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Abstract: In order to improve the accuracy of visual SLAM algorithms in a dynamic scene, instance
segmentation is widely used to eliminate dynamic feature points. However, the existing segmentation
technology has low accuracy, especially for the contour of the object, and the amount of calculation of
instance segmentation is large, limiting the speed of visual SLAM based on instance segmentation.
Therefore, this paper proposes a contour optimization hybrid dilated convolutional neural network
(CO-HDC) algorithm, which can perform a lightweight calculation on the basis of improving the
accuracy of contour segmentation. Firstly, a hybrid dilated convolutional neural network (HDC) is
used to increase the receptive field, which is defined as the size of the region in the input that produces
the feature. Secondly, the contour quality evaluation (CQE) algorithm is proposed to enhance the
contour, retaining the highest quality contour and solving the problem of distinguishing dynamic
feature points from static feature points at the contour. Finally, in order to match the mapping speed
of visual SLAM, the Beetle Antennae Search Douglas–Peucker (BAS-DP) algorithm is proposed
to lighten the contour extraction. The experimental results have demonstrated that the proposed
visual SLAM based on the CO-HDC algorithm performs well in the field of pose estimation and map
construction on the TUM dataset. Compared with ORB-SLAM2, the Root Mean Squared Error (Rmse)
of the proposed method in absolute trajectory error is about 30 times smaller and is only 0.02 m.

Keywords: visual SLAM; instance segmentation; neural network; pose estimation

1. Introduction

Simultaneous localization and mapping (SLAM) is when a robot builds a map of the
unknown environment during movement using vision, lidar, odometer and other sensors.
At the same time, it carries out its own positioning [1,2]. SLAM can be used in various
industries, and it will have wider applications in the future. In the driverless field, SLAM
can be used to sense surrounding vehicles and scenes, creating a dynamic 3D map, which
will make autonomous driving safer and more reliable [3,4]. In the 3D printing industry,
by adding a camera to the printer, the SLAM algorithm can be used to determine whether
the walking speed and the running path conform to the system setting [5]. In the medical
field, the use of the SLAM algorithm can accurately perceive the patient’s movement data
during rehabilitation, which will help to assess the patient’s physical condition [6].

SLAM consists of inferring the states of the robot and the environment. On the premise
that the robot state is known, the target environment can be built through tracking algorithms,
and the estimation problem of SLAM is proposed. The estimation problem is usually discussed
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in a Bayesian framework, focusing on reducing the cumulative error. The cumulative error
can be estimated and adjusted through a closed-loop detection, returning to a mapped area [7],
but this requires the system to match feature points or static landmarks accurately.

Different sensors affect the above errors and matching. At present, the main sensors
used in SLAM include cameras, lidars, millimeter wave (mmWave) radar and the fusion
of various sensors [8–10]. Examples of visual SLAM development in recent years include
applying an echo state network (ESN) to a model image sequence [11,12], combining a
neural network with visual SLAM [13], CPL-SLAM [14], using compact second-order
statistics [15], a combination of points and lines to extract features [16], and others. It
should be noted that the main purpose of the above methods is to improve the robustness
and accuracy of feature point matching of visual SLAM. Lidar SLAM has been developing
for a long time and now has widespread application. Paper [17] presents a 2D lidar-
based SLAM algorithm, which is combined with a new structural unit encoding scheme
(SEUS) algorithm, while the 2D lidar graph SLAM proposed in paper [18] is based on
3D “directional endpoint” features, performing better in robot mapping and exploration
tasks. The cooperation of multiple robots can also improve the accuracy and efficiency of
lidar SLAM [19–22]. Due to the advantages of mmWave in the spectrum and propagation
characteristics [23], the application of mmWave in SLAM technology has become a new
trend in recent years [24], and sub-centimeter SLAM can be achieved [25]. For instance,
paper [26] proposed a maximum likelihood (ML) algorithm, which can achieve accurate
SLAM in the challenging case of multiple-input single-output (MISO). Multi-sensor fusion
can make up for the defects of single sensor and have more perfect perception [27]. For
example, in the paper [28–30], the vision sensor and IMU are fused. Paper [28] proposes
hybrid indoor localization systems using an IMU sensor and a smartphone camera, and
adopts a UcoSLAM algorithm [31]. In addition, mainstream sensor fusion also includes
lidar and vision [32,33], lidar and IMU [19,34], etc.

In order to show the advantages and disadvantages of the above different sensors
more clearly, we have summarized them in four aspects: robustness, accuracy, cost and
information provided, as shown in Table 1.

Table 1. The advantages and disadvantages of different sensors.

Sensor Robustness Accuracy Cost Information Provided

visual susceptible to light high cheap rich semantic information
lidar high higher expensive only depth and position

mmWave higher high in long distance,
low in short distance expensive only distance and position

visual + IMU susceptible to light high normal rich semantic information
lidar + IMU high higher expensive only distance and position

