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Abstract: Quantitative assessment of the UV effects on aquatic ecosystems requires an estimate
of the in-water hyperspectral radiation field. Solar UV radiation in ocean waters is estimated on a
global scale by combining extraterrestrial solar irradiance from the Total and Spectral Solar Irradiance
Sensor (TSIS-1), satellite estimates of cloud/surface reflectivity, ozone from the Ozone Monitoring
Instrument (OMI) and in-water chlorophyll concentration from the Moderate Resolution Imaging
Spectroradiometer (MODIS) with radiative transfer computations in the ocean-atmosphere system. A
comparison of the estimates of collocated OMI-derived surface irradiance with Marine Optical Buoy
(MOBY) measurements shows a good agreement within 5% for different seasons. To estimate scalar
irradiance at the ocean surface and in water, we propose scaling the planar irradiance, calculated
from satellite observation, on the basis of Hydrolight computations. Hydrolight calculations show
that the diffuse attenuation coefficients of scalar and planar irradiance with depth are quite close to
each other. That is why the differences between the planar penetration and scalar penetration depths
are small and do not exceed a couple of meters. A dominant factor defining the UV penetration
depths is chlorophyll concentration. There are other constituents in water that absorb in addition
to chlorophyll; the absorption from these constituents can be related to that of chlorophyll in Case I
waters using an inherent optical properties (IOP) model. Other input parameters are less significant.
The DNA damage penetration depths vary from a few meters in areas of productive waters to about
30–35 m in the clearest waters. A machine learning approach (an artificial neural network, NN) was
developed based on the full physical algorithm for computational efficiency. The NN shows a very
good performance in predicting the penetration depths (within 2%).

Keywords: UV satellite measurements; radiative transfer computations; underwater irradiance

1. Introduction

An interest in ultraviolet (UV) radiation effects on aquatic ecosystems is particularly
driven by increased levels of biologically harmful UV radiation (290–400 nm) resulting
from the depletion of Earth’s ozone layer. A recent review of studies of the UV radiation
effects on aquatic ecosystems and interactions with other environmental factors is provided
in Hader et al. [1]. One of the important effects of enhanced levels of UV radiation is a
reduction in the productivity of phytoplankton, caused by inhibition of photosynthesis
due to damage to the photosynthetic apparatus, see, e.g., [2]. This effect is described by
the spectral biological weighting functions (BWF), which depend on wavelength, phyto-
plankton species and environmental factors [3–5]. Knowledge of UV radiation penetration
is important for the evaluation of ecosystem properties, including ecosystem health and
primary productivity [1]. Enhanced UV radiation can also affect the photochemical de-
composition of dissolved organic matter [6] and the photochemical production of carbonyl
sulfide in seawater [7], thereby affecting long-term global biogeochemical cycles.
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A few models of the UV radiation field in ocean waters have been developed over
the past two decades. An essential component of the in-water radiation field model is a
model of ocean water-inherent optical properties (IOPs) in the UV region (290 to 400 nm). A
simplified version of the IOP model in UV was already used for calculations of underwater
UV radiation fields on local and global scales [8,9]. The IOP model in the UV region was
updated [10] and used for radiative transfer (RT) calculations in the ocean with the Hydro-
light RT model [11]. With the use of these IOP and RT models, the seasonal variability of
the UV radiation field in the ocean was studied [12]. An algorithm for deriving the UV
diffuse attenuation coefficient from remote sensing reflectance was proposed [13]. Penetra-
tion of UV irradiance into the ocean was studied [14] using empirical diffuse attenuation
coefficient relationships derived from in situ measured profiles of IOPs at visible and
UV wavelengths. A semianalytical model of the UV diffuse attenuation coefficient based
on ocean color remote sensing has been proposed [15]. Wang et al. [16] evaluate several
algorithms developed for the diffuse attenuation coefficient in the UV region (specifically
360, 380, and 400 nm), as well as their performance with satellite observations using com-
parisons with measurements from the open ocean to coastal waters. Algorithms have also
been developed to estimate UV and visible underwater light attenuation from satellite
hyperspectral observations from the in-water vibrational Raman scattering signal [17–19].
The authors of [20] explained a need for satellite-retrieving underwater ocean radiation
in the UV region globally. They suggest utilizing current satellite hyperspectral missions
Aura/OMI and Sentinel-5P/TROPOMI for UV products such as “spectral fluxes below the
surface and diffuse attenuation in the UV (or integrated over UV-A and UV-B ranges), in
both photon and energy units”.

