and improving the registration accuracy.

5.2. Positioning Accuracy

In this paper, the absolute trajectory error (ATE) was selected as the evaluation index of
SLAM system positioning accuracy so as to directly reflect the difference between the global
position estimation of the moving carrier and the ground truth. The absolute trajectory
error is calculated as follows.

Ai := g−1
i Spi (23)

where Ai is the absolute trajectory error of the SLAM system in the ith frame, gi and pi are
the ground truth and the estimated pose, respectively, and S is the transformation matrix
between the ground truth and the estimated pose. In this paper, the mean error (ATE_ME)
and root mean square error (ATE_RMSE) of the absolute trajectory error were selected as
evaluation criterion.

5.2.1. Public Dataset

To verify the positioning accuracy of the fusion algorithm in different outdoor environ-
ments, the KITTI_RAW dataset [30], which includes a variety of outdoor scenes, was used

Remote Sens. 2022, 14, 2104 14 of 26

to evaluate the localization accuracy of the fusion algorithm and to compare it with other
similar advanced algorithms. The experimental data acquisition platform is as follows:
LiDAR point cloud data are acquired by Velodyne HDL~64 line LiDAR, with horizontal
field angle of view of 360◦, vertical field angle range of (−24.8◦,+2◦), horizontal resolution
range of (0.08◦, 0.35◦), vertical angle resolution of 0.4◦ and scanning frequency of 10 Hz,
which can meet the requirements of in-vehicle point cloud data acquisition. The GPS/IMU
integrated system adopts OXTS RT3003, with a GPS output frequency of 1 Hz/s and
an IMU output frequency of 100 Hz. The ground truth is provided by a high-precision
integrated navigation system.

Four different outdoor scenarios were used to validate the performance of the fusion
algorithm, including urban environments, open area, highway and forest road. The voxel
grid size of the fusion algorithm was set to 0.3× 0.2× 0.3, the maximum iteration threshold
was set to 30 and the iteration termination tolerance threshold was set to 1 × 10−8, so as
to meet the real-time requirements and ensure the stable number of feature point clouds
participating in the matching in sparse areas of outdoor environments. The comparison of
the experimental results is shown in Figures 10 and 11 and Table 4.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 28

Figure 10. Comparison of the estimated trajectories. (a) Global positioning trajectory. (b) Local de-
tails of the trajectory. (c) Local details of the trajectory.

Figure 11. Comparison of the positioning error of each algorithm. (a) APE fitting curve. (b) The box
diagram of APE.

Figure 10. Comparison of the estimated trajectories. (a) Global positioning trajectory. (b) Local details
of the trajectory. (c) Local details of the trajectory.

Table 4. Comparison of ATE_RMSE(m) of each algorithm in KITTI_RAW dataset.

Sequence
Urban Environments Open Area Highway Forest Road

09_30_0018 09_30_0027 09_30_0016 10_03_0042 09_30_0033

A-LOAM 3.545 1.181 0.475 21.058 8.693
LeGO-
LOAM 2.253 2.060 0.515 186.608 4.585

LIO-SAM 1.881 0.905 0.423 19.745 10.109
Proposed 1.056 0.400 0.222 6.239 3.669

Remote Sens. 2022, 14, 2104 15 of 26

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 28

Figure 10. Comparison of the estimated trajectories. (a) Global positioning trajectory. (b) Local de-
tails of the trajectory. (c) Local details of the trajectory.

Figure 11. Comparison of the positioning error of each algorithm. (a) APE fitting curve. (b) The box
diagram of APE.

Figure 11. Comparison of the positioning error of each algorithm. (a) APE fitting curve. (b) The box
diagram of APE.

Figure 10 shows the comparison of the positioning results of each algorithm in the
09_30_0018 dataset representing the urban environment. As shown in Figure 11b, both
LiDAR odometry (LO), represented by A-LOAM, and LIO, represented by LeGO-LOAM,
show significant degradation in the position estimation results in the first 50 s and the
last 50 s. The reason is that LO and LIO systems only rely mainly on LiDAR to extract
spatial geometric feature information. Once LiDAR feature constraints are sparse or fail,
the carrier state estimation degradation will occur in this feature direction, and additional
constraints need to be added. The first 50 s and last 50 s are both flat, open roads with sparse
point cloud features, which are susceptible to the degradation of the LiDAR positional
optimization results. However, the number of GNSS visible satellites in the flat and open
road is enough, and using GNSS observations as global constraints can greatly improve the
positioning accuracy and robustness in sparse areas of point clouds. As can be seen from
Figure 11b, the ATE_RMSE of both the LIO-SAM with GNSS global constraints and the
present algorithm is stable between (0 m, 2 m), and the positioning accuracy remains stable
in the sparse region of the point cloud features in the latter 50 s without large data drift.
In addition, from the box diagram shown in Figure 9c, it can be seen that the positional
outliers estimated by LIO-SAM are reduced by approximately 80% compared with the LIO
system. Furthermore, the positional estimation errors of our algorithm are concentrated
between (0.68 m, 1.23 m) with very few outliers, which fully demonstrates the superiority
of the proposed algorithm in its positioning accuracy in urban environments.

5.2.2. Urban Dataset

To further investigate the extent to which improvements in both the front-end and back-
end components of the fusion algorithm improve its positioning accuracy, we conducted
ablation experiments in a complex environment of GNSS signals. We constructed a system
without GNSS global correction (-), a system without smoothed voxelized point cloud

Remote Sens. 2022, 14, 2104 16 of 26

registration and loopback correction (#) and a complete system (Proposed), respectively. The
experimental environment is the complex reflection area of GNSS in the urban environment.
The experimental platform includes: the ground truth, which is provided by NovAtel
SPAN-CPT positioning results; the LiDAR point cloud, which is acquired by HDL 32E
Velodyne LiDAR, where the horizontal field of view angle is 360◦, the vertical field of
view angle range is (−30◦,+10◦) and the scanning frequency is 10 Hz, which is suitable
for in-vehicle point cloud data acquisition; IMU, which is Xsens Mti 10, and the update
frequency of the pose is 100 Hz; the GNSS receiver, which is u-blox M8T, and the update
frequency is 1 Hz.