visual + lidar high higher more expensive rich semantic information

It can be seen that visual sensors are the cheapest sensors [7] and can provide rich, high-
dimensional semantic information [35], which can complete more intelligent tasks, although
they have low robustness under current technological means. However, the traditional
visual SLAM assumes a static environment. For an environment with dynamic objects, its
accuracy decreases [36–38]. With the development of deep learning in computer vision and the
increasing maturity of instance segmentation technology, the combination of visual SLAM and
deep learning can identify and extract moving objects in the environment [39–41]. Through
instance segmentation, dynamic objects in the environment are removed, and only static
feature points are retained, which can significantly improve the accuracy of visual SLAM,
such as You Only Look At CoefficienTs (YOLACT) [42]. Therefore, visual SLAM is no
longer limited to static scenes. More and more researchers have begun to research the use
of visual SLAM in dynamic scenes [43]. At present, the main SLAM algorithms based
on dynamic feature point segmentation include DS-SLAM [44,45], DynaSLAM [46,47],
LSD-SLAM + Deeplabv2 [48], SOF-SALM [49], ElasticFusion [50], RS-SLAM [51], DOT +
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ORB-SLAM2 [52], etc. We evaluate the existing algorithms from five aspects: frontend,
mapping, whether the segmentation network is independent, the accuracy of contour
segmentation and the efficiency in dynamic environment. Among them, the frontend
influences feature selection, extraction, matching and local map construction. Mapping
affects the details of map construction, but the more details, the more calculation. An
independent segmentation network reduces calculation time. The segmentation accuracy
of contour will affect the elimination of dynamic feature points. We refer to papers [53,54]
for the accuracy of contour segmentation and the efficiency in a dynamic environment. The
details are shown in Table 2.

Table 2. The evaluation of existing visual SLAM based on dynamic feature point segmentation.

Algorithm Frontend Mapping

Whether
Segmentation

Network Is
Independent

Accuracy of
Contour

Segmentation

Efficiency in
Dynamic

Environment

DS-SLAM feature based sparse yes low higher
DynaSLAM feature based sparse no normal high

LSD-SLAM + Deeplab V2 direct semi dense no normal low
SOF-SLAM feature based sparse no low normal

ElasticFusion ICP dense no higher low
RS-SLAM feature based dense no high low

DOT + ORB-SLAM2 feature based sparse no low normal

As can be seen from the table, deep and high-dimension frontend processing can
increase the accuracy of contour segmentation but also reduce the operation efficiency.
Meanwhile, only DS-SLAM splits the segmentation network independently, which is
beneficial to the operation efficiency of visual SLAM. In conclusion, current algorithms
are difficult to achieve accurate contour segmentation and high operation efficiency at the
same time. Once the contour segmentation is not accurate enough, it is easy to eliminate
the static feature points from the contour by mistaking them for dynamic feature points,
and it is also easy to retain the dynamic feature points by mistaking them for static feature
points, which will reduce the accuracy of SLAM mapping in the later stage. At the same
time, huge data adversely affects the real-time performance of visual SLAM. Therefore,
aiming at the above problems, this paper proposes a visual SLAM based on the CO-HDC
algorithm, which is an instance segmentation algorithm of contour optimization, including
the CQE contour enhancement algorithm and Beetle Antennae Search Douglas–Peucker
(BAS-DP) lightweight contour extraction algorithm. The main contributions of this paper
are summarized as follows:

• To solve the problem of the imprecise segmentation of the object’s contour, a hybrid
dilated CNN is used as backbone network to increase the receptive field. In the empty
convolution operation, the expansion rate of each layer can be designed as [1–3],
and the top layer can obtain broader pixel information to improve the information
utilization rate;

• CQE algorithm is proposed, which can enhance the contour of the object. CQE
is composed of 4 convolution layers and 3 full connection layers. It is fused with
hybrid dilated CNN to form an end-to-end contour enhancement network. This can
significantly improve the elimination ability of dynamic feature points, especially the
feature points falling on the contour;

• Although high-precision contour can be obtained through the CQE model, it needs
a large amount of calculation, which adversely affects the real-time performance of
visual SLAM based on instance segmentation. Therefore, the BAS-DP lightweight
contour extraction algorithm is proposed. The BAS-DP algorithm converts the contour
information surrounding the target into the best polygon surrounding the target,
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which can greatly reduce the data file and make the calculation speed faster on the
basis of preserving the contour accuracy.

The rest of the paper is organized as follows: In Section 2, the CO-HDC algorithm
proposed in this paper is analyzed in detail, including hybrid dilated CNN, CQE, BAS-
DP, global optimization module and mapping module. The test and results analysis are
provided in Section 3. In Section 4, we further discuss our method and existing methods.
The conclusions and future work are summarized in Section 5.

2. The Pose Estimation Optimized Visual SLAM Algorithm Based on CO-HDC
Instance Segmentation Network

The instance SLAM is divided into three modules, as represented in Figure 1: tracking,
global optimization and mapping module.
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Figure 1. Visual SLAM algorithm with pose estimation optimized by instance segmentation architecture.

We add CO-HDC instance segmentation to the tracking module, which includes the
CQE contour enhancement algorithm and BAS-DP lightweight contour extraction algo-
rithm, and use the hybrid dilated convolutional neural network as the backbone network.
CO-HDC can effectively improve the accuracy of dynamic feature point segmentation, es-
pecially the contour of the target. Tracking Module with instance segmentation minimizes
the impact of dynamic objects. It means that pose estimation is more accurate and keyframe
decisions are better. The global optimization module and mapping module can benefit
from instance segmentation, which provides high-quality feather points. Loop detection
makes the global optimization module able to work well. Therefore, a more accurate map
can be built.

2.1. Tracking Module with CO-HDC Instance Segmentation

According to the input RGB image and the depth image, the algorithm front end
performs feature point detection and feature descriptor calculation on the RGB image.
Tracking Module is divided into the following steps:

Firstly, feature matching of two adjacent frames is performed according to the feature
descriptor. A 2D-2D feature matching point set is obtained. Using CO-HDC instance
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segmentation to remove dynamic pixels can help feature point matching greatly. The
working framework of CO-HDC is shown in Figure 2, which takes the vehicle detection
commonly used in the industry as an example. Among them, the backbone network adopts
a hybrid dilated CNN network, which can increase the ability of network feature extraction.
Then, the contour of the detected target is strengthened to improve the accuracy of instance
segmentation further. At the same time, BAS-DP is used to lighten the calculation of
contour, which can speed up the visual SLAM.
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Figure 2. Framework of CO-HDC instance segmentation.

