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Abstract: Optical turbulence strongly affects different types of optoelectronic and adaptive optics
systems. Systematic direct measurements of optical turbulence profiles [C2

n(h)] are lacking for many
climates and seasons, particularly in marine environments, because it is impractical and expensive
to deploy instrumentation. Here, a backpropagation neural network optimized using a genetic
algorithm (GA-BP) is developed to estimate atmospheric turbulence profiles in marine environments
which is validated against corresponding [C2

n(h)] profile datasets from a field campaign of balloon-
borne microthermal measurements at the Haikou marine environment site. Overall, the trend and
magnitude of the GA-BP model and measurements agree. The [C2

n(h)] profiles from the GA-BP
model are generally superior to those obtained by BP and the physically-based (HMNSP99) models.
Several statistical operators were used to quantify the GA-BP model performance on reconstructing
the optical turbulence profiles in marine environments. The characterization of vertical distributions
of optical turbulence profiles and the main integral parameters derived from [C2

n(h)] profiles are
presented. The median Fried parameter, isoplanatic angle, and coherence time are 9.94 cm, 0.69′′,
and 2.85 ms, respectively, providing independent optical turbulence parameters for adaptive optics
systems. The proposed approach exhibits potential for implementation in ground-based optical
applications in marine environments.

Keywords: atmospheric optics; optical turbulence; thermosonde; balloon-borne; genetic algorithm

1. Introduction

Optical turbulence within the atmosphere of the Earth plays a significant role in
optoelectronic systems (e.g., laser communication, target detection, and astronomical
observation). In particular, in marine environments, the turbulent effects strongly restrict
the performance of electro-optical engineering, such as optical remote sensing imaging,
free-space optical communication, and laser propagation in the atmosphere. Therefore,
obtaining accurate optical turbulence profiles is essential for guiding the design of adaptive
optical systems, improving the imaging quality and performance of photoelectric systems.

The refractive index structure constant, C2
n, has been used as an indicator to character-

ize and quantify the turbulent spatial fluctuations caused by temperature gradients [1,2],
wherein n denotes the local refractive index of the atmosphere. Existing techniques
for C2

n measurements include scintillation detection and ranging (SCIDAR) [3], multi-
aperture scintillation sensor (MASS) [4,5], scintillator [6], Shack Hartmann wavefront
sensor (SHWFS) [7–13], Differential Image Motion (DIM) Light Detection and Ranging
(LIDAR) [14], acoustic meteorological radar (sodar) [15], and the balloon-borne micro-
thermometry [16]. Indeed, various techniques exist for the measurement of C2

n(h). How-
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ever, for logistical and financial issues, obtaining longterm and large-scale C2
n data using

instruments is unavailable, particularly in marine environments. Therefore, establishing
the relationship between conventional meteorological parameters and C2

n has become an
essential part of atmospheric optical turbulence model research. Hufnagel summarized
the upper altitude atmospheric turbulence parameter model which considers the wind
speed [17]. However, the mode had a limited altitude range of use. The fundamental
theories for estimating atmospheric turbulence were presented by Tatarskii [1]. According
to Tatarskii optical turbulence estimation theory, Abahamid explored the optical turbulence
modeling in the boundary layer and free atmosphere using instrumented meteorological
balloons from nine sites [18]. Similarly, Nath performed a correlation analysis by using
three years of high-resolution radiosonde data over the tropical station Gadanki to study
the relative contributions of temperature and relative humidity to the refractive index
gradient [19]. It is well known that atmospheric turbulence depends largely on background
atmospheric parameters, such as wind, temperature, and humidity. Subsequently, various
outer scale models for calculating C2

n using conventional meteorological parameters based
on Tatarskii theory have been developed, including the Dewan model [20], HMNSP99
model [21], and Thorpe model [22]. Notably, the HMNSP99 model is more popular for
estimating, and it has a similar structure to the Dewan model; however, it contains tempera-
ture gradients in addition to wind shear. Although different parameterization models were
presented, quasi-universality was limited to certain areas, and none of them are known to
be superior.