Different from the KITTI_RAW dataset, the GNSS confidence parameter in this ex-
periment is not fixed. After solving the raw observation data collected by u-blox with the
SPP algorithm, we obtained the GNSS confidence covariance as the GNSS factor weight
parameter. This is more in line with the real urban environment, where GNSS reflected and
refracted signals interfere with the direct signal superimposed, thus causing the pseudo-
range and carrier phase observations to deviate from the true value of the direct signal. The
experimental results are shown in Figures 12 and 13 and Table 5.

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 28

Figure 12. Comparison of the estimated trajectories. (a) Global positioning trajectory. (b) Local de-
tails of the trajectory. (c) Local details of the trajectory.

Figure 13. Comparison of the positioning error of each algorithm. (a) APE fitting curve. (b) The box
diagram of APE.

Figure 12. Comparison of the estimated trajectories. (a) Global positioning trajectory. (b) Local details
of the trajectory. (c) Local details of the trajectory.

Table 5. Motion estimation errors of each algorithm on outdoor dataset.

Sequence
Hong Kong 0428 Hong Kong 0314

ATE_RMSE(m)/ATE_ME(m)

A-LOAM 41.933/37.672 23.220/21.143
LeGO-LOAM 43.441/40.515 10.250/9.644

LIO-SAM 19.042/12.464 7.181/6.786
Proposed(-) 16.456/14.119 6.785/6.198
Proposed(#) 4.671/3.847 1.816/1.382

Proposed 2.265/1.901 1.573/1.260

Remote Sens. 2022, 14, 2104 17 of 26

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 28

Figure 12. Comparison of the estimated trajectories. (a) Global positioning trajectory. (b) Local de-
tails of the trajectory. (c) Local details of the trajectory.

Figure 13. Comparison of the positioning error of each algorithm. (a) APE fitting curve. (b) The box
diagram of APE.

Figure 13. Comparison of the positioning error of each algorithm. (a) APE fitting curve. (b) The box
diagram of APE.

As can be seen from Figure 13a, firstly, due to the accurate registration of the front-end
point cloud, the absolute trajectory error of Proposed(-) decreases slightly compared to
the pre-improved system. In the initial parking section of the dataset, the traditional ICP
algorithm suffers from the problem of over-iterations, and the result is not the global
optimal solution. However, the data smoothing processing and the setting of the iteration
termination threshold of our algorithm can solve this problem well, providing a better initial
value for the positional matching. The absolute trajectory error within the first 25 s drops
by approximately 8m compared to LIO-SAM. Secondly, compared to LIO-SAM, which uses
GNSS observations directly as global constraints without filtering, we introduced GNSS
confidence into the optimization equation. It allows our algorithm to remain unaffected by
poor-quality GNSS observations and to maintain a better positioning accuracy in the latter
50 s in areas with dense tall buildings and poor-quality point cloud distribution. In contrast,
due to the poor quality of GNSS observations involved in optimization (LIO-SAM) and the
low accuracy of LiDAR loop detection as a global constraint (A-LOAM and LeGO-LOAM),
all other similar algorithms have a cumulative increase in the absolute trajectory error with
steeper slopes. This is extremely detrimental for vehicle-mounted platforms driving in
realistic large outdoor environments. From the experimental results, it can be seen that the
global optimization link in our complete algorithm can well suppress the local cumulative
drift and make the pose estimation result move more towards the global optimal solution.

In summary, driven by a combination of respective front-end and back-end improve-
ments, our complete algorithm achieves a higher positioning accuracy than other compara-
ble algorithms within real urban environments. Furthermore, as a result of the inherent
advantage of local sensors not being subject to signal refraction environmental interference,
it compensates for positioning outliers arising from multipath effects in traditional GNSS
positioning in urban environments. It fully ensures the integrity and reliability of the fusion
system’s positioning.

Remote Sens. 2022, 14, 2104 18 of 26

5.3. Time-Consuming Performance

In this paper, the KITTI 09_30_0033 sequence is randomly selected to verify the
real-time performance of our algorithm and the similar algorithms. In this paper, the
above-mentioned three similar advanced algorithms are selected as control algorithms to
compare with our algorithm, so as to verify the superior real-time performance of this
algorithm in three stages: downsampling, point cloud registration and optimization. The
experimental results are shown in Figure 14.

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 28

(a)

(b)

(c)

Figure 14. Time-consuming comparison of three processes. (a) Point cloud downsampling process.
(b) Point cloud registration process. (c) Position global optimization process.

The time consumption of the point cloud downsampling is shown in Figure 14a. The
downsampling process of the three other algorithms uses RANSAC as the core algorithm,
but its iterative approximation speed is slow, at approximately (0.5 ms, 1 ms), and the
filtering and fitting quality of the depth information is not good. In contrast, our proposed
algorithm uses HashMap instead of random sampling, which improves the speed of fil-
tering out similar points in voxels to a certain extent and reduces the time consumption
by two to five times compared with the traditional downsampling method. Although the
time-consuming ratio of this process is relatively small in typical indoor environments or
short-term positioning processes, for vehicles driving in large outdoor environments with
complex point cloud environments for long periods of time, the accumulation of tiny in-
stances of time consumption will lead to a cumulative increase in positioning time con-
sumption. Therefore, the time-consuming compression in point cloud downsampling in
this paper is beneficial for ensuring real-time vehicle positioning.