Secondly, according to the depth information of the image, the spatial three-dimensional
coordinates of the 2D-2D feature matching point pairs are calculated to obtain a 3D-3D
matching point set. The rotation and translation matrix between two adjacent frames of
images can be calculated from the matched 3D-3D points.

Finally, the motion estimation error is optimized to obtain the pose estimation result
with the smallest error. In this way, according to the input video stream, the incremental
change of the camera pose can be continuously obtained. Therefore, the front end of the
algorithm constructs a visual odometer [55].

2.1.1. Complex Feature Extraction Based on Hybrid Dilated CNN

Accurate instance segmentation will be conducive to the accuracy of SLAM composi-
tion and pose estimation. In order to improve the feature extraction ability of the backbone
detector in the instance segmentation model, a dilated convolutional neural network is in-
troduced into the network. With an increase in the number of insertion holes of the dilated
convolutional neural network, the size of the receptive field will increase [56], but it also
leads to the loss of continuous information, which is easy to cause the problem of meshing.
In order to solve the problem of continuous information loss in grid sampling, the hybrid
dilated convolutional neural network can be used to replace the dilated convolutional
neural network.

Suppose an n-layer convolutional neural network, and the size of the convolution
kernel of each layer is K × K. The expansion rate is [r1, · · · ri, · · · rn]. The purpose of
constructing hybrid dilated convolutional neural network is that when a series of operations
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of dilated convolutions are completed, the extracted feature map can cover all pixels. The
maximum distance between two non-zero pixels can be calculated by the following formula:

Mi = max[Mi+1 − 2ri, Mi+1 − 2(Mi+1 − ri), ri] (1)

where ri is the expansion rate of layer i,Mi is the maximum expansion rate of layer i. In
order to make the final receptive field cover the whole region without any holes, an effective
hybrid dilated convolutional neural network must meet M2 ≤ K. As shown in Figure 3,
when the size of the convolution kernel k = 3, the expansion rate of each layer r = [1, 2, 3],
M2 = 2 ≤ 3 of all pixels can be covered.

Figure 3. Diagram of hybrid dilated convolutional neural network with different expansion rates:
(a) the diagram of HDC with expansion rate 1; (b) the diagram of HDC with expansion rate 2; (c) the
diagram of HDC with expansion rate 3.

In order to highlight the improvement of the performance of the instance segmentation
model by the hybrid dilated convolutional neural network, the traditional convolution core
is replaced by the hybrid dilated convolution core. The backbone detector structure based
on the hybrid dilated convolutional neural network is shown in Figure 4.
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2.1.2. Contour Enhancement Based on CQE

However, only the hybrid dilated convolutional neural network in the first part is
not enough. Any data generation network will produce some low-quality data, especially
in the contour part. If the generated data is not judged and processed, a large number of
low-quality data will be mixed, and the accuracy of feature points in the later stage will
be seriously affected. Therefore, CQE, a discriminator, is proposed to judge the quality
of image contour. It can remove the low-quality contour information and retain the high-
quality contour to enhance the contour of the object.

In most instance segmentation networks, mean intersection over union (Miou) is
calculated by the ratio of their cross area to their cumulative area, and the quality of
predicted contour is measured by Miou, but it is necessary to ensure that they have the
same height and width. However, the Miou calculated by this method is not linear with
the quality of the predicted contour, so this method is inaccurate.

Therefore, the CQE algorithm is designed, working as a discriminator to evaluate
the quality of contour. The evaluation mainly includes the accuracy of the surrounding
target contour and target classification accuracy. Then, by setting the quality threshold, the
contour with quality lower than the threshold is discarded, and the contour with quality
higher than the threshold is retained. Finally, the contour above the threshold and the
corresponding image data are combined to form the instance segmentation result.

The first is to evaluate the accuracy of the target contour. Due to the irregular shape
surrounding the target contour, using the regression principle in the convolutional neural
network, a CQE head is designed to regress the accuracy of the target contour in the
generated data, which is supervised in the process of network training, and the irregular
contour is well solved. The convolutional neural network can not only extract the features
in the image but can also be used to regress the similarity between the two images. The
CQE head is used to regress the true contour and the predicted contour. Calculate the
complete intersection over the union (Ciou) value of the difference between the real contour
and the predicted contour of each target, and normalize the Ciou to obtain Siou, which is
the evaluation quality of the contour. Its range is between 0 and 1. By setting different Siou
thresholds, different quality target contours can be obtained. The closer the value of Siou is
to 1, the better the target contour prediction effect is.

The structural design of the CQE head is composed of four convolution layers and
three full connection layers. For four convolution layers, the core size and the number of
filters of all convolution layers are set to 3 and 256, respectively. For three fully connected
layers, set the output of the first two FC layers to 1024 to connect all neurons. The C of the
last FC layer is the number of categories to be classified. Finally, the CQE head outputs the
contour quality Siou of each target.