In recent years, the interest in UV radiation studies has grown in relation to the future
Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission scheduled to launch in 2024.
The PACE mission includes the hyperspectral Ocean Color Instrument (OCI) that has UV
channels down to 340 nm. As compared with other ocean color instruments, the OCI
measurements in the UV will help identify phytoplankton composition and quantify the
colored dissolved organic matter (CDOM) absorption by discriminating CDOM from other
absorbers [21]. A main goal of the current paper is to test our prototype satellite-based
algorithms for computing the hyperspectral surface and in-water UV solar radiation being
developed for the OCI. For this purpose, we use data from the current Ozone Monitoring
Instrument (OMI) flying on the NASA Aura satellite as a proxy for OCI. To calculate the
underwater radiation field, we use the Hydrolight radiative transfer (RT) model [11] with
our extensions for ocean IOPs into the UV wavelength range [10]. The boundary conditions
at the ocean surface for the underwater computations are provided by the atmospheric RT
model, which was first developed for the OMI UV surface irradiance algorithm [22] and
extended for the computation of hyperspectral surface irradiance in the present work. The
OCI prototype algorithms include both physics-based and neural network (NN) approaches.
Training of the NN algorithm is performed on results of the physics-based algorithm.

2. Data and Methods

We have developed a hyperspectral surface and underwater hyperspectral UV irra-
diance algorithm for the future hyperspectral OCI on board of NASA’s upcoming PACE
mission [21]. The width of the OCI swath will be 2663 km, and the spatial resolution will be
1 km for nadir viewing pixels. OCI will make hyperspectral solar irradiance measurements
once per day and Earthshine radiance measurements for each pixel at a spectral resolution
of 5 nm, covering the spectral range from 340 nm to 885 nm.

2.1. TSIS-1 Data

In the atmospheric RT model, we use the Total and Spectral Solar Irradiance Sensor
(TSIS-1) Hybrid Solar Reference Spectrum (HSRS) [23]. We smoothed the 0.1 nm spectral
resolution TSIS-1 HSRS spectrum with a 5 nm boxcar rolling filter to create a proxy of the
OCI extraterrestrial solar irradiance (ETS) (Figure 1). At wavelengths below 2400 nm, the
original TSIS-1 HSRS hybrid spectrum was constructed by adjusting the absolute irradiance
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scale of high spectral resolution solar irradiance datasets with measurements from the
Spectral Irradiance Monitor (SIM) on the TSIS-1 mission aboard the International Space
Station (ISS). The TSIS-1 SIM instrument is a prism-CCD spectrometer with SI-traceable
calibration monitored carefully on-orbit [24]. The uncertainties reported for the TSIS-1
HSRS are 1.3% in the UV region used in this study. Daily TSIS-1 SIM measurements from
one week in early December 2019 when solar activity was near minimum were used to
construct the reference spectrum. The TSIS-1 HSRS spectrum is recommended by the PACE
science team for the use in OCI L2 algorithms. We corrected TSIS-1 HSRS, reported at a
standard distance of 1 AU, for the variation of ETS with the Sun-Earth distance (±3.5%).

Figure 1. Extraterrestrial spectral irradiance at different spectral resolutions shown for (a) the entire
UV spectral range and (b) the OCI spectral range shown in the light blue cutout in (a). The color bar
represents the boxcar smoothing width in nanometers.

Figure 1a shows TSIS-1 high spectral resolution extraterrestrial solar irradiance mea-
surements at varying boxcar smoothing widths from 1 to 5 nm (OCI 5 nm resolution in
dark red). The spectral shape was chosen because OCI data will be collected at a higher
resolution in orbit and averaged onboard to 5 nm resolution. Figure 1b shows spectral
details in the UV-A region. The high-frequency structure in the irradiance spectra results
from solar Fraunhofer features, resulting from absorption in the Sun’s photosphere. The
depth of the prominent Ca H and K Fraunhofer lines at 396.847 and 393.366 nm dimin-
ishes rapidly as smoothing is applied, and a notable distortion and spectral shift in the
Fraunhofer features occurs as the smoothing width is increased from 3 to 5 nm.

