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Abstract: The Three Gorges Reservoir region in China is the Yangtze River Economic Zone’s natural
treasure trove. Its natural environment has an important role in development. The unique and
fragile ecosystem in the Yangtze River’s Three Gorges Reservoir region is prone to natural disasters,
including soil erosion, landslides, debris flows, landslides, and earthquakes. Therefore, to better
alleviate these threats, an accurate and comprehensive assessment of the susceptibility of this area
is required. In this study, based on the collection of relevant data and existing research results, we
applied machine learning models, including logistic regression (LR), the random forest model (RF),
and the support vector machine (SVM) model, to analyze landslide susceptibility in the Yangtze
River’s Three Gorges Reservoir region to analyze landslide events in the whole study region. The
models identified five categories (i.e., topographic, geological, ecological, meteorological, and human
engineering activities), with nine independent variables, influencing landslide susceptibility. The
accuracy of landslide susceptibility derived from different models and raster cells was then verified
by the accuracy, recall, F1-score, ROC curve, and AUC of each model. The results illustrate that the
accuracy of different machine learning algorithms is ranked as SVM > RF > LR. The LR model has
the lowest generalization ability. The SVM model performs well in all regions of the study area, with
an AUC value of 0.9708 for the entire Three Gorges Reservoir area, indicating that the SVM model
possesses a strong spatial generalization ability as well as the highest robustness and can be adapted
as a real-time model for assessing regional landslide susceptibility.

Keywords: landslide; spatial modeling; spatial generalization ability; support vector machine;
ROC curve

1. Introduction

Landslide is a destructive geological phenomenon globally, with a wide distribution,
high frequency, and solid destructive power, influenced by groundwater and surface water
under the action of gravity; and large rock masses on the slope and the entire sliding
surface undergo the process of sliding [1]. It is more hazardous in areas with substantial
topographic relief and slope [2-4]. China is in the eastern region of Asia, with complicated
geological formations and a massive mountainous terrain. China is one of the most
severely threatened countries globally by landslides. Faced with various types of landslide
disasters every year, the southwest region of China is particularly notable. Landslides cause
irreversible and immeasurable losses to multiple aspects of construction and development

Remote Sens. 2022, 14, 2257. https:/ /doi.org/10.3390/1s14092257

https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs14092257
https://doi.org/10.3390/rs14092257
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8871-9612
https://orcid.org/0000-0003-1342-6417
https://orcid.org/0000-0001-9868-5404
https://orcid.org/0000-0001-9634-936X
https://orcid.org/0000-0002-3741-8801
https://doi.org/10.3390/rs14092257
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14092257?type=check_update&version=2

Remote Sens. 2022, 14, 2257

2 of 28

and people’s lives and properties in China [5,6]. Meanwhile, secondary disasters caused
by landslides can also block rivers, triggering floods, and even cause the formation of
mudslide disasters, with more severe losses [7,8].

Scholars have researched landslide susceptibility assessment models. They have made
time-sensitive progress when establishing that evaluation models are crucial for regional
landslide susceptibility assessment. Conventional models can be classified as qualitative,
quantitative, and semi-quantitative evaluation models. Qualitative and semi-quantitative
evaluation models are collectively known as knowledge-driven models. The knowledge-
driven models mainly export system scoring methods and hierarchical analysis [9]. Quanti-
tative evaluation models, also known as data-driven models, are used for landslide predic-
tion by statistically analyzing evaluation factor data to reveal the intrinsic association be-
tween each factor and landslide occurrence. Standard data-driven models consist of binary-
statistics-based information volume models [10-13], the entropy index model [10-13], the
frequency ratio model [14-16], the logistic regression model based on multiple regres-
sion statistics [17-21], artificial neural network models based on machine learning [17-21],
the support vector machine model [22-25], the decision tree model [22-25], random for-
est [26-35], neuro-fuzzy [36—40], fuzzy [41-45], and so on. Orahan Osman et al. performed
landslide sensitivity mapping for the Arhavi-Kabisre river basin, where they used five
machine learning techniques, ANN, LR, SVM, RF, and CART, to produce a landslide in-
ventory of 252 landslide events in the basin while selecting 11 landslide adjustment factors
such as altitude, slope, plane curvature, soil, lithology, distance from road, distance from
river, and TWI by the ReliefF method to make a landslide sensitivity map. Finally, ROC,
sensitivity, specificity, F-measure, accuracy, and Kappa index are applied to compare and
validate the performance of the five machine learning techniques. It is concluded that the
artificial neural network model has the highest predictive ability for landslide sensitivity
mapping in the region [46]. Yu Lanbing et al. addressed the large number of landslides that
occur in the Three Gorges Reservoir area of the Yangtze River due to periodic regulation
of reservoir water levels. Using the Wushan section as the study object, 165 landslides
were identified in this section and 14 landslide impact factors were selected from different
data source constructions using multicollinearity analysis and IGR modeling methods. The
computational results of four machine learning models, SVM, ANN, CART, and LR, were
used for landslide sensitivity mapping. The accuracy of these four maps was also evaluated
using ROC and accuracy statistics. The results show that the SVM model performs best
in this study and can be used for sensitivity modeling in the Three Gorges Reservoir area
and other landslide-prone areas [47]. Xie Wei et al. proposed that landslide sensitivity
mapping (LSM) may be an effective method for landslide hazard prevention and damage
mitigation. In their research, they developed a hybrid approach, including GeoDetector and
machine learning clusters, to provide a new perspective on how to address landslide hazard
prevention and loss mitigation. The machine learning cluster consists of four models, ANN,
BN, LR, and SVM, and they will automatically select the best model to generate LSM. The
four models are evaluated using the ROC curve, prediction accuracy, and the seed cell area
index (SCAI) methods. The results showed that the SVM model performed the best in the
machine learning cluster in an area under the ROC curve of 0.928 and an accuracy of 83.86%.
Thus, the support vector machine mapped the landslide sensitivity of the study area to
coincide with the landslide inventory, indicating that the hybrid approach is effective in
screening landslide impacts and assessing landslide sensitivity [48]. Pei Xiangjun et al.
used 1022 seismic landslide sites in Jiuzhaigou National Geopark, the hardest-hit area of
the 8 August 2017, Mw6.5 earthquake, as sample data for regional evaluation of landslide
susceptibility. They selected 16 landslide control and influence factors, such as seismic
parameters, topography, geological conditions, hydrological conditions, and human en-
gineering activities, using LR models in slope units under different factor combinations,
and 30 evaluation models were established. Finally, the data were sampled by 10-fold
cross validation and the model’s accuracy and prediction accuracy were evaluated using
ROC curve models. The results show that the LR model has good applicability in evaluat-
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ing earthquake and landslide susceptibility areas in the Jiuzhaigou region, and it is also
concluded that the model has stability robustness [49].