Truth-contour and Predict-contour work together as the input of the CQE head. The
Truth-contour exists in the characteristic graph, and the Predict-contour is the contour
output by the CQE head. Because the output result of the CQE head is different from the
size of the ROI characteristic diagram, two input structures are designed. Figure 5 shows
two kinds of input structures of the CQE head.
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Among them, the input structure designed in the first figure in Figure 5 is to maximize
the pool of the feature layer output by the CQE head through a convolution kernel with a size
of 2 and a step size of 2 and then multiply it with the ROI feature map with a smaller size. The
input structure designed in the second figure in Figure 5 is the CQE head, which is directly
added to the larger ROI characteristic diagram without maximum pooling. Both structures
can be used as inputs of the CQE head. The set CQE threshold is 0.9. When the CQE of each
contour in the target is higher than 0.9, the generated contour quality is higher. When the
CQE of the tag contour is lower than the threshold, the generated contour quality is low. The
recognition process of contour enhancement using the CQE is shown in Figure 6.

2.1.3. The Lightweight Contour Extraction Algorithm Based on BAS-DP

A large number of high-precision instance segmentation can be obtained through
the contour enhancement network. If all points on the target contour segmented by the
instance are retained, the file will be too large, which will lead to slow SLAM operation
time in the later stage and make it difficult to achieve the real-time effect. Therefore, a
lightweight contour extraction algorithm based on BAS-DP is proposed. The algorithm
converts the contour information surrounding the target into the best polygon surrounding
the target. The number of coordinate points contained in the polygon is small, which can
lighten the segmentation file while ensuring the accuracy of instance segmentation.
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Using the best polygon surrounding the target to replace the contour curve surround-
ing the target is the most direct and commonly used method. Therefore, it is necessary to
convert the contour of the target into each turning point on the polygon surrounding the
target. So, it is necessary to use a polygon approximation algorithm to convert the contour
curve of the target into a polygon surrounding the target and then record the coordinates
of key points on the polygon in the segmentation file.

Douglas–Peucker algorithm (DP algorithm) is a classical polygon approximation
algorithm that can approximate the closed curve as a polygon and reduce the number of
points as much as possible. It has the advantages of translation and rotation invariance.
However, it needs to solve other points on the curve that do not belong to key points
exhaustively, which requires a lot of calculation time. The Beetle antennae search algorithm
(BA algorithm) is another classic polygon approximation algorithm that realizes efficient
optimization by simulating longicorn beetle foraging. Beetle Antennae Search algorithm
can realize optimization without knowing the specific form of function and gradient
information. However, its accuracy is relatively low.

This paper proposes lightweight contour extraction algorithm based on BAS-DP, combining
the advantages of the above two algorithms. The calculation steps are shown in Figure 7.

In the BAS-DP algorithm, parameter initialization includes the initial trial step atten-
uation factor H, step S, the ratio of step and whisker C, the number of iterations n and
the number of parameters to be optimized k. Among them, the distance optimization
function f (x) is shown in Formula (2). According to this formula, the function values fl
and fr corresponding to the left whisker position xl and the right whisker position xr of the
longicorn beetle can be calculated, and the next position x of the longicorn beetle can be
calculated at the same time. Perform calculating function f (x) n times in total. The optimal
function value corresponding to the last position x of the longicorn beetle is obtained as the
optimal solution.
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dir = rand(k, 1); d0 = step/c

xl = x + d0 ∗ dir/2; xr = x− step ∗ dir/2
f1 = f (xl); fr = f (xr)
x = x− step ∗ dir ∗ sign( fl − fr)

(2)

The BAS-DP algorithm can reduce the size of the segmented file while maintaining
the contour accuracy and improving the real-time performance of the later visual SLAM.
Finally, the BAS-DP algorithm is combined with the hybrid dilated convolutional neural
network and the CQE algorithm proposed in the previous two sections, forming the CO-
HDC. Through this algorithm, a large number of high-quality instance segmentation images
can be generated, and the data enhancement network needs only a small amount of data to
record better accuracy, especially to solve the segmentation problem of the object contour.

2.2. Pose Optimization

Through the CO-HDC algorithm, we can accurately separate the object, especially
the contour of the object, removing the feature points on the dynamic object and retaining
the static feature points so as to achieve good feature point matching and complete pose
estimation well. In visual SLAM, posture refers to the robot in spatial position and posture
of the entire environment map. Both spatial position and robot posture position need to be
accurately located in the three-dimensional space.

Figure 8 shows the principle of spatial measurement. It is assumed that in two adjacent
frames, the camera has no distortion, and the two projection planes are parallel and coplanar.
In the figure, P is an object, Z is its depth, f is the focal length of the camera, T is the center
distance of two adjacent frames, Ol and Or are the optical centers of two adjacent frames of
the camera, respectively, and xl and xr are the horizontal axis coordinates of the projection
of object P in two adjacent frames, respectively. The depth calculation formula of object P
can be obtained from the relationship of similar triangles:

T − (xl − xr)

Z− f
=

T
Z
⇒ Z =

f T
xl − xr

(3)
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d = xl − xr is defined as parallax, so that the depth information of the target point can
be obtained through the parallax and f , T of the target. After obtaining the parallax map,
the coordinates of the target point in the world coordinate system can be obtained through
the re-projection matrix. The re-projection matrix is:

Q =


1 0 0 −cx
0 1 0 −cy
0 0 0 f

0 0 −1
T

(cx−cy)
T

 (4)

In the above formula, cx is the x coordinate value of the main point of the first
frame, and cy is the y coordinate value of the main point of the second frame. Assuming
that the identified coordinate of the target point is (x, y), and the parallax in the two
adjacent frames is D, its coordinate value in the world coordinate system can be recovered
through Formula (5):

Q


x
y
d
1

 =


x− cx
y− cy

f
−[d−(cx−cy)]

T

 =


X
Y
Z
W

 (5)

In proposed SLAM, the robot’s posture is calculated through the translation vector
and rotation quaternion number representation of seven paraments, as shown in the
following type (6):

T = [x, y, z, qx, qy, qz, qw] (6)

The first three are translation vectors. The last quaternion is the quaternion for rotation.
The task of the tracking thread is to calculate the posture of two adjacent frames

according to the image change. This means not only the distance moved in the next frame
should be calculated, but also the angle of rotation should be calculated. The results are



Remote Sens. 2022, 14, 2114 12 of 25

then handed over to the back end, which accumulates and optimizes the relative positions
between the two frames.