2.2. OMI Data

The Ozone Monitoring Instrument (OMI) is a nadir-viewing spectrometer aboard the
United States National Aeronautics and Space Administration’s (NASA’s) Earth Observing
System (EOS) atmospheric composition (chemistry) observatory (Aura) that flies in a sun-
synchronous orbit with a mean local equator crossing time of about 13:45 (ascending
node). Aura is part of the afternoon “A-train” satellite constellation. OMI measures the
solar irradiance daily and Earth backscattered radiance from 270–500 nm with a spectral
resolution of approximately 0.5 nm [25,26]. It provides near global coverage with a nadir
pixel size of 13 × 24 km2 (along and across the swath, respectively) and a swath width of
about 2600 km. OMI made daily global measurements at the start of the mission, but later
the global coverage period increased to two days, presumably due to a partial obstruction
of the Earth-view port by insulation material on the outside of the instrument. Radiance
and irradiance measurements from OMI Collection 3 Level 1B (product names OML1BRUG
and OML1BIRR, respectively) [27–29] are used in this work. These are obtained from
the Collection 3 products at the Goddard Earth Sciences Data and Information Services
Center (GES DISC). OMI TOA radiance measurements used in this study are from sensor
band 2 (UV-2) and band 3 (Vis). A small angular offset in pointing of the two bands
results in differences in FOV location of 2–3 km in rows 10–40 and 15–25 km at the very
edges of the OMI swath. These larger differences at swath edges are predominantly in the
cross-track direction.



Remote Sens. 2022, 14, 2278 4 of 21

To carry out atmospheric RT computations in UV, we need to know the total col-
umn ozone amounts and surface reflectance. The total ozone fields used as input to the
atmospheric RT computations are obtained from the NASA OMI Total Ozone Mapping
Spectrometer (TOMS)-like product (OMTO3) that has been validated extensively up to a
solar zenith angle (SZA) of 80◦ [30]. We use operational L2 total column ozone measure-
ments from OMI in Dobson Units (1 DU = 2.69 × 1016 molecules/cm2). The OMI-TOMS
V8.5 total ozone data [31] are also obtained from the GES DISC.

As a proxy of the surface reflectance we use a monthly climatology of the so-called min-
imum Lambertian Equivalent Reflectivity (LER). Given the measured top-of-atmosphere
(TOA) radiance, Im, the LER is defined by inverting the following exact equation:

Im = I0 + RT/(1 − RSb), (1)

where R is the surface LER, I0 is the TOA path radiance calculated for a black surface, T
is the total (direct + diffuse) solar irradiance reaching the surface converted to the ideal
Lambertian reflected radiance (dividing by π) and then multiplied by the transmittance
of the reflected radiation between the surface and TOA in the direction of a satellite
instrument and Sb is the diffuse flux reflectivity of the atmosphere for the case of its
isotropic illumination from below. OMI-derived multi-year gridded LER data are used to
create the climatology of the minimum LER (OMLER) [32,33].

2.3. Atmospheric RT Model

RT solutions in the atmosphere and ocean are coupled through the contribution of
photons backscattered by the ocean and then scattered back to the ocean by the atmo-
sphere, see, e.g., Ref. [34] and the references therein. However, if the ocean reflectance
is small enough, the atmospheric and oceanic RT problems can be treated separately.
Vasilkov and Krotkov [8] estimated that the separation of the atmospheric and oceanic
RT models produces less than 10% resulting error in UV underwater irradiance. This RT
scheme allows us to significantly reduce the computational burden and calculate spec-
tral UV penetration into the ocean using global satellite measurements with reasonable
computational resources.

RT calculations of hyperspectral surface planar irradiance, E(λ), are needed to create
a boundary condition for Hydrolight calculations of underwater downwelling irradiance.
E(λ) is determined in the presence of Rayleigh scattering from the molecular atmosphere,
the absorption of ozone, scattering by clouds, both scattering and absorption by aerosols
and reflection from the surface. To accommodate variable BWF spectra, we extended the
OMI surface UV algorithm [22] from 4 to 110 wavelengths producing E(λ) at every 1 nm
from 290 to 399 nm at the OCI spectral resolution of 5 nm. The algorithm is based on inter-
polation of lookup tables of clear sky irradiance, Eclr(λ), and cloud/aerosol transmittance
factor, CT , given by:

E(λ) = Eclr(λ) CT(λ). (2)

Calculation of Eclr from satellite measurements of total column ozone, Ω and Lam-
bertian equivalent surface reflectivity, Rs, is described in Krotkov et al. [35,36]. We use
climatological ozone absorption profiles. Each standard profile represents a multi-year av-
erage for a given total ozone bin for all profiles within a latitude band. These profiles cover
a range of 225–475 DU for low latitudes and 125–575 DU for middle and high latitudes, in
steps of 50 DU. Rs is estimated from a monthly climatology of the minimum LER at 380 nm,
which is small over the ocean (Rs < 0.1). We screen OMI pixels affected by sun glint, which
is highly non-Lambertian.