Furthermore, optical turbulence has variability in different regions. The estimated
results from the physically-based models are unsatisfactory. So, it is necessary to perform
measurements and new estimated model research. The artificial neural network (ANN)
has been widely used as a powerful tool to handle big data, which is primarily due to
the flexibility of the technique. The technique relies on the ability of ANN to successfully
learn directly from the data of the real problem and adjust to complex models with ease,
allowing ANN to be applied in different research fields [23–27]. Importantly, ANN delivers
outstanding predictive performance without any a priori assumptions. Moreover, Wang
utilized a neural network to estimate surface-layer optical turbulence in the Mauna Loa
Observatory for one month with five conventional meteorological parameters, initially
confirming the feasibility of this method [28]. Su proposed a new artificial neural network
approach to estimate surface-layer optical turbulence over the Antarctic [29], and further
explain the feasibility of the new C2

n quantification method. In addition to avoiding the
complicated physical calculation process in the Monin–Obukhov similarity theory, the
ANN method also proves the potential for estimating near-surface under different stability
conditions. Furthermore, Xu used backpropagation neural networks to estimate offshore
atmospheric boundary layer vertical C2

n profiles [30].
This work proposes a novel hybrid neural network that combines the back propa-

gation (BP) neural network and the genetic algorithm (GA) to estimate C2
n(h) profiles in

marine environments. Additionally, this study presents the new neural network model de-
veloped on this data set and compared it with the HMNSP99 model (Holloman Spring1999
thermosonde campaigns, developed and tested by the Air Force Research Laboratory),
and the results show that the GA-BP neural network model can perform with better accu-
racy with respect to the corresponding radiosonde data compared to BP and the Tatarskii
physically-based models.

The remainder of this study is organized as follows: methodology of GA-BP and
HMNSP99 models are introduced in Section 2. Section 3 provides the detailed principle of
in situ balloon-borne microthermal measurements and data. The model results of C2

n(h)
profiles are shown in Section 4. Lastly, the discussion and conclusions are presented in
Sections 5 and 6.
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2. Methodology
2.1. GA-BP Model

Atmospheric turbulence generates local inhomogeneities in the atmosphere, partic-
ularly for the spatial inhomogeneities of temperature. Meanwhile, seasons and weather
factors affect the turbulence intensity, which has significantly different characteristics in
C2

n(h) vertical profiles. Admittedly, many researchers have proposed different models to
estimate atmospheric turbulence, each model is empirical and has limitations. However,
modeling the relationship between atmospheric turbulence and other meteorological vari-
ables can be interpreted as a nonlinear regression problem. ANN has the advantages of
flexible nonlinear modeling capability, strong adaptability, and their learning and massively
parallel computing abilities. In addition, ANN can learn and obtain useful information
from input and output data without establishing precise mathematical models. The back-
propagation (BP) neural network is a critical realization method of ANNs, also known
as the error back propagation network. The BP neural network is a multilayer mapping
network that minimizes an error backward while the information is transmitted forward. In
the training process, each connection weight and threshold are adjusted in turn for iterative
training based on the error between the output and desired goal until the preset error goal
or the maximum iterations (this study set the maximum iterations to 1000) are reached.
Generally, the BP neural network with a single hidden layer can approximate any nonlinear
function with arbitrary precision, which makes the BP neural network suitable for dealing
with complex nonlinear problems [31]. However, the randomness of initialization weights
and thresholds of the BP neural network makes the results fall into local extremes rather
than into the global optimum. Furthermore, the network has the disadvantage of poor
robustness and slow training speed. To overcome this shortcoming, this study proposes
adopting the genetic algorithm to optimize the initial connection weights and thresholds of
the BP neural network, improving the ability of convergence speed or prediction accuracy.

This study establishes the mapping relationship between the conventional meteoro-
logical parameters and C2

n. The topological structural diagram of the GA-BP model consists
of an input layer, a hidden layer, and an output layer as shown in Figure 1.

Figure 1. Topological structure diagram of the GA-BP neural network model.

According to the structure diagram, X1, X2, ..., X6 denote the input values, Y denotes
the target output, and adjacent layers are connected by weights (ωij, ωjk). aj and bk are
thresholds of the hidden layer and output layer, respectively. The input layer parame-
ters contain six meteorological parameters (height, pressure, temperature, wind speed,
wind shear, and temperature gradient), which are closely related to optical turbulence.
Notably, the altitude parameter presents the spatial information of atmospheric turbulence.
Moreover, log[C2

n(h)] is the target output parameter. However, the number of the hidden
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layer depends on the degree of nonlinear mapping between input and output parameters,
and increasing the hidden nodes does not necessarily improve the model performance all
the time [32]. On the one hand, a lack of neurons in the hidden layer will lead to poor
prediction accuracy resulting from the under-fitting problem. On the other hand, too many
neurons will lead to over-fitting, generating large generation errors. Wherein there is no
standard and specific theoretical guidance to determine the number of hidden neurons.
Experiments or by trial and error based on the data are the most common means to ascertain
the appropriate number of hidden nodes.