The images obtained by the pre-recognition before and after are I1 and I2. After
feature extraction, the feature point p1 is obtained in I1. The feature point p2 is obtained
in I2. Assuming the result of feature matching is that p1 is obtained and p2 is the closest
point pair, it means that p1 and p2 is the projection of the same 3D point P on two frames
of images.

p1 = KP, p2 = T(KP) (7)

where, T is the camera’s internal parameter matrix. When the camera is in different
positions, point P obtains different pixel coordinates through the transformation of the
internal parameter matrix. They are projection p1 and p2. K is the pose of I1 relative to I2.
Assuming that multiple sets of point pairs can be matched between the two frames, the
equation can be constructed by these point pairs to solve the relative pose. Specifically, it
can be solved by solving the basis matrix and the homology matrix.

However, T must be calculated in the space P, where the whole environment’s station-
ary conditions are valid. If the points in the pose estimation are in the process of moving,
type (4) is set up. The error would arise. The worst-case scenario is to use the camera
to participate in the pose estimation of all pixels for the same shipment. Then the pose
estimation will always be 0.

2.3. Global Optimization Module and Mapping Module

The tracking module estimates the camera poses through keypoint matching and
pose optimization. An instance segmentation function is added to the tracking thread,
and the original image is segmented at the same time as the feature extraction. Then, the
pixel coordinates of the human and the animal are obtained. Finally, some feature points
distributed on the human or animal are removed from the original feature point.

After culling feature points, the feature matching and pose estimation are performed.
After getting rid of the interference of the pixel points, the instance SLAM shows better anti-
interference ability under dynamic scenes. The accuracy is greatly improved. This module
also determines whether to insert a new keyframe. When a frame is considered suitable for a
new keyframe, it is sent to the mapping module and global optimization module.

In the mapping module, to eliminate mismatches or inaccurate matches, a new 3D
point is triangulated by inserting a keyframe, optimizing the projected points and lines
and adding a projection matrix. This process is equivalent to minimizing the photometric
difference between blocks of projected pixels ui and the blocks corresponding to the 3D
point on the current frame ur. The model expression is:

ûi = argmin
ûi

1
2 ∑

i
||Ic(ûi)− Ir[A(ui)]||22 (8)

where, Ic and Ir are the first and second frames, respectively, and A is the projection matrix.
The projection matrix formula is as follows:[

x′

y′

]
= R

[
x
y

]
+

[
tx
ty

]
(9)

where, R is the matrix representing rotation and scaling, x and y are the coordinates before
projection, and Tx and Ty represent translation distance.

In the process of global optimization, it is necessary to eliminate the accumulated
errors caused by the odometer. The matching algorithm we use is a kind of image matching
based on pixel value. Its purpose is to find a strict geometric transformation to make
each pixel in the local map and the global map equal as much as possible. The inverse
compositional algorithm can solve the problem of image matching, which is completed in
three steps. The specific steps are given in the following formulations:
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The first step is to calculate the Hessian matrix H:

H = ∑
x

[
∇IPM(x)

∂W
∂P

]T[
∇IPM(x)

∂W
∂p

]
(10)

where, IPM is the global map image, x is the coordinates of pixels in the image,
P = [(∆x, ·y, θ)]̂T represents translation and rotation vectors, and I (W (x; P)) repre-
sents the Euclidean transformation of vector P on image I(x).

The second step is to calculate the new vector ∆ p:

∆p = H−1 ∑
x

[
∇IPM(x)

∂W
∂p

]
[ILM(W(x; p))− IPM(x)]2 (11)

where, ILM is the image of a local subgraph.
Step 3: Update vector p:

p = p + ∆p (12)

The final output p of the algorithm represents the translation and rotation between
maps, which can eliminate the accumulated errors in global map construction, and also
solves the problem of trajectory drift that often occurs in visual SLAM.

3. Tests and Results Analysis

In order to demonstrate the advantages of the CO-HDC instance segmentation algo-
rithm proposed in this paper and test the actual effect of visual SLAM based on CO-HDC
instance segmentation, our experiment will be divided into two parts. Firstly, we will ex-
periment with the performance of the CO-HDC instance segmentation algorithm. Secondly,
we will test the performance of the visual SLAM based on the CO-HDC instance segmenta-
tion algorithm proposed in this paper and judge the effect of feature point matching and
real-time modeling.

3.1. Experiment of CO-HDC Instance Segmentation Algorithm

In order to test the accuracy and efficiency of the proposed contour enhancement
instance segmentation algorithm, the following experiments are carried out:

• the selection of network hyperparameters to achieve the precise and fast segmentation;
• comparison of different backbone networks.