Machine learning has gradually become the core of artificial intelligence research
and one of the fastest-growing disciplines of artificial intelligence, with a wide range
of applications, thanks to the rapid development of computer technology. The earliest
machine learning algorithms date back to the early 20th century. After decades of progress,
multiple classical methods have been invented. Machine learning is now widely used in
geological catastrophe research. The analysis results of “machine learning” and “landslide”
or “algorithm” and “landslide” through “Web of Science” show that since 2010, in all,
2658 types of research have been performed on landslide hazards and machine learning
or algorithms by domestic and foreign scholars. The result of “machine learning” and
“landslide susceptibility” or “algorithm “and “landslide susceptibility” is 1241 items, as
shown in Figure 1.
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Figure 1. Statistics on the number of machine learning publications in landslide susceptibility studies.

The above data visualization results show that according to the statistical graph of the
number of articles published, the research articles on landslide susceptibility and machine
learning have increased yearly since 2016. The number of articles published in the last
two years has increased sharply, indicating that machine learning has been increasingly
researched and applied in landslide susceptibility in recent years. Machine learning models
are extensively employed in the assessment of landslide susceptibility across the world, and
they are more successful in addressing the present often-occurring geological catastrophe
study area. The major goal of the research was to apply machine learning to find a landslide
susceptibility assessment method that was appropriate for the study location [50].

Landslide susceptibility may be assessed using a variety of methods. Traditional statis-
tical analysis methods are mostly used to assess and analyze the susceptibility of landslides,
according to the results of a “web of science” literature search. Various machine learning
approaches, such as logistic regression, artificial neural networks, support vector machines,
decision trees, random forests, and other models, are increasingly used to assess landslide
hazard susceptibility. Machine learning approaches are now more efficient than classical
statistical methods and heuristic models [51,52]. Furthermore, every little improvement in
model accuracy will have a more significant influence on landslide susceptibility outcomes.
As a result, comparative research of machine learning approaches is required to obtain
accurate landslide susceptibility assessment results.
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The primary deficiencies in the current research are as follows: (1) In the existing ma-
chine learning evaluation models for landslide susceptibility, there is a lack of exploration
of the spatial generalization ability of the models. (2) There is less research on landslide
susceptibility in terms of the interaction validation of the indicator factors, leading to
deficiency in the accuracy rate of the landslide hazard research results. In response to the
previous research, this paper presents an evaluation analysis of landslide susceptibility in
the Three Gorges Reservoir area of the Yangtze River, China. This research field is used to
compare and evaluate the performance of logistic regression, random forest, and support
vector machine model methods.

2. Materials
2.1. Study Area

The Three Gorges Reservoir Dam on the Yangtze River, an important water conser-
vancy project in China, and the Three Gorges Reservoir area are a significant ecological
barrier in China, provide abundant water for irrigation in the Yangtze River basin and have
a considerable role in economic prosperity along the Yangtze River, promoting the economic
development of the western region and balancing the East-West differences. The Three
Gorges Reservoir region extends between 28°30'N and 31°45'N latitudes and 105°50'E
and 111°42E longitudes. It is connected with the Sichuan Basin, covering four districts
and counties under the jurisdiction of Yichang City in Hubei Province and 22 districts and
counties under the jurisdiction of Chongqing City, with a total area of about 79,000 square
kilometers and submerged arable land of 19,400 hectares. The Three Gorges Reservoir area
ecosystem is unique and fragile, with frequent natural disasters. At the same time, the
Three Gorges Reservoir area is an ecological treasure trove for the Yangtze River Economic
Belt and the whole country.

The Three Gorges Reservoir area of the Yangtze River is located in the mid-latitude
subtropical monsoon climate zone, influenced by alternating winter and summer winds.
The temperature and precipitation change significantly in seasons. The climatic charac-
teristics are undeniably due to the complex terrain. According to the annual monitoring
data, there is less precipitation along the river valley in the study area and the average
annual rainfall increases by about 55 mm for every 100 m increase in elevation. The rainy
season is from May to September every year, and the rainfall during this period accounts
for 70% and more of the rainfall in the whole year, and there are many heavy rainstorms.
The climate of the Three Gorges Reservoir area, with abundant rainfall and heavy rainfall,
is one of the main triggering factors for landslide geological disasters in the reservoir area.

The study area is located in the transition zone from the second to the third terrace
of China’s topography and is the junction of the east Sichuan fold and the west Hubei
mountains, with a middle and low mountain erosion canyon landscape. The east-west
part of the reservoir area traverses two natural geographic units, roughly bounded by
Fengjie, with the eastern part is the Three Gorges Canyon deeply embedded in the Wushan
Mountains and the western part is the low mountainous hilly area in the eastern part of the
Sichuan Basin. The loose rock pore water in the study area is mainly stored in the loose
accumulation layer and slope accumulation layer of the Quaternary system. It is primarily
recharged by precipitation, fracture water of the underlying bedrock, or karst water, which
is influenced by seasonal changes. The dynamic instability of groundwater level is one of
the main factors affecting the stability of landslides in the area.