The time consumption of the point cloud registration is shown in Figure 14b, which
shows that the time taken for the LIO-SAM and A-LOAM point cloud registration step is
in the range of (50 ms, 200 ms). By extracting and separating the ground point clouds,
LeGO-LOAM can inhibit the time-consuming increase caused by outlier registration due
to the interference between non-identical cluster point clouds to a certain extent. The point

C
os

t T
im

e/
m

s
C

os
t T

im
e/

m
s

C
os

t T
im

e/
m

s

Figure 14. Time-consuming comparison of three processes. (a) Point cloud downsampling process.
(b) Point cloud registration process. (c) Position global optimization process.

The time consumption of the point cloud downsampling is shown in Figure 14a. The
downsampling process of the three other algorithms uses RANSAC as the core algorithm,
but its iterative approximation speed is slow, at approximately (0.5 ms, 1 ms), and the
filtering and fitting quality of the depth information is not good. In contrast, our proposed
algorithm uses HashMap instead of random sampling, which improves the speed of
filtering out similar points in voxels to a certain extent and reduces the time consumption
by two to five times compared with the traditional downsampling method. Although the
time-consuming ratio of this process is relatively small in typical indoor environments
or short-term positioning processes, for vehicles driving in large outdoor environments
with complex point cloud environments for long periods of time, the accumulation of

Remote Sens. 2022, 14, 2104 19 of 26

tiny instances of time consumption will lead to a cumulative increase in positioning time
consumption. Therefore, the time-consuming compression in point cloud downsampling
in this paper is beneficial for ensuring real-time vehicle positioning.

The time consumption of the point cloud registration is shown in Figure 14b, which
shows that the time taken for the LIO-SAM and A-LOAM point cloud registration step is in
the range of (50 ms, 200 ms). By extracting and separating the ground point clouds, LeGO-
LOAM can inhibit the time-consuming increase caused by outlier registration due to the
interference between non-identical cluster point clouds to a certain extent. The point cloud
registration step takes approximately (50 ms, 100 ms). There are two possible factors for the
obvious fluctuation of the above algorithm. The first is the fluctuation in the registration
time due to the changing distribution of the ambient point cloud. The second is that,
according to the experiments in Section 5.1, the rotation angle and displacement between
the source and the target point cloud also have a certain influence on time consumption,
which is obvious in the urban driving environment, where the speed and driving direction
change irregularly. However, the time consumption of our algorithm is stable between
(20 ms, 30 ms). The smoothing of the single-to-many distribution of the point cloud
sequence greatly reduces the effect of the sparsity of the point cloud distribution on
the alignment time, ensuring that the point cloud alignment step is both time-efficient
and stable.

The time consumption for the positional optimization step is shown in Figure 14c.
The time taken to match the local map to the global map for LIO-SAM and LeGO-LOAM
is around (30 ms, 130 ms). Due to the addition of GNSS sensors and the interference of
some GNSS observations with low confidence, the total time consumption of LIO-SAM
is even higher than that of LeGO-LOAM. However, A-LOAM takes (20 ms, 25 ms). The
main reason is that the observation of only one sensor in LiDAR needs to be optimized,
and the residual block is directly constructed in the original pose map structure, which
reduces the computational burden of the multidimensional factor map. In this algorithm,
the optimization method of A-LOAM is used for reference. It can be seen that, although
the GNSS sensor is added, the time consumption is still stable at approximately 30 ms.
The reason is that the global constraint of GNSS provides a more accurate transformation
matrix from the local map to the global map for the fusion system, which makes it easier
for the objective function of map matching to converge to the optimal solution. Secondly,
we use the Gauss–Newton method instead of the steepest gradient descent method used
in [27] to minimize all of the cost functions, so as to reduce the number of iterations to
converge quickly to the locally optimal estimate, which is one of the main reasons for the
decrease in time consumption. The average total time of each algorithm in a single frame is
shown in Table 6.

Table 6. Comparison of average total time consumption of each algorithm in single frame.

A-LOAM LeGO-LOAM LIO-SAM Proposed

Time Consumption/ms 138.07 126.29 223.15 108.76

In summary, thanks to the double improvement of this algorithm in the front-end and
back-end of our system, the time consumption of all three steps involved is compressed.
Although the optimization vector of the GNSS sensor is newly added, it has a better
real-time performance than other similar algorithms.

5.4. Mapping Results in the Real Urban Environment

As shown in Figure 15, this section shows the comparison of mapping results between
our algorithm and similar advanced algorithms. Figure 15a shows the ground truth in the
real outdoor environment, which is obtained by NovAtel SPAN-CPT. The vehicle travels
for one week from the starting point in the lower right corner and then returns, and the
trajectory is almost closed. Figure 15b shows the mapping result of LIO-SAM, and it is
clear that the section near the end of the journey deviates significantly from the actual path

Remote Sens. 2022, 14, 2104 20 of 26

travelled. The reason can be attributed to the fast displacement of the carrier, which leads
to an increased difference in the point cloud clusters captured between the front and back
frames, including rotation and displacement, resulting in the point cloud registration in the
loopback detection of LIO-SAM being prone to failure and the loopback constraint results
not being ideal. In addition, the GNSS constraint strategy adopted by LIO-SAM has a poor
global correction effect on local sensors. However, compared with LIO-SAM, our algorithm
has an obvious loop detection accuracy and GNSS global constraint effectiveness.

Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 29

(a) (b) (c)

Figure 15. Comparison of mapping effects of various algorithms. (a) The ground truth. (b) The map-
ping results of LIO-SAM. (c) The mapping results of the proposed algorithm.

6. Discussion
SLAM-based multi-sensor fusion positioning technology expands the application

field of traditional GNSS-based mapping techniques and makes continuous and reliable
positioning in complex urban environments with good/intermittent/rejection GNSS a re-
ality. The superior sensing capability of LIO for natural sources has been demonstrated in
the literature [5,6] and others. However, the accuracy limitation of point cloud registration
and the local pose drift of LIO limit the application of LIO in large outdoor environments
to some extent. This paper focuses on the above two technical bottlenecks faced by the
existing LiDAR SLAM and proposes simplified but effective improvement solutions.