3.1.1. The Network Hyperparameters Selection and Controlled Experiment

Instance segmentation can remove the dynamic object, which increases the accuracy
of visual SLAM. In order to integrate with visual SLAM better, the instance segmentation
network model needs to be optimized. Therefore, ten comparative experiments were con-
ducted under hybrid dilated CNN to select appropriate network parameters and observe
the effect of transfer learning on training time, accuracy and training data volume. The
hyperparameters selection and the corresponding results are shown in Table 3. mAP is the
average precision, and mIoU is the average intersection ratio. In this paper, mAP and mIoU
are used to evaluate the quality of network training structure. In order to strictly evaluate the
performance of the method, the thresholds of mAP are set to 0.5 and 0.7, respectively. Those
greater than or equal to the threshold are true positive, while those less than the threshold
are false positive. The mIoU and mAP indicators for each experiment are shown in the last
three rows of the table for detailed analysis of the experiment contents and results.
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Table 3. Hyperparameters selection comparison experiments.

Hyperparameters Test 1 Test 2 Test 3 Test 4 Test 5

Train obj. 2081 2081 2520 3005 3005
Val obj. 537 537 632 826 826

Train imag. 680 680 820 1014 1014
Val imag. 120 120 140 180 180
Epochs 100 200 200 400 400

Mini-mask Shape 56 × 56 56 × 56 56 × 56 56 × 56 56 × 56
Img. size 1024 × 800 1024 × 800 1024 × 800 1024 × 800 1920 × 1080

RPN Anchor Scales (32, 64, 128, 256) (32, 64, 128, 256) (32, 64, 128, 256) (32, 64, 128, 256) (32, 64, 128, 256)
Pre-train Model NO NO NO NO NO

mIoU 0.485 0.492 0.535 0.498 0.294
mAP(IoU > 0.5) 0.569 0.586 0.495 0.565 0.395
mAP(IoU > 0.7) 0.472 0.488 0.406 0.485 0.289

Hyperparameters Test 6 Test 7 Test 8 Test 9 Test 10

Train obj. 3005 3005 3005 1573 1573
Val obj. 826 826 826 537 537

Train imag. 1014 1014 1014 480 480
Val imag. 180 180 180 120 120
Epochs 100 100 100 100 100

Mini-mask Shape 28 × 28 28 × 28 28 × 28 28 × 28 28 × 28
Img. size 1024 × 800 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080

RPN Anchor Scales (32, 64, 128, 256) (16, 32, 64, 128) (8, 16, 32, 64) (8, 16, 32,64) (8, 16, 32,64)
Pre-train Model NO NO NO NO Yes

mIoU 0.545 0.565 0.652 0.429 0.684
mAP(IoU > 0.5) 0.558 0.573 0.716 0.345 0.725
mAP(IoU > 0.7) 0.489 0.493 0.575 0.294 0.585

Train obj. and Val obj. correspond to the total number of training objectives and
verification objectives of the training, respectively. Train imag. and Val imag. are the
number of training images and verification images. Epochs is the number of iterations
of all training sets, and the Mini-mask Shape is the minimum mask size. Img. Size is the
size of the input image, and RPN Anchor Scales is the proportion Size of the Anchor. The
Pretrain Model is the 80 classification pre-training model of coco data sets.

Test 1 and Test 2 use the same Non-Maximum Suppression (NMS) threshold, the basic
learning rate, and other hyperparameters but use different amounts of epochs. Feeding all
data into the network for iteration is called an epoch, and the number of epochs is set to
100 and 200, respectively. With the increase of epochs, the value of mAP (IoU > 0. 5) in test 1
increased from 0.569 to 0.586 with a low volatility effect. So, on a low number of iterations,
it was still easy to converge, indicating that the convergence effect of the algorithm in this
paper was great.

In Test 3 and Test 6, we used images of more data for training and testing, and epochs were
the same as before. The results showed a decrease in detection rate, which was later improved
in test 4 by increasing the number of epochs, resulting in an mAP (IoU > 0. 5) of 0. 565.

In Test 5, we evaluate the effects of the image width and height, the size of the
training images from 1024 × 800 to 1920 × 1080, learning rate from the default of 0. 001 to
0. 02, the rest of the parameters like Test 4. We get a poor performance of the algorithm
(mAP (IoU > 0. 5) = 0.395). It indicates that the accuracy of images of high resolution is low
under the current parameters.

In Test 6, we reduced the size of the mini-mask from 56 × 56 to 28 × 28, and compared
with Test 4; we found some improvement in network performance.

Therefore, in Test 7, we reduced the Scales of RPN Anchor and improved the input
image resolution to 1920× 1080 and the small mask to 28× 28. It was found that the perfor-
mance of the network was greatly improved, which was close to the network performance
in Test 6.
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In Test 8, we used the same configuration as Test 7 and further reduced the RPN
Anchor Scales. It was found that the performance of the network with reduced RPN
Anchor Scales was greatly improved, and (8, 16, 32, 64) was considered the best RPN
Anchor Scales of the network.

In Test 9, in order to improve the training accuracy, reduce the training time and
prevent network overfitting, we reduced the amount of training data on the basis of Test 8
and found that the network performance decreased significantly.

In Test 10, we substantially recompressed the training data on the basis of Test 9, other
parameters remained unchanged, and we used 80 classification models of the pre-trained
COCO data sets for transfer learning. The results showed that the network performance
was basically the same as that of Test 8, and the network performance reached a higher
level, but the training time was half that of Test 8. Network performance can accurately
detect and segment vehicle images.

Through 10 comparative experiments, it can be seen that the more training data, the
higher the image resolution, the smaller the mask and the smaller the scale of RPN anchor
will lead to better network performance. The results show that 100 epochs are enough
to achieve convergence for target detection. At the same time, an increasing pre-training
model can reduce the training data. In conclusion, Test 10 achieves the most perfect balance
among training data, image resolution, mask size, epochs, scale of the RPN anchor and
other parameters. Appropriate data volume and resolution ensure not only high speed but
also high precision. At the same time, the transfer learning method can reduce the training
data, training time and improve the detection accuracy. Therefore, we set the parameters of
Test 10 as our optimal network parameters and carried out subsequent experiments and
studies with the parameters of Test 10.