Geological hazards in the study area are widely distributed, numerous, large scale,
and serious. Landslides are the most prominent geological hazard in the reservoir area.
With a large number of developments, landslides are large scale and strong. At the same
time, with the rapid development of social economy, the scale and intensity of human
engineering activities in this area have continued to expand, their impact on the natural
environment has become increasingly serious, and they have become one of the important
triggering factors of geological hazards in the area, mainly in the construction of migrant
towns, reservoir construction, deforestation, mining, and so on. These activities adversely
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affect the rock and soil bodies near the slopes, destroy the natural ecosystem, cause soil
erosion, and seriously damage the original natural morphological structure and stress
balance, which are important causes of landslides and collapse disasters. The geographical
location of the study area is shown in Figure 2.
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Figure 2. Geographical location of the Three Gorges Reservoir Area.

2.2. Database

Historical landslide hazard data used in this paper were obtained from the Institute
of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
(http:/ /www.resdc.cn/ (accessed on 27 April 2021)). Based on geological hazard survey
information combined with remote sensing images, landslide data points were derived
through remote sensing visual interpretation to establish a spatial database of landslides in
the study area with an accuracy of 30 m. This spatial database of landslides includes two
main parts: (1) historical landslide hazard datasets in the Three Gorges Reservoir area up
to 2019 and (2) a dataset of indicators that affect landslide susceptibility.
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2.2.1. Landslide Dataset

Landslide datasets are essential for investigating and analyzing regional landslide
hazards and risks. Following reservoir storage, landslides and debris flows have increased
due to the complicated geological conditions and disasters in the Three Gorges Reservoir
area. Landslides in the Three Gorges Reservoir area mainly include accumulation layer
landslides, bedding rock landslides, dangerous rock mass landslides, unstable slopes, and
reservoir banks. The external factors affecting the deformation of geological disasters in the
reservoir area mainly include reservoir water, rainfall, and human engineering activities. In
the initial stage of the Three Gorges Reservoir impoundment, reservoir water was the main
inducing factor for the deformation geological disasters in the Three Gorges Reservoir area.
Rainfall has become the dominant trigger during recent years” high watermark operation.
Under the action of different external forces, different levels of landslide disasters occur
every year in this area. There are 9539 landslides in the landslide cataloging data, including
3661 large landslide events, 3852 medium landslide events, 1432 small landslide events,
and 594 other types of landslide events. The spatial distribution of landslide sites in the
Three Gorges Reservoir area is shown in Figure 3.
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Figure 3. The spatial distribution of landslide points in the Three Gorges Reservoir area.

2.2.2. Assessment Indicator Data of Landslide Susceptibility

Landslide susceptibility assessment index data are topography, geological, land cover,
ecological, meteorological, seismic, and human engineering activities. In this study, 14 index
factors of topographic, geological, ecological, meteorological, and human engineering
activities are selected for the research and analysis of landslide susceptibility assessment in
the Three Gorges Reservoir region, with the goal of better understanding the environment
and reservoir ecology in the study area.
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Table 1 below describes the data sources and the extracted individual indicator factors
for this paper, with a uniform resolution of 90 m for all data and a consistent projection
coordinate system Krasovsky_1940_Albers.

Table 1. Data source and causes of selection.

Causes of Selecting the Parameters

Data Type Factors
. Landslides are more probable on high slopes than on low slopes
Elevation . .
in mountainous landscapes [53].
Slope is crucial in preventing landslides in a given location.
Slope The susceptibility to landslides is very high
Topographic in areas with steep slopes [54].
Terrain Ruggedness Index (TRI) The TRI reflects changes in surface relief and erosion [55].
Different slope length indicators have varying degrees of
Slope Length (L.5) influence on landslide incidence [54].
Curvature The chances of landslides decrease as
the curvature value decreases [56].
The amount of divergence and convergence in the direction of
Plan Curvature water flow on the slope determines the plan curvature. It impacts
the rate at which water flows downward, erosion and deposition
processes, and consequently the occurrence of landslides.
Profile Curvature Profile curvature directs the water flow in the slope, converging
or diverging, and impacts the landslide sliding.
. TWI indicates the moisture content of the soil. Areas with high
Topographic Wetness Index (TWI) humidity and suitable conditions are prone to landslides [57,58].
Distance to Fault The frequency of land§11des is relatively high around
Geological extremely active fracture zones [59].
Litholo Landslide sensitivity varies based on the lithological
8y character of the area [60].
Distance to River The more distant the area from the river, the less
frequent the landslides [61].
Ecological Normalized Difference It directly affects the degree of slope transformation
& Vegetation Index (NDVI) and soil erosion [62].
Precipitation is one of the critical triggering factors that induce
Meteorological Precipitation landslides. Heavy precipitation effectively separates soil and rock,
increasing the risk of landslides [53].
Human Distance to Road Road construction makes the side slopes unstable and is one of
Engineering Activity the primary triggers of landslides [63]
3. Method

3.1. Methodology

To construct an evaluation model for landslide susceptibility, the relationship between
indicator factors and landslides was analyzed for historical landslide hazard data, topogra-
phy, geological, ecological, land cover, meteorological and human engineering activities,
and other influential data. During the study, nine indicator factors with high mutual inde-
pendence were screened by Pearson correlation coefficient and covariance diagnosis. The
historical landslide hazard data were divided into 70% training samples and 30% validation
samples. The indicator data were validated by establishing RF, LR, and SVM models and
the 10-fold cross-validation method. Then, the accuracy was evaluated for the global area
and the local area of the study area. Finally, a landslide susceptibility assessment map was
drawn, with a discussion of the factors that influence landslides in the area.