In this study, the cross-validation method is used to realize the trade-off between
the accuracy of the training set and the generalization ability of the validation set for a
different number of hidden neurons. All the training data are from 123 observational
meteorological sounding profiles data in the marine environment. Consider the morning
training process as an example, training data are randomly split into three disjoint sets
[training set (60%), validation set (20%), and testing set (20%)]. All data during the training
progress needed to be normalized to [−1, 1] to eliminate the interference of different units
in network training. The training function of the network corresponds to the resilient back
propagation algorithm [33]. The training set is used to train the model and present the
training error, whereas the validation set is used to select the number of hidden neurons. For
the increased number of hidden neurons, the performances of the training and validation
sets are evaluated using the mean relative error operator. Figure 2 illustrates the mean
relative error of the training and validation for different numbers of hidden neurons.
Obviously, the average relative errors of the training and validation sets are small while
the number of neurons is 30, which repeatedly runs with the same training parameters.
Therefore, the input layer (M) has six input factors, the hidden layer (l) is one layer and
contains 30 neurons, and the output layer (m) is log[C2

n(h)].

Figure 2. Mean relative error of the training and validation for different numbers of hidden neurons.

The flowchart of the proposed GA-BP neural network model is shown in Figure 3,
which comprises two parts: genetic algorithm (left) and back propagation algorithm (right).
GA-BP is adopted for improving the training speed and robustness of the BP neural network
model. The procedures of the optimized algorithm are as follows:
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Figure 3. Algorithm flowchart of the GA-BP neural network model.

1. Confirm the topological structure of GA-BP neural network (M-l-m) and normalize
the original data.

x =
2(X− Xmin)

(Xmax − Xmin)
− 1, (1)

where x denotes the normalized parameters’ values, which are within the range [−1, 1].
Xmin and Xmax are the minimum and maximum values of the original parameters
data, respectively.

2. Code the generation and initialize the population. The random weights ωij, ωjk and
thresholds aj, bk are expressed as chromosome data in the genetic space for coding.
Chromosomes containing genetic information are randomly generated, and each data
is called an individual, which represents feasible solutions. Genes, namely genetic
information, represent components of feasible solutions. The individuals constitute
the initial population. Additionally, the length of the Chromosome (C) can be acquired
by the number of the input layer (M), the hidden layer (l), and the number of output
layer (m).

C = M ∗ l + l ∗m + l + m, (2)

3. Fitness assessment. Calculate the fitness (F) of the individual, which is based on the
mean absolute error between the actual values and the network output values.

F =
1

∑N
i=1

|Vi−Ai |
N

, (3)

where Vi denotes the actual values, Ai denotes the output of the network. N represents
the number of training samples. The smaller the mean absolute error, the higher the
fitness level.

4. Selection, Crossover and Mutation operations: select good individuals from the current
population to enter the next generation based on fitness; generate new individuals
by using the crossover operation, which combines the characteristics of the parents;
the values of chromosomal genes randomly change by mutation operation, providing
opportunities for new individuals to emerge.

5. The optimal values from GA are assigned as the initial connection weights and thresh-
olds of the BP neural network.



Remote Sens. 2022, 14, 2267 6 of 19

6. Calculate the output results of the hidden layer (Hj). Hj can be obtained from the
input vector x, the connection weight ωij between the input layer M and the hidden
layer l, and the hidden layer threshold aj.

Hj = f

(
M

∑
i=1

ωijxi − aj

)
, j = 1, 2, . . . , l (4)

where l denotes the number of hidden layer nodes. f represents the activation function
and commonly used sigmoid function as the activation function in GA-BP neural
network.

f =
1

1 + e−x , (5)

7. Calculate the results of the network output layer (Ok). Ok can be calculated based on
the output of the hidden layer H, connection weights ωjk, and thresholds bk.

Ok =
l

∑
j=1

Hjωjk − bk, k = 1, 2, . . . , m (6)

8. Calculate network error (ek). The ek can be calculated by actual results values (Yk) and
the network output results (Ok).

ek = Yk −Ok, k = 1, 2, . . . , m (7)

9. Update weights of the network (ωij, ωjk) according to the network error e.

ωij = ωij + ηHj(1− Hj)x(i)
m

∑
k=1

ωjkek, i = 1, 2, . . . , M; j = 1, 2, . . . , l (8)

ωjk = ωjk + ηHjek, k = 1, 2, . . . , m (9)

where η is the learning rate.
10. Update thresholds of the network (aj, bk) based on the network error e.

aj = aj + ηHj(1− Hj)x(i)
m

∑
k=1

ωjkek, j = 1, 2, . . . , l (10)

bk = bk + ek, k = 1, 2, . . . , m (11)

11. If the algorithm reaches the preset goals or reaches the number of iterations, then the
network is trained with the training sample; thus, the best-fitting network is created.