3.1.2. Comparison of Different Backbone Networks

Under the network configuration parameters of Test 10, a comparative test was con-
ducted for different backbone networks to demonstrate the advantages of HDC-Net. The
neural networks of HDC-Net, ResNet50, Res-Net101 and MobileNetV1 were all composed
of residual blocks, which simplified their architectures with residual learning, reduced their
computational overhead and well solved the gradient vanishing problem.

Its performance was compared in four aspects. Network training time, image detection
time per second, network model weight and accuracy (S > 90 means that SMask is greater
than 90). Accuracy is the ratio of high-quality labels to all labels. It can be seen from the
Table 4 that when HDC-Net is used as the backbone network, the training time is 13.21 h,
which is quite similar to ResNet50; the speeds of these four networks are 6.65 sheets per
second, 6.25 sheets per second, 4.6 sheets per second and 5.2 sheets per second respectively,
and HDC-Net has the fastest speed for calibrating the image. In the model size comparison
test, when HDC-Net is used as the backbone network, the label model size is the smallest.
When HDC-Net, ResNe50, ResNet101 and MobileNet V1 are used as the backbone network,
the accuracy of the vehicle image label is 95.1%, 93.4%, 93.8% and 84.5%, respectively. It
can be seen that although HDC-Net has a slight increase in training time compared with
ResNet50, it is far ahead of other backbone networks in terms of speed, model weight and
accuracy. Therefore, HDC-Net has the best performance.

Table 4. Performance comparison of four backbone networks.

Backbone Network Train Time/h Speed/FPS Model Weight /MB Accuracy S > 90

HDCNet 13.21 6.65 163.21 95.1%
ResNet50 12.65 6.25 186.75 93.4%

ResNet101 20.73 4.60 268.86 93.8%
MobileNet V1 14. 61 5.27 207.82 84.5%
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3.2. Experiment of Visual SLAM Based on CO-HDC

In this paper, two sets of tests are carried out to evaluate the visual SLAM based on
CO-HDC. The first set of tests is that dynamic feature points for single-frame pictures in
motion and intermediate results are shown. The second set of tests is that the instance
visual SLAM based on CO-HDC proposed in this paper and ORB-SLAM2 algorithms are
run on the TUM RGBD public dataset. Other than this, experimental results are compared
with each other.

The dataset used in this paper are rgbd_dataset_freiburg3_walking_xyz (dataset one),
rgbd_dataset_freiburg3_walking_halfsphere (dataset two) and rgbd_dataset_
freiburg3_walking_static (dataset three) in the TUM dataset Dynamic Objects. This dataset
contains moving people, and the camera is also in motion to evaluate the robustness of the
SLAM system or motion calculations in scenes with fast-moving dynamic objects. In the
dataset, the video frame rate is 30 Hz, and the sequence contains a full sensor resolution is
640 × 480. The ground real trajectory is obtained from a motion capture system of eight
high speed tracking cameras.

3.2.1. Feature Point Extraction and Matching after CO-HDC Instance Segmentation

A comparison between ORB-SLAM2 and the proposed visual SLAM based on CO-
HDC instance segmentation is carried out. ORB-SLAM2 assumes that feature points in
the scenes are static, and feature points matching is performed directly after feature points
extraction. However, this may lead to pose estimation errors and map relative drifts
under dynamic environments. At the same time, the proposed visual SLAM segments
the dynamic objects and retains static feature points. Moreover, it performs feature points
matching using static point only.

Firstly, the feature point extraction and matching in the ORB-SLAM2 algorithm are
performed. The two adjacent frames in the video sequence of the dataset are randomly
selected, as shown in Figure 9a,b. Figure 9c,d show the feature extraction in the ORB-
SLAM2 algorithm, where some feature points fall on the human body. Then, the feature
matching is shown in Figure 9e.

In the BAS-DP algorithm, parameter initialization includes the initial trial step atten-
uation factor H, step S, the ratio of step and whisker C, the number of iterations n and
the number of parameters to be optimized k. Among them, the distance optimization
function f (x) is shown in Formula (2). According to this formula, the function values fl
and fr corresponding to the left whisker position xl and the right whisker position xr of the
longicorn beetle can be calculated, and the next position x of the longicorn beetle can be
calculated at the same time. Perform calculating function f (x) n times in total. The optimal
function value corresponding to the last position x of the longicorn beetle is obtained as the
optimal solution.
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3.2.2. Using Datasets to Test the Preference of ORB-SLAM2 and Instance Visual SLAM
Based on CO-HDC Algorithm

The dataset provides an automated assessment tool for visual odometer system drift
and global attitude error for SLAM systems, which is divided into absolute trajectory
errors (ATE) and relative pose errors (RPE). The ATE difference is used to calculate the
difference between the actual values and estimated values of the camera pose of the SLAM
system. The RPE is used to calculate the difference between the pose changes on the same
two timestamps. Firstly, the estimated value is aligned with the real value according to the
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timestamp of the pose. The drift of the system is also evaluated. From Figures 11–13, the
RPE of instance SLAM based on CO-HDC is much smaller than ORB-SLAM2. The amount
of change in pose is calculated at the same time. From Figures 14–16, it can be concluded that
the proposed SLAM performs better than ORB-SLAM2, as the ATE of the proposed SLAM
is also smaller than ORB-SLAM2. In Table 5, compared with ORB-SLAM2, the Rmse of the
proposed method in absolute trajectory error is about 30 times smaller and is only 0.02 m. The
comparison in Tables 6 and 7 also confirms the advantages of the proposed SLAM.
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Table 5. Pose error representative value of dataset one.