First of all, the primary technical bottleneck is how to improve the accuracy of point
cloud registration. Koideet al. [20] demonstrated that smoothing the point cloud cluster
can improve the fault tolerance of point cloud registration and improve the accuracy of
the point cloud from 1.20m to 0.89m. However, from our practical tests, it has been shown
that, in long and large turning or translating sections in real environments, if the number
of iterations is not limited, it may still fall into the local optimum problem. Therefore, on
the basis of constructing a registration equation based on smooth voxelization filtering,
we further use the judgment condition of iteration termination for the secondary con-
straint, so as to reduce the over-fitting problem of local point clouds in a typical environ-
ment. According to the registration experiment in Section 5.1 and the positional estimation
accuracy experiment in Section 5.2, it can be seen that our registration method has a higher
accuracy than the conventional methods. According to Figure 11, it can be seen that accu-
rate point cloud alignment leads to an accurate initial value estimation of the positional
attitude, which has a considerable positive effect on the positional estimation of the vehi-
cle platform with a complex moving state.

Secondly, there is the challenge of how to effectively use GNSS measurements and
loopback detection mechanisms to converge the local positioning results of LIO to a glob-
ally optimal solution. Firstly, the main step of loop detection dependency is point cloud
registration. The previous paragraph has specifically analyzed the superiority of our
method. Thanks to the positive point cloud registration results, we can reason that our
global constraint using loopback detection is superior, as demonstrated in Section 5.2.2.
Next, some related research has been carried out on the research of GNSS and LIO fusion
positioning. Optimization-based methods have been applied in [31,32] and so on. How-
ever, taking [27] for example, in the traditional graph optimization model, the covariance
effect of measurements is only used to determine whether to add factors or not, which is
crude for the screening of the measurements, especially for GNSS, a measurement signal
that is greatly influenced by the environmental catadioptric surface, where its observation
information has not been fully applied. Therefore, in this paper, on the basis of the rough
screening of GNSS observations, the covariance of the quantitative measurements is

Figure 15. Comparison of mapping effects of various algorithms. (a) The ground truth. (b) The
mapping results of LIO-SAM. (c) The mapping results of the proposed algorithm.

As shown in Figure 15c, the mapping trajectory of the algorithm proposed in this
paper is basically fitted with the true value of the driving trajectory, and, in the loop road
section in the lower right corner, the trajectories passing through the same landmark twice
are basically coincident. The reasons are as follows: firstly, smoothing the point cloud
clusters can improve the fault tolerance of the point cloud registration between the front
and back frames; secondly, the weighted GNSS global constraint can eliminate the GNSS
measurements with large observation gross errors, thus achieving superior mapping results.

6. Discussion

SLAM-based multi-sensor fusion positioning technology expands the application
field of traditional GNSS-based mapping techniques and makes continuous and reliable
positioning in complex urban environments with good/intermittent/rejection GNSS a
reality. The superior sensing capability of LIO for natural sources has been demonstrated in
the literature [5,6] and others. However, the accuracy limitation of point cloud registration
and the local pose drift of LIO limit the application of LIO in large outdoor environments
to some extent. This paper focuses on the above two technical bottlenecks faced by the
existing LiDAR SLAM and proposes simplified but effective improvement solutions.

First of all, the primary technical bottleneck is how to improve the accuracy of point
cloud registration. Koideet al. [20] demonstrated that smoothing the point cloud cluster
can improve the fault tolerance of point cloud registration and improve the accuracy of
the point cloud from 1.20m to 0.89m. However, from our practical tests, it has been shown
that, in long and large turning or translating sections in real environments, if the number
of iterations is not limited, it may still fall into the local optimum problem. Therefore, on
the basis of constructing a registration equation based on smooth voxelization filtering, we
further use the judgment condition of iteration termination for the secondary constraint,
so as to reduce the over-fitting problem of local point clouds in a typical environment.
According to the registration experiment in Section 5.1 and the positional estimation
accuracy experiment in Section 5.2, it can be seen that our registration method has a higher
accuracy than the conventional methods. According to Figure 11, it can be seen that
accurate point cloud alignment leads to an accurate initial value estimation of the positional
attitude, which has a considerable positive effect on the positional estimation of the vehicle
platform with a complex moving state.

Remote Sens. 2022, 14, 2104 21 of 26

Secondly, there is the challenge of how to effectively use GNSS measurements and
loopback detection mechanisms to converge the local positioning results of LIO to a globally
optimal solution. Firstly, the main step of loop detection dependency is point cloud
registration. The previous paragraph has specifically analyzed the superiority of our
method. Thanks to the positive point cloud registration results, we can reason that our
global constraint using loopback detection is superior, as demonstrated in Section 5.2.2.
Next, some related research has been carried out on the research of GNSS and LIO fusion
positioning. Optimization-based methods have been applied in [31,32] and so on. However,
taking [27] for example, in the traditional graph optimization model, the covariance effect
of measurements is only used to determine whether to add factors or not, which is crude
for the screening of the measurements, especially for GNSS, a measurement signal that
is greatly influenced by the environmental catadioptric surface, where its observation
information has not been fully applied. Therefore, in this paper, on the basis of the rough
screening of GNSS observations, the covariance of the quantitative measurements is added
as a weight to the graph optimization model. It achieves a more adequate and accurate
global constraint on the LIO local poses using GNSS observations. From the ablation
experiment results in Section 4.3.2, it is evident that the method of the weighted GNSS
residual added in this paper achieves a satisfactory positioning accuracy. According to the
above results, we can draw a reasonable inference: even when entering an indoor parking
lot or tunnel, the accumulated error of LIO in this algorithm will start to accumulate from a
lower initial value of drift. In contrast, for the LIO algorithms without GNSS constraints,
they already have a large deviation between the local map and the global map before
entering the denial environment. Therefore, the cumulative error range of this algorithm
is acceptable. Once the GNSS signal is restored, the local error will be corrected within
the time alignment interval of 0.1s as set in Section 4.3.2. This provides an accurate and
continuous positional estimation for the in-vehicle platform during travel in complex
urban environments.