12. The network is applied to forecast the test samples.

The hyperparameter settings of the GA-BP neural network are determined based on
the network mechanism. The population size is 50, the number of maximum generation is
100, and the crossover rate and mutation rate are 0.5 and 0.06, respectively. Figure 4 presents
the training process of the GA-BP model to optimize the initial weights and thresholds
of the neural network in the morning. As the number of generations increases, the best
fitness and the average fitness level increase gradually stabilize. The optimal fitness value
is 6.63 when the number of generations reaches 53 generations, which indicts that the
corresponding weights and thresholds reach the best.
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Figure 4. Training process of the GA-BP neural network model.

2.2. Physically-Based Model

The optical turbulence profile estimation model (Tatarskii model) is used to convert
standard meteorological data into C2

n(h) vertical profiles, and the estimation model has
been used to forecast optical seeing conditions for ground-based telescopes. Under the
assumption that the turbulence follows the Kolmogorov hypothesis, the Tatarskii model
has the following form [1]:

C2
n = 2.8

[
79× 10−6P

T2

(
dT
dh

+ γ

)]2

L4/3
0 , (12)

where T denotes the absolute atmospheric temperature in K, P indicates the pressure in
hPa, γ denotes the dry adiabatic lapse rate (9.8× 103 K/m), h denotes the height above
ground. L0 indicates the outer scale of atmospheric turbulence. These parameters can be
obtained from the sounding. However, the outer scale L0 model is controversial. Ruggiero
summarized the HMNSP99 model based on a large volume of experimental data [21]. The
HMNSP99 model contains additional atmospheric parameters besides the wind shear, the
temperature gradient is also commonly used to estimate atmospheric turbulence, which
can be expressed as

L4/3
0 =

{
0.14/3 × 100.362+16.728S−192.347 dT

dh , Troposphere

0.14/3 × 100.757+13.819S−57.784 dT
dh , Stratosphere

(13)

where S denotes the vertical shear of horizontal velocity, which is defined as

S =

√(
∂u
∂h

)2
+

(
∂v
∂h

)2
, (14)

where u and v denote the north-south and east-west wind components, respectively.

3. Validation Experiment
3.1. Balloon-Borne Microthermal Measurement

For visible and near-infrared wavelengths, random fluctuations of the refractive index
primarily occur due to temperature effects. In the inertial subdomain of the atmosphere,
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C2
T , the temperature structure coefficient, is the proportional constant of the temperature

structure function DT(r) [34], which is expressed as:

C2
T(r, h) =

DT(r, h)
r2/3 , l0�r�L0 , (15)

where DT(r, h) denotes the temperature structure function, r (in m) represents the sepa-
ration distance between a pair of microthermal probes, and h (in m) denotes the height
of a separate microthermal probe. l0 and L0 correspond to the inner and outer scales of
atmospheric turbulence, respectively. The temperature structure function is a statistic that
describes temperature disturbance from a pair of temperature probes separated by distance
r, which is given by

DT(r, h) = 〈[T(p1)− T(p2)]
2〉 , l0�r�L0 , (16)

where T (in K) denotes the air temperature, the angle bracket 〈 〉 represents the ensemble
average, and p1 and p2 denote the positions of the microthermal probes. The device
employed sensor elements of a platinum wire with a 10 µm diameter. Two-wire probes were
spaced 1 m apart in a horizontal plane to sense temperature differences as the instrument
ascends through the atmosphere at approximately 5 m·s−1. The platinum wire probes
sense the temperature difference owing to the atmospheric temperature change and further
respond to resistance. A pair of sensor wires can be considered as two legs of a Wheatstone
bridge. Later, a rapidly varying voltage is generated due to the differences in probe
resistance-temperature coefficients. The response frequency of the sensor is 0.05–30 Hz, and
the electronic processing of signals corresponded to a temperature difference of 0.002 K,
which conforms with the internationally used technical indicators [35–38].

Beland expressed the relationship between C2
n(h) and C2

T(r, h) by considering the
Gladstone formula [39], the refractive index structure constant C2

n(h) can be expressed in
terms of C2

T(r, h):

C2
n(h) =

[
79× 10−6 P(h)

T2(h)

]2

C2
T(r, h) , (17)

where P (in hPa) denotes the air pressure. The balloon-borne microthermal measurement
system provides C2

T(h) data by measuring the mean square temperature fluctuations from
Equations (15) and (16) and thus C2

n(h) can be acquired using Equation (17).

3.2. Field Campaign and Dataset

In this study, sounding measurements were conducted at the Haikou marine environ-
ment site from March to April in 2018. The Haikou site is located in the northern part of
Hainan Island, facing the sea to the north and it has a tropical monsoon climate. The annual
average precipitation is 2067 mm, while the annual average air temperature is 24.3 ◦C, the
highest average temperature is approximately 28 ◦C, and the lowest average temperature
is approximately 18 ◦C. The perennial wind direction is dominated by the southeast and
northeast winds, and the annual average wind speed is 3.4 m·s−1. The field campaign site
and terrain height at the Haikou site are shown in Figure 5.