Evaluation Methods Rmse (m) Mean (m) Median (m) Std (m) Min (m) Max (m)

Absolute trajectory
error

ORB-SLAM2 0.760252 0.690474 0.639742 0.318165 0.022187 1.715618
Proposed SLAM 0.027541 0.023047 0.018764 0.015077 0.001505 0.141699

Relative pose error ORB-SLAM2 1.134662 0.922296 0.845839 0.660930 0.000000 3.203089
Proposed SLAM 0.038877 0.033508 0.030002 0.019715 0.000000 0.186828

Table 6. Pose error representative value of dataset two.

Evaluation Methods Rmse (m) Mean (m) Median (m) Std (m) Min (m) Max (m)

Absolute trajectory
error

ORB-SLAM2 0.638354 0.560560 0.635890 0.305399 0.050749 1.246406
Proposed SLAM 0.209539 0.195746 0.203446 0.074766 0.029710 0.364841

Relative pose error ORB-SLAM2 0.957366 0.763961 0.734479 0.526331 0.000000 2.128197
Proposed SLAM 0.326175 0.240677 0.103095 0.220147 0.000000 0.584625

Table 7. Pose error representative value of dataset three.

Evaluation Methods Rmse (m) Mean (m) Median (m) Std (m) Min (m) Max (m)

Absolute trajectory
error

ORB-SLAM2 0.597385 0.503305 0.461168 0.321796 0.033516 1.243515
Proposed SLAM 0.071849 0.195746 0.030831 057592 0.003704 0.428562

Relative pose error ORB-SLAM2 0.927718 0.763961 0.734479 0.526331 0.000000 2.128197
Proposed SLAM 0.117698 0.052240 0.023353 0.105470 0.000000 0.606306

The platform of this experiment is a personal laptop configured as CPU I7 7700HQ,
GPU 1050TI and 16G memory. The evaluation tool is used to compare the errors of the two
systems running the above two datasets.

Through the above experiments, comparing ORB-SLAM2 and instance SLAM based
on CO-HDC, we can see that the performance of instance SLAM based on CO-HDC is
better than traditional SLAM.

4. Discussion

Visual SLAM based on instance segmentation has been widely used due to its high
accuracy in dynamic environments. At present, eliminating dynamic feature points to improve
the accuracy of visual SLAM is a widely recognized method in academic circles [57,58].
Alejo Concha et al. use this technology to prolong the time of world-locked mobile AR
experiences, letting users have a more satisfying experience [59]. Fessl [60] and Sanchez-
Lopez [61] et al. have applied them in the field of aircraft. In addition, it has been widely
used in location-aware communication [62], medical [6], 3D printing [5] and other fields [63].
However, this method has two major problems: the accuracy of dynamic point elimination
is not high, and the elimination speed is slow. To solve these two problems, we propose
a CO-HDC instance segmentation model, which consists of a CQE contour enhancement
algorithm and a BAS-DP lightweight contour extraction algorithm.

Firstly, the main reason for the low accuracy of dynamic feature point elimination is
the low accuracy of object contour segmentation, which makes it difficult to distinguish
whether the feature points at the object contour are dynamic feature points or static feature
points. To solve this problem, we propose a CQE contour enhancement algorithm. By
evaluating the contour of the object, the optimal contour is selected as the output. In order
to solve this problem, Chang et al. introduced the optical flow method to detect moving
objects [64]. The optical flow method obtains the motion information of the object by
calculating the change of pixels between adjacent frames. This method can not only work
when the camera is in motion but also get the three-dimensional structure of the object.
However, the optical flow method is too sensitive to the change of illumination intensity,
and it needs to assume that the brightness of object pixels is constant. This is difficult
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to achieve in most cases. In addition, the optical flow method is difficult to recognize
fast-moving objects. Therefore, in contrast, the method proposed in this paper has stronger
robustness and can better adapt to a complex environment.

Secondly, in order to match the mapping speed of visual SLAM based on instance
segmentation, instance segmentation needs to have a faster segmentation speed. The
BAS-DP lightweight contour extraction algorithm proposed in this paper can effectively
reduce the amount of calculation while ensuring accuracy by using the most similar
polygon contour. In order to solve the same problem, Xiong et al. optimized the backbone
network and accelerated the segmentation speed by designing a semantic segmentation
head based on deformable convolution [65]. However, this method depends on the selection
of keyframes in the video sequence. Therefore, compared with it, the method proposed in
this paper is more practical.

5. Conclusions

This paper has presented a pose estimation optimized visual SLAM algorithm based
on the CO-HDC instance segmentation network for dynamic scenes. CO-HDC instance seg-
mentation includes the CQE contour enhancement algorithm and the BAS-DP lightweight
contour extraction algorithm. The CQE contour enhancement algorithm improves the seg-
mentation accuracy at the contour of dynamic objects. The problem of excessive calculation
of instance segmentation is overcome by the BAS-DP algorithm. As the test results show,
the proposed algorithm can reduce pose estimation errors and map relative drifts under
dynamic environments compared to ORB-SLAM2.

In the future, visual SLAM based on instance segmentation has broad development
space, including the driverless field, 3D printing industry, location-aware communication,
aircraft and other fields. Instance segmentation can not only improve the accuracy of visual
SLAM but also provide rich object information in the scene. In future work, the proposed
algorithm would be further implemented and demonstrated in the embedded system to fit
more robots under complex environments.
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