7. Conclusions

In this paper, a LiDAR-IMU-GNSS fusion positioning algorithm with accurate local
alignment and weak global drift is proposed for the high-precision continuous positioning
of mobile carriers in complex urban environments.

Firstly, a voxelized point cloud downsampling method based on curvature segmen-
tation is proposed. Rough classification is carried out by a curvature threshold, and the
voxelized point cloud downsampling is performed using HashMap instead of RANSAC,
so that the spatial feature distribution attributes of the source point cloud, including texture
feature information, such as surfaces and curves, are retained to a greater extent.

Secondly, a point cloud registration model based on the nearest neighbors of the
point and neighborhood point sets is constructed. Furthermore, an iterative termination
threshold is set to reduce the probability of the local optimal solution. This greatly improves
the real-time performance of the point cloud registration and can also play a large role in
aligning the point cloud between the front and back frames of a fast-moving carrier with
large displacement.

Finally, we propose a LIO-GNSS fusion positioning model based on graph optimiza-
tion that uses GNSS observations weighted by confidence to globally correct local drift. In
addition, the loop detection mechanism using the above-mentioned point cloud registration
algorithm is also added into the fusion system, resulting in further global constraints of the
driving areas with prior maps. Experimental results show that our algorithm can realize a
more continuous and accurate pose estimation and map reconstruction in complex urban
environments than similar state-of-the-art algorithms.

In the future work, there are still several issues in our work that deserve further explo-
ration. Firstly, we plan to build a deeper constraint relationship between LIO and GNSS
and make use of the rich planar features perceived by LiDAR in the urban environments
to compensate for GNSS occlusion or the presence of multipath areas in the direction of

Remote Sens. 2022, 14, 2104 22 of 26

the constraint. It will reduce the probability of the unreliability of SPP positioning results
in the urban environments. Secondly, considering the environments with multi-sensor
failures, such as tunnels with a high environmental texture similarity, where both GNSS
rejection and point cloud degradation failures exist. We consider a more accurate degra-
dation direction detection using the degeneracy factor (DF) algorithm proposed in [5],
and make a non-linear optimization correction for the positional attitude in that direction.
Finally, the perception ability of 3D environmental features by using only LiDAR, IMU and
GNSS sensors is still relatively limited. We plan to use the observation residuals from other
sensors to add multi-dimensional feature constraints to the fusion positioning algorithm,
such as cameras, wheel odometers and so on, so as to make full use of environmental
features and realize accurate and real-time navigation and positioning targets with high
environmental universality.

Author Contributions: Conceptualization, X.L.; methodology, X.H.; software, X.H.; validation, S.P.;
formal analysis, X.H.; investigation, X.L.; resources, W.G.; data curation, X.H.; writing—original
draft preparation, X.L.; writing—review and editing, X.H.; visualization, X.H.; supervision, S.P. and
W.G.; project administration, W.G.; funding acquisition, S.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research study was funded by the National Key Research and Development Program
of China (2021YFB3900804) and the Research Fund of the Ministry of Education of China and China
Mobile (MCM20200J01).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Mathematical Derivation of the Equations (14) and (15).
First, given the original accelerometer and gyroscope measurement values of IMU

as follows:
ât = at + bat + RL

W gw + na

ω̂t = ωt + bvt + nv

(A1)

where na ∼ N
(
0, σ2

a
)

and nv ∼ N
(
0, σ2

v

)
are white Gaussian noise of accelerometer and

gyroscope, respectively. The following mathematical derivations are all completed in the
IMU body coordinate system.

Therefore, the position, rotation and velocity between the ith IMU frame and the
i + 1th IMU frame can be obtained:

pi+1 = pi + vi∆ti +
s

t∈[ti ,ti+1]

(
Rb

W(ât − bt − na)− gw

)
dt2

qi+1 = qiExp(ω̂t − bt − nω)∆ti

vi+1 = vi +
∫

t∈[ti ,ti+1]

(
Rb

W(ât − bt − na)− gw

)
dt

(A2)

To avoid repeated calculation of IMU parameters during pose estimation, pre-integration
is introduced to simplify calculation, namely:

pi+1 = pi + vi∆ti − 1
2 gw∆t2

i + Rw
b αi

i+1

qi+1 = qi ⊗ θi
i+1

vi+1 = vi − gw∆ti + Rw
b βi

i+1

(A3)

where
[
αi+1

i , θi+1
i , βi+1

i

]T
is the IMU pre-integration value. It can be inferred from [28] that

the IMU pre-integration value is only related to the IMU bias at different times. Since the

Remote Sens. 2022, 14, 2104 23 of 26

IMU bias change is very small, we assume that the pre-integration change is linear with the

IMU bias, and then
[
αi+1

i , θi+1
i , βi+1

i

]T
after each pose estimation can be recorded as:

αi+1
i = α̂i+1

i +
δα̂i+1

i
δba

δ
`
ba +

δα̂i+1
i

δbω
δ
`
bω

θi+1
i = θ̂i+1

i ⊗

 1

1
2

δθ̂i+1
i

δbω
δ
`
bω


βi+1

i = β̂i+1
i +

δβ̂i+1
i

δba
δ
`
ba +

δβ̂i+1
i

δbω
δ
`
bω

(A4)

Equation (A4) is the pre-integration form in the continuous time between the two
IMU frames, and the actual IMU pre-integration is the incremental in the discrete time.
Therefore, the mid-point integration is used for discretization, and the matrix form of the
discrete IMU state error transfer equation is obtained:


δαi+1
δθi+1
δβi+1
δbai+1
δbωi+1

 = Fi


δαi
δθi
δβi
δbai
δbωi

+ Vi



nαi

nωi

nαi+1

nωi+1

nba

nbω

 (A5)

where Fi and Vi are matrix abbreviations, with specific values as follows:

Fi


δαi
δθi
δβi
δbai
δbωi

 =


I f01 δt f03 f04
0 f11 0 0 −δt
0 f21 I f23 f24
0 0 0 I 0
0 0 0 0 I

 (A6)

f01 = δt
2 f21 = − 1

4 qk(âi − bi)× δt2 − 1
4 qi+1(âi+1 − bi)×

[
I −

(
ω̂i+ω̂i+1

2 − bi

)
× δt

]
δt2

f03 = − 1
4 (qi + qi+1)δt2

f04 = δt
2 f24 = 1

4 qi+1(âi+1 − bi)× δt3

f11 = I −
(

ω̂i+ω̂i+1
2 − bk

)
× δt

f21 = − 1
2 qi(âi − bi)× δt− 1

2 qi+1(âi+1 − bi)×
[

I −
(

ω̂i+ω̂i+1
2 − bi

)
× δt

]
δt

f23 = − 1
2 (qi + qi+1)δt2

f24 = 1
2 qi+1(âi+1 − bi)× δt2

(A7)

Vi =


v00 v01 v02 v03 0 0
0 δt

2 0 δt
2 0 0

qiδt
2 v21

qi+1δt
2 v23 0 0

0 0 0 0 δt 0
0 0 0 0 0 δt

 (A8)

v00 = − 1
4 qiδt2

v01 = v03 = δt
2 v21 = 1

4 qi+1(âi+1 − bi)× δt2 δt
2

v02 = − 1
4 qi+1δt2

v21 = v23 = 1
4 qi+1(âi+1 − bi)× δt2

(A9)

Remote Sens. 2022, 14, 2104 24 of 26

Let z15×1
i = [δαi, δθi, δβi, δbai, δbωi]

T and z15×1
i+1 = [δαi+1, δθi+1, δβi+1, δbai+1, δbωi+1]

T

be the error state vector of the i th frame and the i+1 th frame, respectively, and
n =

[
nαi , nωi , nαi+1 , nωi+1 , nba , nbω

]T is the noise vector; then, Equation (A5) can be written as:

δz15×1
i+1 = F15×15δz15×1

i + V15×18n18×1 (A10)

where the initial Jacobian value is Ji = I and the Jacobian iteration formula in the process
of nonlinear optimization is:

J15×15
i+1 = F15×15 J15×15

i (A11)

The iterative formula of the covariance of pre-integration in the nonlinear optimization
process is:

∑15×15
i+1 = F ∑15×15

i FT + VniVT (A12)

After the pre-integration derivation, Equation (14) is the variable quantity of position,
rotation, velocity and IMU bias between two frames.

Appendix B

Mathematical Derivation of the Equations (16) and (17).
Equation (16) can be explained using the plane vector method. Let∣∣∣(XL
(k+1,o) − XL

(k,a)

)
×
(

XL
(k+1,o) − XL

(k,b)

)∣∣∣ be the area of the parallelogram formed by three

points XL
(k+1,o), XL

(k,a) and XL
(k,b). Let the spatial coordinates of the three points be

XL
(k+1,o)(x0, y0, z0), XL

(k,a)(x1, y1, z1) and XL
(k,b)(x2, y2, z2), from which, the three vectors are

constructed as:

−−−−−−−−→
XL
(k+1,o)X

L
(k,a) = XL

(k+1,o) − XL
(k,a) = (x1 − x0, y1 − y0, z1 − z0)

−−−−−−−−→
XL
(k+1,o)X

L
(k,b) = XL

(k+1,o) − XL
(k,b) = (x2 − x0, y2 − y0, z2 − z0)

−−−−−−−−→
XL
(k,a)X

L
(k,b) = XL

(k,o) − XL
(k,b) = (x2 − x1, y2 − y1, z2 − z1)

(A13)

The molecules of Equation (11) can be obtained as follows:

∣∣∣(XL
(k+1,o) − XL

(k,a)

)
×
(

XL
(k+1,o) − XL

(k,b)

)∣∣∣ =
∣∣∣∣∣∣∣∣

XL
(k+1,o) XL

(k,a) XL
(k,b)

(x1 − x0) (y1 − y0) (z1 − z0)

(x2 − x0) (y2 − y0) (z2 − z0)

∣∣∣∣∣∣∣∣ (A14)

The distance between the point XL
(k+1,o) and the line XL

(k,a)X
L
(k,b) represented by

Equation (11) is:

dL
ek =

∣∣∣(XL
(k+1,o)−XL

(k,a)

)
×
(

XL
(k+1,o)−XL

(k,b)

)∣∣∣∣∣∣XL
(k,a)−XL

(k,b)

∣∣∣
= sqrt{[(y1 − y0) ∗ (z2 − z0)− (y2 − y0) ∗ (z1 − z0)]

∗[(y1 − y0) ∗ (z2 − z0)− (y2 − y0) ∗ (z1 − z0)]

+[(x2 − x0) ∗ (z1 − z0)− (x1 − x0) ∗ (z2 − z0)]

∗[(x2 − x0) ∗ (z1 − z0)− (x1 − x0) ∗ (z2 − z0)]

+[(x1 − x0) ∗ (y2 − y0)− (x2 − x0) ∗ (y1 − y0)]

∗[(x1 − x0) ∗ (y2 − y0)− (x2 − x0) ∗ (y1 − y0)]

}
]

/sqrt[(x2 − x1) ∗ (x2 − x1) + (y2 − y1) ∗ (y2 − y1) + (z2 − z1) ∗ (z2 − z1)]