Figure 6 shows the balloon-borne microthermal measurement experiment. Figure 6a
illustrates the micro-thermometer of the balloon-borne microthermal measurement system.
In the experiment, the micro-thermometer was attached to a meteorological sounding and
was carried into the atmosphere by a balloon. Moreover, the balloon-borne payload was
attached to other meteorological radiosondes, such as a temperature sensor and an air pres-
sure sensor. The information about wind velocity, wind direction, pressure, temperature,
and humidity was also transmitted to the ground station in real time. The details of measur-
ing devices are illustrated in Table 1. In a single-sounding experiment, the high-resolution
profiles data, such as temperature, wind speed, and air pressure from the surface through a
vertical extent of approximately 30 km above ground level (a.g.l) was acquired. During
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the soundings, sometimes data were missing or abnormal with insufficient height due to
various factors, such as weather and damage caused by strong winds. After eliminating
abnormal data, 21 available data were reserved, including 9 sounding data in the morning
and 12 in the night. The available microthermal measurements are listed in Table 2.

Figure 5. Topographical distribution map of Haikou marine environment site. The black point
represents the Haikou radiosonde station.

(a) (b) (c)

Figure 6. (a) Payload of balloon-borne micro-thermometer measurement system. (b) Balloon-borne
micro-thermometer measurement. (c) Balloon.

Table 1. The details of measuring devices.

Parameter Measuring Range Accuracy

Temperature −90–50 ◦C 0.2 ◦C
Pressure 5–1060 hPa 0.3 hPa

Wind speed 0–150 m·s−1 0.3 m·s−1

Wind Direction 0–360◦ 3◦

Turbulence 10−20–10−12 m−2/3 10−18 m−2/3
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Table 2. A total of 21 results of the balloon-borne microthermal measurement field campaigns at
Haikou marine environment site from March to April in 2018. The height a.g.l, launch date, time, and
termination time are listed (note: the date and time reported were the local date and time).

Flight Launch Launch Termination Termination
Number Date (LT) Time (LT) Time (LT) Altitude (m)

1 28 March 2018 19:58 21:18 29,860
2 29 March 2018 20:01 21:23 32,030
3 1 April 2018 07:44 09:06 30,230
4 1 April 2018 20:15 21:42 31,150
5 2 April 2018 19:50 21:25 32,590
6 3 April 2018 07:50 09:19 30,070
7 3 April 2018 19:50 21:05 27,860
8 8 April 2018 07:52 09:22 29,500
9 9 April 2018 19:50 21:06 28,770
10 10 April 2018 20:00 21:37 33,030
11 11 April 2018 08:00 09:18 27,290
12 12 April 2018 08:00 09:23 28,270
13 13 April 2018 20:00 21:34 32,510
14 14 April 2018 08:00 09:29 30,360
15 20 April 2018 08:00 09:18 29,250
16 20 April 2018 20:01 21:28 30,410
17 21 April 2018 20:01 21:29 31,490
18 22 April 2018 08:00 09:27 29,150
19 22 April 2018 20:00 21:32 31,650
20 23 April 2018 08:00 09:25 32,250
21 27 April 2018 01:40 02:57 28,210

4. Results

4.1. Estimation of C2
n(h) Profiles

Figure 7 presents the comparison of the individual C2
n(h) profiles obtained by the GA-

BP, BP and HMNSP99 models, along with the corresponding individual measured C2
n(h)

profiles in the morning. In addition, the L0(h) vertical profiles from the HMNSP99 model
and measurements are also illustrated in Figure 7. Clearly, the L0(h) vertical profiles from
the HMNSP99 model and the measurement have a similar variation trend. On the other
hand, the C2

n(h) profiles from three models and the measurements decrease steeply in the
surface layer, before gradually increasing up to the tropopause region, and then gradually
decreases in the upper stratosphere, which is similar to the turbulence characteristics in
the Hawaii marine environment [40,41]. It is worth highlighting that C2

n(h) spikes are
discernible and correspond to the tropopause at approximately 17 km a.g.l., whereas much
less than an order difference between the three models and the measurement can be seen.
However, C2

n(h) values are underestimated, particularly above 20 km except for some
profiles from the BP model. Overall, these results indicate that although the small-scale
fluctuations are not captured, the models including the BP, GA-BP and the physically-based
models can generally reflect the turbulence characteristics in variation trend and order
of magnitude.
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Figure 7. (a–i) Comparison of the C2
n(h) profiles (left) between the models (GA-BP, BP and HMNSP99)

and the measurement, the L0(h) profiles (right) from the HMNSP99 model and the measurement in
the morning.