The main research ideas are as follows (Figure 4):
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Figure 4. Flowchart showing the methodology of the present work.
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3.2. Assessment Indicator Screening Methods
3.2.1. Pearson Correlation Coefficient

The landslide susceptibility assessment model results depend on the data quality of
the selected indicator factors because the redundancy of data in the modeling process will
lower the model’s predictive ability [51]. Therefore, it is essential to screen the optimal
indicator factors of the landslide susceptibility assessment model. The correlation coefficient
can measure the linear relationship between the landslide indicator factors [64]. In this
study, the indicator factors are screened by The Pearson correlation coefficient (PCC) and
eliminated with high correlation. The PCC is a metric for determining the degree of
linear correlation between two variables with values ranging from —1 to 1. The closer the
correlation coefficient’s absolute value is to 1, the more similar the sample is; the closer it is
to 0, the less similar it is. PCC > 0 indicates a positive correlation between the two factors,
while PCC < 0 indicates a negative correlation. It is usually considered that there is a solid
correlation between the variables when the correlation coefficient is between 0.8 and 1.0;
0.6-0.8 indicates a strong correlation, 0.4-0.6 indicates a moderate correlation, 0.2-0.4 is a
weak correlation, and 0.0-0.2 is a very weak or no correlation. For the two sets of samples,
the PCC between them can be expressed by Equation (1) as:

L (6% L4 -)

PCC = —— = 1)
Y (xi—%) ¥ (yi—7)°
i=1 j=1

where PCC denotes the correlation coefficient between samples x; and y;, x; and y; denote
the variable values of X; and Y}, and ¥ and y represent the average value of X; and Y;,
respectively. The more significant the absolute value of the PCC, the greater the correlation
between the indicator factors affecting landslide hazards [65].
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3.2.2. Extraction of Indicator Factors

The correlations between the indicator factors were analyzed by the Pearson correla-
tion coefficient in the study. The factor combinations with strong correlations derived from
the analysis results were combined and the combinations with PCC > 0.7 filtered out. A
correlation greater than 0.7 means a strong correlation between two factors, so one of the
factors should be discarded [66]. After screening, nine indicator factors were identified:
elevation, slope, plan curvature, profile curvature, distance to fault, lithology, topographic
wetness index, NDVI, and distance to river. The results are shown in Figure 5.
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Figure 5. Indicator factor maps used for landslide susceptibility modeling. (a) Elevation, (b) slope,
(c) plan curvature, (d) profile curvature, (e) distance to fault, (f) lithology, (g) TWI, (h) NDVI, (i) and
distance to rivers.

3.2.3. Landslide Frequency of Different Indicator Factors

After screening 9 indicator factors from 14 indicator factors with high correlation
affecting landslide susceptibility in this study area by the Pearson correlation coefficient,
it is necessary to investigate the association between landslides and indicator factors.
Frequency statistics examined the association between landslides and non-landslides for
each indicator factor. First, the cumulative frequency values in the range of 5%~95% were
analyzed and the effect of extreme values in the study was excluded, from which the
number of landslide events and the frequency of landslide occurrence in different indicator
factor range intervals were obtained, as shown in Figure 6. Figure 6a shows the distribution
of landslides in different elevation ranges. The landslide frequency tends to decrease
and increase and decrease as the elevation value increases, indicating that the landslide
susceptibility interval is within a particular elevation range. Figure 6b shows the change
in landslide number in different slope ranges. With the slope increasing, the frequency
first increases, then decreases, and then increases; in the slope interval more significant
than 50°, the landslide frequency reaches the highest value, indicating that a landslide is
most likely to occur. Figure 6¢ shows the changes in the number of landslides in different
intervals of the plane curvature. From the statistical chart, it can be seen that the overall
decline trend is intuitive. The frequency is —0.02~0.02, and the number of landslides is
the main effect. The profile curvature in Figure 6d shows a similar variation to the plane
curvature, from which it can be seen that the density of landslide events is higher in the
area where the profile curvature is in the range of —0.03° /100 m~0.03°/100 m. Among
them, the density of regional landslide events in the range of —0.03°/100 m~0°/100 m
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is the largest which indicates that most landslides are concentrated in relatively gentle
concave or convex areas. However, because the section curvature is gentle in the interval
of 0~0.01° /100 m and tends to be a straight slope, the curvature changes in the range of
—0.03~0° /100 m and 0.01~0.03° /100 m are more obvious, which are manifested as convex
slopes and concave slopes, so the frequency of landslides in this range is relatively high.
Figure 6e shows the variation in landslide events at different distances to fault. As the
distance to fault decreases, the frequency of landslides decreases and as the distance to fault
increases, the frequency of landslides increases. When the fault distance exceeds 1200 m, the
frequency of landslides reaches the highest value, which indicates that landslides are most
likely to occur during this interval. Figure 6f shows an increasing trend in the frequency
of landslides in the TWI, most of which occur in less than 7, indicating that landslides
are mainly concentrated in the interval smaller TWI values. For the NDVI in Figure 6g,
the frequency of landslides generally increases first and then decreases, with landslides
occurring mainly in a larger interval. Figure 6h shows the distance to river. For this factor,
the overall trend falls, similar to the distance to fault. The occurrence of landslides is mainly
concentrated in long-distance intervals. Since lithology is a categorical variable based
on the geological age, continuous frequency distribution statistics are not available and
landslides have no trend corresponding to different types of lithology, so this study does
not discuss the relationship between lithology and landslides. There is a linear relationship
between different indicator factors and the frequency of landslides, which indicates that
the factors selected in the study have different effects on landslide occurrence.
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Figure 6. Landslide histogram of different indicator factors.

3.3. Machine Learning Models

This study uses the logistic regression, random forest, and support vector machine
algorithms in the database to evaluate and process historical landslide data from the
specified Three Gorges Reservoir area, using the machine learning database’s built-in
Python language. The outcomes of each model algorithm’s analysis are compared based
on the algorithm structure of various models.