(A15)

Remote Sens. 2022, 14, 2104 25 of 26

Similarly, the molecule of Equation (17) can be expressed as the volume of a trian-
gular pyramid composed of four points: XL

(k+1,o), XL
(k,c), XL

(k,d) and XL
(k, f) in a geometric

sense. It can be known that
∣∣∣(XL

(k,c) − XL
(k,d)

)
×
(

XL
(k,c) − XL

(k, f)

)∣∣∣ is twice the area of the

base. Let the spatial coordinates of the four points be XL
(k+1,ρ)(x3, y3, z3), XL

(k,c)(x4, y4, z4),

XL
(k,d)(x5, y5, z5) and XL

(k, f)(x6, y6, z6), so the three vectors required for constructing are:

−−−−−−−−→
XL
(k+1,ρ)X

L
(k,d) = XL

(k+1,ρ) − XL
(k,d) = (x5 − x3, y5 − y3, z5 − z3)

−−−−−−−→
XL
(k,c)X

L
(k,d) = XL

(k,c) − XL
(k,d) = (x5 − x4, y5 − y4, z5 − z4)

−−−−−−−→
XL
(k,c)X

L
(k, f) = XL

(k,c) − XL
(k, f) = (x6 − x4, y6 − y4, z6 − z4)

(A16)

The molecules of Equation (17) can be obtained as follows:

∣∣∣(XL
(k,c) − XL

(k,d)

)
×
(

XL
(k,c) − XL

(k, f)

)∣∣∣ =

∣∣∣∣∣∣∣∣
XL
(k,c) XL

(k,d) XL
(k, f)

(x5 − x4) (y5 − y4) (z5 − z4)

(x6 − x4) (y6 − y4) (z6 − z4)

∣∣∣∣∣∣∣∣
= sqrt(sa ∗ sa, sb ∗ sb, sc ∗ sc)

(A17)

where sa, sb and sc represent the component vectors of x, y and z axes, respectively:
sa = (y5 − y4) ∗ (z6 − z4)− (y6 − y4) ∗ (z5 − z4)

sb = (z5 − z4) ∗ (x6 − x4)− (z6 − z4) ∗ (x5 − x4)

sc = (x5 − x4) ∗ (y6 − y4)− (x6 − x4) ∗ (y5 − y4)

(A18)

Therefore, the point-to-surface distance can be obtained as follows:

dL
pk =

∣∣∣(XL
(k+1,o)−XL

(k,d)

)
·
((

XL
(k,c)−XL

(k,d)

)
×
(

XL
(k,c)−XL

(k, f)

))∣∣∣∣∣∣(XL
(k,c)−XL

(k,d)

)
×
(

XL
(k,c)−XL

(k, f)

)∣∣∣
= (x4−x3)∗sa+(y4−y3)∗sb+(z4−z3)∗sc

=sqrt(sa∗sa ,sb∗sb ,sc∗sc)

(A19)

References
1. Mascaro, R.; Teixeira, L.; Hinzmann, T.; Siegwart, R.; Chli, M. GOMSF: Graph-Optimization based Multi-Sensor Fusion for robust

UAV pose estimation. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
Australia, 21–25 May 2018; pp. 1421–1428.

2. Lee, W.; Eckenhoff, K.; Geneva, P.; Huang, G.Q. Intermittent GPS-aided VIO: Online Initialization and Calibration. In Proceed-
ings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020;
pp. 5724–5731.

3. Zhang, J.; Khoshelham, K.; Khodabandeh, A. Seamless Vehicle Positioning by Lidar-GNSS Integration: Standalone and Multi-
Epoch Scenarios. Remote Sens. 2021, 13, 4525. [CrossRef]

4. Forster, C.; Carione, L.; Dellaert, F.; Scaramuzza, D. On-Manifold Preintegration for Real-Time Visual–Inertial Odometry. IEEE
Trans. Robot. 2017, 33, 1–21. [CrossRef]

5. Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain. In
Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 4758–4765.

6. Li, S.; Li, J.; Tian, B.; Chen, L.; Wang, L.; Li, G. A laser SLAM method for unmanned vehicles in point cloud degenerated tunnel
environments. Acta Geod. Cartogr. Sin. 2021, 50, 1487–1499.

7. Gong, Z.; Liu, P.; Wen, F.; Ying, R.D.; Ji, X.W.; Miao, R.H.; Xue, W.Y. Graph-Based Adaptive Fusion of GNSS and VIO Under
Intermittent GNSS-Degraded Environment. IEEE Trans. Instrum. Meas. 2021, 70, 9268091. [CrossRef]

8. Chou, C.C.; Chou, C.F. Efficient and Accurate Tightly-Coupled Visual-Lidar SLAM. IEEE Trans. Intell. Transp. Syst. 2021, 1–15.
[CrossRef]

http://doi.org/10.3390/rs13224525
http://doi.org/10.1109/TRO.2016.2597321
http://doi.org/10.1109/TIM.2020.3039640
http://doi.org/10.1109/TITS.2021.3130089

Remote Sens. 2022, 14, 2104 26 of 26

9. He, X.; Gao, W.; Sheng, C.Z.; Zhang, Z.T.; Pan, S.G.; Duan, L.J.; Zhang, H.; Lu, X.Y. LiDAR-Visual-Inertial Odometry Based on
Optimized Visual Point-Line Features. Remote Sens. 2022, 14, 622. [CrossRef]

10. Biber, P.; Strasser, W. The normal distributions transform: A new approach to laser scan matching. In Proceedings of the
2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 27–31 October 2003;
pp. 2743–2748.