Figure 8 shows the comparison of the C2
n(h) profiles between the models (GA-BP,

BP and HMNSP99) and the measurement, the L0(h) vertical profiles from the HMNSP99
model and the measurements overnight. From the display, one can see that the L0(h)
vertical profiles from model are generally coherent with the measurement in trend and
magnitude. Additionally, the visualization of C2

n(h) profiles presents that almost all the
C2

n(h) profiles estimated by three models and the corresponding measurements are in fair
visual agreement, particularly in the lower atmosphere. The C2

n(h) profiles measured and
estimated have a similar variation trend. One can see that the C2

n(h) profiles reveal a steep
drop close to the ground. It is followed by an increase in turbulence with altitudes in the
troposphere and then a gradual decrease above the tropopause. It was found that the
observed C2

n(h) exhibits a spike at about 17 km a.g.l., which is qualitatively captured by the
GA-BP model. However, such a sharp increase in C2

n(h) is not picked up by the HMNSP99
model and the BP model in Figure 8f,i. The GA-BP model captures more details and
generally agrees well with the measured values both in magnitude and trend. Obviously,
the spikes and activity layers occur near the tropopause region. The differences between
the three models and the measurement are relatively small when entering the tropopause
region, including more obvious between about 17 km and 24 km, except for Figure 8a,b,l.
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Figure 8. (a–l) Comparison of the C2
n(h) profiles (left) between the models (GA-BP, BP and HMNSP99)

and the measurement, the L0(h) profiles (right) from the HMNSP99 model and the measurement in
the night.

4.2. Error Analysis

The integrated parameters include the Fried parameter (r0), isoplanatic angle (θAO),
and the coherence time (τAO), which are crucial for the design and optimization of Adaptive
Optics (AO) systems, derived from the vertical distribution of the refractive-index structure
constant and the wind speed [42,43]. The r0, also known as the coherence length, is the
limiting aperture beyond which an increase in aperture diameter does not cause an increase
in resolution. Furthermore, θAO is defined as the maximum angular that can maintain phase
coherence between two measurement points for the same observation target. If beyond the
range of θAO, the phase screen measurement performed will change greatly. Additionally,
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τAO indicates how long the wavefront remains coherent, the large wavefront coherence time
determines the response parameters of the AO system design. The integrated parameters
are expressed using the formula as follows:

r0 =

[
0.423

(
2π

λ

)2 ∫ ∞

0
C2

n(h)dh

]−3/5

, (18)

θAO = 0.057λ6/5
[∫ ∞

0
C2

n (h)h5/3 dh
]−3/5

, (19)

τAO = 0.057λ6/5
[∫ ∞

0
C2

n (h)|V(h)|5/3 dh
]−3/5

, (20)

where V(h) denotes the wind speed as a function of altitude h. λ represents a given
wavelength (500 nm), and all the integrated parameters are referred to the zenith direction.

The statistical operators including the bias and the root-mean-squared error (RMSE)
are used to analyze the correlation between the measured and estimated values of the
radiosonde to evaluate the reliability of the BP, GA-BP neural network, and HMNSP99
models [44]. The definition of the statistical operators is given as follows:

Bias =
N

∑
i=1

Yi − Xi
N

, (21)

RMSE =

√√√√ N

∑
i=1

(Yi − Xi)2

N
, (22)

where Xi denotes the individual measured values, Yi denotes the individual values esti-
mated by the model at the same height. N represents the number of samples for a couple
(Xi,Yi) at the same height. Xi and Yi correspond to the average value of measured and the
estimated, respectively.

The comparisons of statistical operators between the C2
n(h) profiles produced by es-

timations and measurements are clearly illustrated in Figures 9 and 10 to evaluate the
performances of the three models. Figure 9 shows the statistical results from three models
and measurements in the morning. The bias values between three models and measure-
ments are within 1 m−2/3. Note that the bias values are closer to 0, indicating that the
estimated model has better performance overall. It is clearly visible that the BP model and
GA-BP model exhibit somewhat better performance in the high troposphere and low strato-
sphere. Moreover, the RMSE values reflect how spread out these prediction errors are. The
RMSE values from the BP model show that the prediction deviates from the measurements
at some altitudes in the troposphere which can be seen in Figure 7. Figure 9c displays the
comparison of the estimated average C2

n(h) profiles from three models and measurements
in the morning. In general, it was found that the average C2

n(h) profiles exhibited a similar
variation trend and magnitude in the morning. However, the results reveal that the C2

n(h)
profiles estimated by the BP and GA-BP models are generally in good agreement with the
measurement near the tropopause region.