3.3.1. Logistic Regression

Logistic regression (LR) is a standard linear regression analysis model for establishing
the relationship between constraints and landslides [67,68]. Regression problems are based
on categorical variables, dealing with linear relationships between numerical interval vari-
ables, based on a set of predictor variables that predict the probability of an event occurring
with a binary variable (such as 0 and 1 or true and false) [69]. The model’s independent
variables are independent factors, and the best fitting function is determined to characterize
the relationship between landslide occurrence and causes quantitatively. Equation (2) in
LR expresses the link between the chance of landslides and the independent variable:

1

T 1+ exp(—z) @

p

where p denotes landslide probability and z is a weighted linear combination of independent
variables. Generally, LR uses the following equation (Equation (3)) to fit the dependent variable:

Y = Logit(p) =In(p/1—p) =Co+ C1 X1+ CrXp+ - - + Cu Xy, (©)]
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The probability that the dependent variable (Y) is 1 is denoted by p. p/(1 —p) is
the likelihood ratio of its sample. Cj is the equation’s constant and Cy,Cy, - - - C;, are the
coefficients used to measure the contribution of an independent factor (X1, Xp, - - -, X) to
the change in the dependent variable Y.

3.3.2. Random Forest

Random forest (RF) belongs to the category of ensemble learning algorithm of Bagging
theory, a classification technique using the CART decision tree as the base classifiers, and
was first proposed by Breiman [70], who proposed that RF provides a generalization error
limit value. The trees that make up a random forest can be either classification trees or
regression trees. Each node in a decision tree is segmented using the best feature to generate
the best solution from all the features [71]. A training set is first created by RF using the
bootstrap method [70]. Then, a decision tree is built for each training set, with each decision
tree acting as a classifier. Using each training subset to train different classifiers, integrate
all classification results, and assign the subset category with the most votes as the final
prediction output (Equation (4)).

k
H(X) = avgmaxy Y 1(hi(X) =Y) 4)
i=1

H(X) denotes the combined classification model, #; is a decision tree, Y denotes the
output variable, and I denotes the feature function. The marginal function can be expressed
through Equation (5) as:

mg(X,Y) = avgl (e (X) = Y) — max;zyave (i (Y) = f) ®)

The more significant the function value, the greater the model’s classification reliability.
The following is a summary of the categorization (Equation (6)):

PE* = Pxy(mg(X,Y) <0) ©)

where (X, Y) is the probability space. As the number of decision trees increases, all se-
quences will change (Equation (7)) to:

Pyy(Po(h(X,0) =Y) — maxPy(h(X,0) = j)) <0 (7)

The main advantage of RF is resistance to over-training and the development of
sizeable RF numbers, which will not constitute the risk of overfitting, while not requiring
scaling, transformations, or changes in algorithm parameters. For predictors, RF is resistant
to outliers and automatically manages missing values [72]. In this paper, the Gini coefficient
error is reduced by computing the correlation of the attribute subset at each node of the
sample, iterating its gradual convergence, and thus computing using the Gini criterion
to find the best node split [70]. These criteria measure the degree of correlation between
variables and results. The Gini criteria (Equations (8) and (9)) are expressed as:

Gini(k, x;) = Y " 1(ky;) ®)
i=1""S
c 7’12‘
I(ky)=1-) - )
i—0 %

The number of landslides k at each node is denoted by m, and the number of training
input feature vectors is denoted by n,. The distribution of class labels on nodes is I(k,;).
The value p is the feature variable x; € X at node k, where x; = {uy,up,- - -y} is the
number of samples of value u; at node k, n.; is the sample of c; pertaining to u;, and 4; is the
number of samples of value u; at node k.
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3.3.3. Support Vector Machine

Support vector machine (SVM) is a standard nonlinear supervised classification ma-
chine learning algorithm that Vapnik first proposed [73,74]. SVM is used to discriminate
between different forms of training data by searching an N-dimensional hyperplane [75,76].
To discover the optimal separation hyperplane, the core theory leverages the training data
to turn the input space into a high-dimensional feature space using the inner product
function. In any classification interval, the distance between the hyperplane and the nearest
training data point is maximized [77]. Existing research has demonstrated that SVM with
the maximal edge classifier has the best generalization ability to invisible data [73].

Assume the sample, where x; € R", y; € {+1,—1}, wherei=1,2,3,...,m, and
y; denotes the number of training samples to classify landslides and non-landslides. In
the scenarios in this paper, x is an input spatial vector including elevation, slope, plan
curvature, profile curvature, distance to fault, lithology, topographic wetness index, NDVI,
and distance to river; 1 and 0 indicate landslides and non-landslides. Linearly separable
sample data, introduce a slack variable ¢;, and add a penalty term C > 0 for the slack variable
to the separation hyperplane objective function, and the optimal separation hyperplane
function becomes (Equations (10) and (11)):

(1= .
Mm<2 I |* +C a) (10)
i=1

s.t.y,»(a?,»w) —1+&>0 (11)

where w is the weight vector that controls the trade-off between the complexity of the
decision function and the number of disqualified training samples, b is the offset, ¢; is the
positive slack variable that allows data points that violate the penalty constraint, and C is
the penalty parameter that controls the trade-off between the complexity of the decision
function and the number of disqualified training samples. The optimal hyperplane is
determined using Lagrange multipliers to solve the following optimization problems
(Equations (12) and (13)) [78]:

1 N
Max <Zai - EZa,«ajy,'y]« (xixj)> (12)
i ij

Y ayi=0,0<4<C (13)
7

where g; is the Lagrangian multiplier and C is the penalty factor. The decision function
used to classify the new data (Equations (14) and (15)) is:

i=1

g(x) = sgn (f yiaiK (x;, xj) + b) (14)

K(x,x;) = 770" (1)

K(x;, xj) denotes the kernel function. To study the ideal hyperplane, the RBF is
employed as the kernel function of the SVM model in this paper. When compared to the
most widely used functions nowadays, RBF has a nonlinear solid mapping capacity and
may be used to partition landslide susceptibility in various ways [79].