11. Besl, P.J.; Mckay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [CrossRef]
12. Servos, J.; Waslander, S.L. Multi-Channel Generalized-ICP. In Proceedings of the 2014 IEEE International Conference on Robotics

and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 3644–3649.
13. Du, S.Y.; Liu, J.; Bi, B.; Zhu, J.H.; Xue, J.R. New iterative closest point algorithm for isotropic scaling registration of point sets with

noise. J. Vis. Commun. Image Represent. 2016, 38, 207–216. [CrossRef]
14. Wu, Z.; Chen, H.; Du, S. Robust Affine Iterative Closest Point Algorithm Based on Correntropy for 2D Point Set Registration. In

Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016;
pp. 1415–1419.

15. Wu, L.Y.; Xiong, L.; Bi, D.Y.; Fang, T.; Du, S.Y.; Cui, W.T. Robust Affine Registration Based on Corner Point Guided ICP Algorithm.
In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October
2017; pp. 537–541.

16. Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans.
Robot. 2007, 23, 34–46. [CrossRef]

17. Andreasson, H.; Stoyanov, T. Real-Time Registration of RGB-D Data Using Local Visual Features and 3D-NDT Registration.
[DB/OL]. Available online: https://www.researchgate.net/publication/267688026_Real_Time_Registration_of_RGB-D_Data_
using_Local_Visual_Features_and_3D-NDT_Registration (accessed on 14 March 2022).

18. Caballero, F.; Merino, L. DLL: Direct LIDAR Localization. A map-based localization approach for aerial robots. In Proceedings of
the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1
October 2021; pp. 5491–5498.

19. Chen, C.; Yang, B.; Tian, M.; Li, J.; Zou, X.; Wu, W.; Song, Y. Automatic registration of vehicle-borne mobile mapping laser point
cloud and sequent panoramas. Acta Geo Daetica Cartogr. Sin. 2018, 47, 215–224.

20. Koide, K.; Yokozukam, M.; Oishi, S.; Banno, A. Voxelized GICP for Fast and Accurate 3D Point Cloud Registration. In
Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021;
pp. 11054–11059.

21. Yang, J.; Li, H.D.; Campbell, D.; Jia, Y. Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration. IEEE Trans. Pattern
Anal. Mach. Intell. 2016, 38, 2241–2254. [CrossRef] [PubMed]

22. Pan, Y.; Xiao, P.; He, Y.; Shao, Z.; Li, Z. MULLS: Versatile LiDAR SLAM via Multi-metric Linear Least Square. In Proceedings of
the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 11633–11640.

23. Qin, C.; Ye, H.; Pranata, C.E.; Han, J.; Zhang, S.; Liu, M. LINS: A Lidar-Inertial State Estimator for Robust and Efficient Navigation.
In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August
2020; pp. 8899–8906.

24. Li, W.; Liu, G.; Cui, X.; Lu, M. Feature-Aided RTK/LiDAR/INS Integrated Positioning System with Parallel Filters in the
Ambiguity-Position-Joint Domain for Urban Environments. Remote Sens. 2021, 13, 2013. [CrossRef]

25. Li, X.X.; Wang, H.D.; Li, S.Y.; Feng, S.Q.; Wang, X.B.; Liao, J.C. GIL: A tightly coupled GNSS PPP/INS/LiDAR method for precise
vehicle navigation. Satell. Navig. 2021, 26, 2. [CrossRef]

26. Soloviev, A. Tight Coupling of GPS, INS, and Laser for Urban Navigation. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 1731–1746.
[CrossRef]

27. Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing
and Mapping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las
Vegas, NV, USA, 24 October–24 January 2021; pp. 5136–5142.

28. Sun, X.; Guan, H.; Su, Y.; Xu, G.; Guo, Q. A tightly coupled SLAM method for precise urban mapping. Acta Geod. Cartogr. Sin.
2021, 50, 1585–1593.

29. GTSAM. Available online: https://gtsam.org/tutorials/intro.html (accessed on 14 April 2022).
30. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.

[CrossRef]
31. Chen, S.; Zhou, B.; Jiang, C.; Xue, W.; Li, Q. A LiDAR/Visual SLAM Backend with Loop Closure Detection and Graph

Optimization. Remote Sens. 2021, 13, 2720. [CrossRef]
32. Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018, 34,

1004–1020. [CrossRef]

http://doi.org/10.3390/rs14030622
http://doi.org/10.1109/34.121791
http://doi.org/10.1016/j.jvcir.2016.02.019
http://doi.org/10.1109/TRO.2006.889486
https://www.researchgate.net/publication/267688026_Real_Time_Registration_of_RGB-D_Data_using_Local_Visual_Features_and_3D-NDT_Registration
https://www.researchgate.net/publication/267688026_Real_Time_Registration_of_RGB-D_Data_using_Local_Visual_Features_and_3D-NDT_Registration
http://doi.org/10.1109/TPAMI.2015.2513405
http://www.ncbi.nlm.nih.gov/pubmed/26731638
http://doi.org/10.3390/rs13102013
http://doi.org/10.1186/s43020-021-00056-w
http://doi.org/10.1109/TAES.2010.5595591
https://gtsam.org/tutorials/intro.html
http://doi.org/10.1177/0278364913491297
http://doi.org/10.3390/rs13142720
http://doi.org/10.1109/TRO.2018.2853729

	Introduction
	System Overview
	Point Cloud Voxelization Downsampling and Alignment
	Voxelized Downsampling Based on Curvature Segmentation
	Voxelized Point Cloud Registration

	Graph Optimization Framework
	Local Pose Map Structure
	IMU Pre-integration Factor
	LiDAR Factor

	Spatial Unification of Multi-Sensor Poses
	Global Pose Map Structure
	LIO Factor
	GNSS Factor
	Loop Factor

	Experimental Setup and Results
	Point Cloud Registration Results
	Positioning Accuracy
	Public Dataset
	Urban Dataset

	Time-Consuming Performance
	Mapping Results in the Real Urban Environment

	Discussion
	Conclusions
	Appendix A
	Appendix B
	References