Figure 10 illustrates the statistical results of the bias and RMSE for analyzing the
correlation between the estimated C2

n(h) values from three models and measurements in
the night. It is evident from the statistical operators of log[C2

n(h)] from three models that
the bias values are within 1 m−2/3 and that RMSE values are within 1.4 m−2/3. Moreover,
the GA-BP model has somewhat better performance in the low troposphere and low
stratosphere. This phenomenon is evident in Figure 8. For the description of RMSE, the
variation trend of RMSE values reflects that the BP model and GA-BP model have similar
laws as bias values. Furthermore, Figure 10c presents the estimated average C2

n(h) profiles
from three models, along with the corresponding measurement in the night. Notably,



Remote Sens. 2022, 14, 2267 14 of 19

the average C2
n(h) profiles from the GA-BP model are indeed closer to the measurement,

although BP and HMNSP99 models still perform better at some heights. Overall, the
statistical results over the entire altitude range show that estimated values from three
models are coherent with the measurement in the Haikou at night, which presents the
intrinsic ability to capture layers of high optical turbulence. Additionally, by comparison,
one can see that the turbulence characteristics in the night at this location differ from an
astronomical observatory site such as Mount Graham. For example, the strongest C2

n(h)
peak at Mt Graham occurred near the boundary layer, and the second peak was located
between 9–11 km [45].

Figure 9. Statistical results of the C2
n(h) profiles between the GA-BP, BP and HMNSP99 models in the

morning. (a) BIAS. (b) RMSE. (c) Average C2
n(h) profiles.

Figure 10. Statistical results of the C2
n(h) profiles between the GA-BP, BP and HMNSP99 models in

the night. (a) BIAS. (b) RMSE. (c) Average C2
n(h) profiles.

The integrated turbulence parameters include r0, θAO, and τAO for adaptive optics
systems applications derived from the C2

n(h) profiles using the GA-BP, BP, HMNSP99
models and the measured C2

n(h) profiles. The comparison of the integrated parameters
is illustrated in Figure 11. It can be observed that r0, θAO, and τAO between the GA-BP,
BP models and the measurement are generally consistent with each other except for some
cases. The bias comparison of integrated parameters between GA-BP and BP models are
listed in Table 3. As shown in Table 3, the r0 bias values of the GA-BP model are closer to
zero compared to the BP model as a whole, indicating the integrated parameters from the
GA-BP model generally show a good ability in reconstructing the distribution of the r0,
θAO, as well as τAO. In addition, the BP network optimized by the genetic algorithm has
better prediction ability, better global search ability, good robustness, and quick training
speed, whereas the GA-BP model performs better than the BP model.

As shown in Figure 12, the statistical results for each integrated parameter between
models (GA-BP, BP and HMNSP99) and the measurement are visually represented using a
box plot. From the displays, the median values of r0, θAO, and τAO from the measurement
are 9.94 cm, 0.69′′, and 2.85 ms, respectively. The corresponding median r0, θAO, and τAO
from the GA-BP model are 8.88 cm, 0.51′′, and 1.96 ms, respectively, and the corresponding
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median r0, θAO, and τAO from the BP model are 8.83 cm, 0.53′′, and 1.79 ms, respectively.
Additionally, the median values of r0, θAO, and τAO from HMNSP99 model are 11.72 cm,
0.85′′, and 3.20 ms, respectively. The box plot for integrated parameters visualizes the
general distribution of integrated parameters at the Haikou site, thus providing a potential
value for the application of electro-optical systems in marine environments.

Figure 11. Comparison of the integrated parameters between GA-BP, BP and HMNSP99 models.
(a) Fried parameter. (b) Isoplanatic angle. (c) Coherence time.

Figure 12. Box plot for integrated parameters between GA-BP, BP and HMNSP99 models. (a) Fried
parameter. (b) Isoplanatic angle. (c) Coherence time.
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Table 3. Comparison of integrated parameters between GA-BP and BP models. BIAS = Model−
Measurement.

Flight r0 (BIAS) θAO (BIAS) τAO (BIAS)

Number BP GA-BP BP GA-BP BP GA-BP

1 −13.19 −8.27 −0.6 −0.67 −1.2 −0.47
2 −4.69 −0.72 −2.14 −2 −3.55 −2.83
3 0.12 0.63 0.09 0.17 0.25 0.44
4 −3.55 −0.14 0.07 −0.08 −0.39 −0.58
5 3.91 2.34 −0.06 −0.21 0.21 −0.61
6 −3.67 0.39 −0.12 0.15 −0.71 0.43
7 −0.66 −0.37 0.53 −0.21 −0.24 −0.17
8 2.87 −1.97 0.1 0.05 0.26 −0.03
9 0.3 −0.35 0.14 −0.03 0.1 0.08