3.4. Model Accuracy Assessment Criteria
3.4.1. Accuracy Analysis
Cross validation can be used to check how well evaluation models predict outcomes.

In the process of landslide susceptibility evaluation, historical landslide events are allocated
according to Training samples:Validation samples = 7:3 and the landslide event data are
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cross validated. The precision, recall, and F1-score statistical indexes are used to compare
and assess the performance of the landslide susceptibility model. In addition, the true
category of sample data and the predicted category of the learner are analyzed through the
dichotomous classification problem using a confusion matrix.

3.4.2. Receiver Operating Characteristic

The predictive ability of landslide susceptibility assessment results directly or indi-
rectly affects the local control of landslide hazards. In this study, to predict and compare
the model’s performance for landslide susceptibility assessment, the Receiver Operating
Characteristic (ROC) was introduced to analyze the model’s accuracy. ROC is one of the
effective methods for characterizing the quality of 1-Specificity and susceptibility detec-
tion, particularly in landslide susceptibility assessment. It expresses the model’s accuracy
through the overall accuracy and predicts the quality of a system by expressing its capacity
to correctly predict the occurrence or non-occurrence of events [80].

4. Results
4.1. Landslide Susceptibility Assessment Maps for Different Models

Landslide susceptibility assessment maps describe the quantitative relationship between
known landslides and indicator factors and combine theoretical predictions with practical
mitigation measures. The LR, RF, and SVM models of the following machine learning methods
are used to map the distribution of landslide susceptibility in the research area. The study area
is graded based on previous experience and statistical results combined with the results of its
grid cell analysis. Among them, the susceptibility is divided into five grades. The susceptibility
value of the very high susceptibility area is in the range of 0-0.06, the susceptibility value
of the high susceptibility area is in the range of 0.06-0.11, and the susceptibility value of the
moderate susceptibility area is in the range of 0.11-0.45, the susceptibility value of the low
susceptibility zone is in the range of 0.45-0.88, and the susceptibility value of the very low
susceptibility is in the range of 0.88-1.0, as shown in Figure 7 below.
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Figure 7. Assessment of landslide susceptibility: (a) Logistic regression; (b) random forest; (c) support
vector machine.

The landslide susceptibility of the study area is evaluated using three machine learning
models, and the distribution of landslide susceptibility in each class is presented in Table 2.
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Each model’s landslide susceptibility distribution varied greatly, with the LR and RF
models predicting similar landslide susceptibility distributions, with the percentage of
zones with high and moderate susceptibility occupying almost equal amounts. However,
the prediction accuracy of the SVM model differed from the first two models. The high-
susceptibility zones occupy 69.17%, the very high-susceptibility zones occupy 12.35%, the
moderate-susceptibility zones 10.90%, the low-susceptibility zones 5.41%, and the very
low-susceptibility zones occupy 2.17%.

Table 2. Percentage of different model landslide susceptibility grades (%).

Landslide Susceptibility Grade LR RF SVM
Very High 8.42 12.09 12.35
High 37.03 35.55 69.17

Moderate 38.01 37.26 10.90

Low 11.43 12.21 5.41

Very Low 512 2.89 2.17

4.2. Model Accuracy Evaluation
4.2.1. Accuracy Verification Parameter Evaluation

LR, RE and SVM institutions in machine learning algorithms were used to create
landslide susceptibility assessment models. Precision, recall, F1-score, susceptibility,
1-specificity, and overall accuracy were used to evaluate the model’s accuracy and the
analysis results. Table 3 shows the results, which are displayed in Figure 8. According
to the research results, SVM > RF > LR, i.e., the SVM has the highest accuracy, with
92.23%, and the LR has an accuracy of 81.49% among the three models. In terms of recall,
SVM > RF > LR; the ranking is the same as that for precision. Recall of SVM is 92.66%
accurate, which is the highest among the three, and RF and LR have similar recall values.
F1-score is a mixed metric of precision and recall, with SVM > RF > LR, and the F1-score
of SVM is 92.44%. Analyzed from the model’s overall accuracy, the SVM has the highest
overall accuracy, of 92.43%, compared to the other two models, suggesting that the model
checks are highly accurate. The SVM performs best in both overall accuracy and recall. The
precision, recall, F1-score, susceptibility, 1-specificity, and overall accuracy are the same
for the models. The maximum accuracy of the SVM analysis in this research of the Three
Gorges Reservoir area indicates that it has a good prediction potential.

Table 3. Comparison of model accuracy.

LR RF SVM

Precision (%) 81.49 86.60 92.23
Recall (%) 84.79 86.38 92.66
F1-score (%) 83.11 86.49 92.44
Susceptibility (%) 84.79 86.38 92.66
1-Specificity (%) 80.75 86.58 92.20

4.2.2. Comparison of ROC and AUC Results

The accuracy of the constructed machine learning model is verified and evaluated
through the ROC and the AUC pair. Figure 9 depicts the model comparison results.
The results reveal that the machine learning model has a high prediction accuracy in
investigating landslide susceptibility in the Three Gorges Reservoir area, based on the ROC
and the AUC of each model. The AUC value of the SVM model is 0.9708, which is a higher
AUC value compared to the other two models, followed by the RF model’s AUC value of
0.9409 and the LR model’s AUC value 0.9075. In this research, the ROC is used to verify the
performance of the three models, and Figure 9 indicates that the SVM outperforms the other
models. The results reveal that the models for landslide susceptibility in the Three Gorges
Reservoir area built using machine learning techniques have excellent prediction accuracy,
indicating that the SVM is the best model for the Three Gorges Reservoir area study.
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Figure 9. Comparison of the three models” ROC curves and AUC values.

From Figure 9, it can be seen that there are some differences in the performance
capabilities of precision and overall accuracy of the three different models in the Three
Gorges Reservoir area. The figures show that SVM has the best performance in the study
area, with an AUC of 0.9708, and RF and LR performed the worst among the three models.
It also shows that the SVM established in this paper is a stable and reliable landslide
susceptibility assessment model that can be applied to the Three Gorges Reservoir area.

4.3. Comparison of Prediction Results of Models

The optimum model SVM produced from the comparison model analysis is used to
estimate the research area’s landslide susceptibility. The model’s accuracy was validated
using 30% of the validation samples. When compared to NASA’s worldwide landslide sus-
ceptibility zoning map, the findings of the training and validation samples are quite close.
The research area’s accuracy is comparable. To assess the correctness of landslide suscepti-
bility zoning, the geological landslide hazard sites that have now been identified should
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be grouped into as many high-susceptibility zones as feasible. The study superimposes
actual landslide event points on the susceptibility map to explore the map’s distribution of
landslide susceptibility (Figure 10).
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Figure 10. Landslide susceptibility map and historical landslide occurrence distribution in the Three
Gorges Reservoir area.

The comparison revealed that the known landslides in each region are essentially in a
very high-susceptibility zone, with only a few landslides occurring in the areas with low or
very low susceptibility. The findings demonstrate the model’s correctness and validate the
SVM dependability in assessing landslide susceptibility. Since the landslide susceptibility
indicator factors identified in this paper include only topographic, geological, ecological,
meteorological, and human engineering activity factors, the optimal model SVM obtained
by these indicator factors can predict landslide susceptibility in real time.

5. Discussion
5.1. Comparative Analysis of Local Areas

Landslide susceptibility assessment maps with higher accuracy should show the
predictability of new and re-occurring landslides and analyze event data indicating that
many existing landslides are in zones of high susceptibility. Figure 11 shows four large
landslides near the Three Gorges Reservoir in Yunyang County, Chongging, at Qingliang
Temple, Fanjiayuanzi, Minhe Village, and Ganjiayuanzi Renhe Bridge, all of which are in
areas of high landslide susceptibility. However, differences between the three landslide
susceptibility assessment maps can be seen. In the landslide susceptibility map derived
from the LR, the four landslides in Yunyang County are mainly in areas of high landslide
susceptibility, with the surrounding areas being of high and moderate susceptibility. The
four landslides in the RF model are mostly in the very high-susceptibility zones, whereas
the four landslides in the SVM are mostly in the high- and moderate-susceptibility zones.
Figure 11a—c shows three landslide disasters in Yunyang County and Wanzhou District of
Chonggqing in 2017 and 2021. These landslides are located in the region’s high-, moderate-,
and low-susceptibility areas.
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Figure 11. Typical landslides in the Three Gorges Reservoir area: (a) Yunyang County (high-
susceptibility area, June 2017). (b) Yunyang Country (moderate-susceptibility area, August 2021).
(c) Wanzhou District (low-susceptibility area, July 2021). Typical landslide susceptibility analysis
results: (d) LR analysis results. (e) RF analysis results. (f) SVM analysis results. Typical local landslide
results: (g) local results of LR, (h) local results of RF, and (i) local results of SVM.

5.2. Comparing the Spatial Generalization Ability of the Models

ROC curves and AUC values were calculated during the investigation and the per-
centages of TN, FN, FP, and TP for each model (Figure 12). From the figures, it can be
seen that the percentages of TP and TN are more significant for all three models. Still, the
percentages are most significant in the SVM model compared to the other two models, thus
indicating that the spatial generalization ability of the SVM model is relatively optimal and
has better stability within the Three Gorges Reservoir area.

3750 4000 }

SVM

RF SVM

Figure 12. Distribution of TN, FN, FP, and TP for different model prediction results.

5.3. Support Vector Machine Space Generalization Capability

The SVM is the optimal model in all research areas, as shown by the previous analysis,
and the model’s application is further appreciated by mastering the SVM’s prediction
accuracy in the Three Gorges Reservoir study region. Figure 13 shows the distribution of
precision, recall, F1-score, and overall accuracy obtained by applying the SVM to the Three
Gorges Reservoir area.
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Figure 13. Comparison of the prediction accuracy of the support vector machine application in the
Three Gorges Reservoir area.

The precision, recall, F1-score, and overall accuracy of the Three Gorges Reservoir
area are all over 0.9, as seen in the above figure. When the results are compared, it is clear
that SVM has the best accuracy rate in the Three Gorges Reservoir area. The accuracy of
different models in the same area varies, and the four indicators can be used to determine
the SVM’s applicability in the research region. In addition, it is known that the SVM model
has strong spatial generalizability in this study area when comparing the distribution of
the confusion matrix prediction outcomes of the three models.

Landslides develop in different landslide-prone areas with different patterns, so the
susceptibility models perform in varied ways in other areas. This study finds an effective
model in the Three Gorges Reservoir area by comparing three machine learning models,
LR, RF, and SVM. The results show that the SVM model performs the best. In addition, the
performance behavior of SVM for sensitivity modeling in other regions was collected. As
shown in the literature in Table 4 below, the accuracy of SVM is always greater than 0.85. We
can see that the performance of SVM is acceptable in different regions, so it can be used as a
recommended model for the Three Gorges Reservoir area and other landslide-prone areas.

Table 4. The accuracy of the SVM model in different areas.