10 1.6 −0.5 −0.09 −0.13 0.43 −0.17
11 4.45 2.56 0.18 0.11 0.92 0.55
12 −1.18 0.42 −0.2 0.07 −0.15 0.35
13 −3.79 −3.38 −0.39 −0.58 −1.64 −2.33
14 4.19 1.52 0.15 0.19 1.01 0.59
15 −12.63 −13.26 −0.77 −0.55 −2.93 −2.9
16 0.72 −2.06 0.28 −0.13 −0.46 −0.56
17 −6.94 2.81 −0.4 −0.26 −3.2 −0.15
18 −11 −7.3 −0.61 −0.22 −3.34 −2.4
19 1.98 −0.93 −0.01 −0.26 0.13 −0.78
20 −3.02 −1.92 −0.23 −0.08 −1.65 −1.33
21 −9.84 −10.92 −1.26 −1.43 −4.89 −6.35

5. Discussion

From the previous analysis in Section 4, the estimated C2
n(h) from physically-based

(HMNSP99) and neural network models exhibit some deviates from the measurements at
some altitudes. The possible causes of the deviations and the improvements will be pre-
sented.

In reality, there exists intermittent turbulence or large uncertainties that trigger tur-
bulence so that the value of C2

n(h) measured by the micro-thermometer may not be the
“true” C2

n values. In addition, the C2
n(h) profiles measurements may be influenced by some

unknown factors in the marine environment. Notably, although the HMNSP99 model
contains more meteorological parameters such as temperature gradients in addition to
wind shear, it is not developed only for the maritime environment. The mechanism of
turbulence will be continually explored and we intend to explore the more accurate physical
estimating model in the marine environment.

Compared with the classic BP neural network, the genetic algorithm was used to
optimize the initial connection weights and thresholds of the BP model to improve the
global search ability, training speed, and good robustness of the network. However, the
estimated results by the GA-BP model show no significant improvement. In fact, there
is no systematic theory to determine the topological structure of the neural network and
select appropriate input parameters. In addition, the sample data in this study (during
March and April 2018) are limited and it is necessary to study the performance of the
model used to forecast atmosphere turbulence in other time periods or other sites in marine
environments. More field campaigns of sounding measurements will be carried out in
marine environments to enrich the datasets and further study and verify the universality
of the model, as well as further explore the main factors that influence the measurement.
Moreover, the C2

n(h) profiles from other measurement techniques such as DIM LIDAR
can be acquired to validate the results. Additionally, we intend to optimize the design
of the neural network by selecting more meteorological parameters, which are based
on the physical process in the turbulence mechanism. Moreover, feature selection can
be performed to select the best appropriate meteorological parameters for the neural
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network model such as Jellen [46] to improve the accuracy of estimating C2
n(h) profiles in

marine environments.

6. Conclusions

In this study, the GA-BP model was developed to estimate C2
n(h) profiles in the Haikou

marine environment. First, the C2
n(h) profiles estimated by the traditional physically-based

(HMNSP99) model, BP model, and GA-BP model were compared with the corresponding
sounding measurement. Subsequently, the performance of the three models was evaluated
using the statistical operators. Moreover, we analyzed the main integrated parameters (r0,
θAO and τAO) that contain fundamental information in the adaptive optics optimization.
The results obtained by the estimation of three models are summarized as follows.

The estimated C2
n(h) profiles from the HMNSP99 and GA-BP models are slightly

smaller than the measured values above 20 km in the morning in the Haikou marine
environment. In addition, almost all C2

n(h) profiles estimated by three models and the
corresponding measured C2

n(h) profiles at night are in fair visual agreement, particularly
in the lower atmosphere. The differences between the three models and the measurement
are relatively small when entering the tropopause region except for some soundings. Ad-
ditionally, at some altitudes, the GA-BP model demonstrates its capabilities by capturing
the detailed changes of C2

n(h) remarkably well compared to BP and HMNSP99 models.
For the statistical results of integrated parameters, the integrated astronomical parame-
ters from the GA-BP model are more reasonable in general compared to the BP model.
The fidelity of C2

n(h) turbulence profiles and the integrated astronomical parameters in
marine environments indicate that the GA-BP model presents a novel idea to estimate
C2

n(h) profiles in marine environments. Moreover, the median r0, θAO, and τAO calculated
from the measured C2

n(h) profiles are 9.94 cm, 0.69′′, and 2.85 ms, respectively, which
provide independent optical turbulence parameters for adaptive optics systems in marine
environments.

In summary, the GA-BP model can describe the characteristics of the vertical distribu-
tions of C2

n(h) profiles and the main integral parameters in marine environments. Although
the estimated C2

n(h) profiles from the model are not completely consistent with the mea-
sured values at each altitude, the results achieved in this study provide useful information
for designing, monitoring, and even optimizing the performance of optoelectronic systems
in marine environments.
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