Authors Study Area Accuracy of SVM (%)
Phong et al. [81] The Muong Lay district, Vietnam 87.00
Roy et al. [53] Darjeeling and Kalimpong Districts, West Bengal, India 90.00
Xianyu et al. [82] The Wanzhou of the Three Gorges Area, China 91.10
Faming et al. [83] Nantian area in southeastern hilly area, China 93.17
Bordoni et al. [84] Oltrepo Pavese (northern Italy) 97.75

5.4. Ranking of Relative Importance of Factors

The overall accuracy is used as the rating criterion in the importance ranking of
indicator factors. Overall accuracy represents the importance of the classifier for the entire
sample judgment modeling process, and this paper specifically refers to the percentage
of slippage and non-slippage in the classification process. The importance of the factors
in the optimal model SVM of this paper is evaluated. The relative importance of nine
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indicator criteria for landslide susceptibility chosen in the study is determined by the
model independently rating each factor’s weight. As indicated in Figure 14, the factor
weights from large to small include distance to river, slope, TWI, profile curvature, distance
to fault, plane curvature, lithology, NDVI, and elevation, based on the analytical results of
this paper.

i g B Importance Index

1.6

1.4

1.2
0.
0.
0.
°- 1
0

Distance  Slope WI VCur Distance PCur Lithology NDVI Elevation
to River to Fault

Importance Index
&~ [#)} [ —

N

Figure 14. Relative importance assessment.

In the Three Gorges Reservoir area, the distance to the river contributes the most to
landslides, according to the relevance ranking of the elements in the modeling process.
Furthermore, the distance to the river is the most important factor causing landslides and
the order of importance is consistent with research in the region [85-87].

5.5. Assessment Results and Discussion

The optimal model SVM obtains optimal classification results. The susceptibility index
computed by the model was imported into ArcGIS after acquiring the landslide suscep-
tibility map of the Three Gorges Reservoir area. To create the susceptibility assessment
map of the study area, the geometric interval approach in ArcGIS was used to divide the
susceptibility index into five groups (very low, low, moderate, high, and very high), and
the landslide frequency of each class were extracted for statistical analysis by the method
of the extract by mask. Figure 15 is obtained.

When the landslide susceptibility assessment map is merged with the landslide hazard
events in the Three Gorges Reservoir area, it can be observed that the majority of the
landslide hazard events are in areas with high susceptibility. We can learn about landslide
occurrence in the study area and forecast landslide geological hazards.

This paper uses landslide hazard incidents in the Three Gorges Reservoir area over
the years to build a model. In all, 9539 landslides of various sizes occurred due to the
geographic location of the Three Gorges Reservoir area and the establishment of the Three
Gorges Dam project, accounting for 75.8% of the geological hazard events in the entire
Three Gorges Reservoir area. The goal was to build a model using machine learning
methods, examine the benefits of the SVM in this study area, and show that the SVM you
built has significant spatial generalization capacity and good robustness and performance.
In the Three Gorges Reservoir area, a real-time stability model was used to assess the
susceptibility to landslides.
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Figure 15. Regional statistics of landslide susceptibility.

The Three Gorges Project is located in a critical location, and its huge scale has a
profound impact on the development of China. It is the largest water conservancy pivot
project in China’s and even the world’s history, with considerable benefits in flood control,
electricity generation, and shipping, among other things. However, the construction of
the Three Gorges Project has brought a series of impacts on the ecology and environment
along the river belt and even the whole basin [88]. Landslide hazards are a widespread
geological problem in the reservoir area, becoming the biggest threat and obstacle to the
economic and social development of the reservoir area and a critical area for the protection
and control of geological risks in China.

There are numerous studies on the Three Gorges Reservoir area in the current research.
Nonetheless, most of them concentrate on the local area of the region, with only a few
studies covering the entire Three Gorges Reservoir area. In this study, the three most
used machine learning approaches have a predictive influence on the future occurrence
of landslides in the Three Gorges Reservoir area. At the same time, the relative impor-
tance of the elements reveals that in the Three Gorges Reservoir, the distance from the
river has the greatest influence, which is also consistent with the ecological environment
characteristics of the area. The construction of the Three Gorges dam project has a more
significant impact on the geological problems in the area. Meanwhile, there are many other
predisposing factors of geological hazards in the Three Gorges Reservoir area [85,89], but
in the research process of this paper, the nine screening index components have a high
degree of relative independence and are dependent on the region’s landslide susceptibility
assessment prediction.

6. Conclusions

The Three Gorges Reservoir is a new reservoir project in China with strict geological
disaster prevention and control system in the place. However, some of the reservoir area’s
geological disaster monitoring and warning points need our attention due to disasters and
dangerous situations. It is critical to understand the landslide-prone areas in the region to
reduce the impact of landslide hazard events. Aiming at 9539 landslide events across the
Three Gorges Reservoir, this paper first used the Pearson correlation coefficient to filter the
index factors before selecting nine index factors: elevation, slope, plan curvature, profile
curvature, distance to fault, lithology, topographic wetness index, NDVI, and distance to



Remote Sens. 2022, 14, 2257 25 of 28

river. The landslide susceptibility assessment model system was then built using the logistic
regression (LR), random forest (RF), and support vector machine (SVM) algorithm models,
and the study area’s landslide susceptibility distribution map was established. Precision,
recall, F1-score, and overall accuracy were used to assess and compare the performance
of the models. ROC curves and AUC values were used to assess the prediction accuracy
and efficiency of the models. The results imply that all three models adapted in this study
for partitioning landslide susceptibility are effective but the SVM model outperforms the
others. The model’s weights for each indicator element were assigned to distinguish the
impact of the indicator factors on landslides in the Three Gorges Reservoir area. According
to the landslide susceptibility distribution map, the very high- and high-susceptibility
areas for landslide occurrence are primarily distributed on both sides of the water system
and in areas with significant changes in slope, and the results are consistent with the
distribution of landslide sites. However, during the research process, it was discovered that
the factors influencing the occurrence of landslides are not distinguished. In conclusion,
the current research findings are beneficial not only to the current analysis field but also to
other areas with similar topographic features and natural environments, as well as to the
construction and development of the Three Gorges Reservoir area and the Three Gorges
Reservoir project, as well as having a reference value for reducing the risk of landslides
in the reservoir area and for land resource management, and this study will gradually
increase in scope.
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