In practice, we calculate CT(λ) using full radiative transfer calculations for a model
of a homogeneous, plane-parallel C1 cloud model [37] embedded in a Rayleigh scattering
molecular atmosphere with climatological ozone absorption profiles. The C1 cloud model
represents a water cloud model having the modified gamma size distribution of water
droplets with the mode radius of 4 microns. The cloud effective optical thickness, τc,
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assumed spectrally independent, is derived by matching pre-calculated and measured
OMI TOA reflectances at 360 nm corrected for non-elastic (Raman) scattering and collision-
induced O2-O2 absorption [38]. The CT(λ, Ω, τc, Rs, SZA) lookup table is calculated at
multiple wavelengths for a fixed climatological ozone profile (Ω = 300 DU), τc (0–100),
surface albedo, Rs (0–1) and solar zenith angles (SZA = 0–88◦). The cloud height and
geometrical thickness are fixed (3–5.5 km).

We use the DIScrete ORdinate Radiation Transfer (DISORT) code [39] for large τc,
where polarization can be neglected, and the Gauss–Seidel RT code [40] for τc < 10, where
polarization may have an effect on backscattered radiances. The effective τc corresponds to
the actual cloud optical thickness only in an idealized case of a homogeneous plane-parallel
cloud layer with complete coverage of the satellite field of view (pixel). For inhomogeneous
cloud fields, the τc and CT are spatially averaged quantities that depend on the sub-pixel
3D cloud structure and satellite observational geometry in more complex ways [41]. The
spectral independence of τc is a good approximation in the UV region and was confirmed
by Mie calculations. We also neglect the spectral dependence of LER in UV, which is less
than 0.05 over both land and ocean in the UV, causing <2% error in Eclr (see Figure 6 in
Krotkov et al. [35]). Even with spectrally independent τc and LER, our algorithm accounts
for the spectral dependence of diffuse cloud transmittance, which results from interactions
between the cloud and the Rayleigh atmosphere and ozone absorption.

A CT error analysis [41] shows that the C1 cloud model with OMI-derived effective
τc at 360 nm can also be used to describe attenuation of surface UV irradiance by non-
absorbing aerosols (e.g., sulfates and oceanic) or their mixture with clouds. The surface
UV radiation is more strongly attenuated by UV absorbing aerosols (e.g., smoke and dust)
of the same optical depth. These transitory plumes of absorbing aerosols are detected
using the OMI UV aerosol index (AI). Either CT or the absorbing aerosol correction is
applied for each OMI pixel. The choice between these two alternative techniques is based
on the threshold values of LER and AI. Currently, the AI correction technique is applied
if AI > 0.5 and LER < 0.15. The error budget is estimated for each OMI pixel assuming a
horizontally homogeneous scene. The noise (random error) in OMI radiance measurement
is considered to be much smaller than retrieval errors due to uncertainties in the clear sky
atmospheric radiative transfer model, Eclr, CT and ETS irradiance (about 3% [23]). The
Eclr errors are determined by errors in input geophysical parameters: total column ozone
amount, surface pressure and reflectivity [35]. The strategy of the CT error estimate is as
follows: we model the TOA reflectance and true cloud transmittance Ctrue

T = E/Eclr for
different cloud/aerosol scenarios. Next, we use this TOA reflectance to infer the effective
cloud optical thickness, τc, and CT specifically for the C1 model (CC1

T ) to estimate CT error,
i.e., Ctrue

T −CC1
T , for different OMI viewing geometries and cloud/aerosol models (i.e., cloud

drop size distribution, cloud height and cloud fraction, aerosol optical properties, etc.).
Finally, we combine all errors to estimate the total uncertaintiy in the surface irradiance as
∆E ∼ 10% in the UVB and ∆E ∼ 7% in the UVA (see Table 5.5 in [41]).

2.4. Oceanic RT Model

To calculate underwater irradiances, we use a lookup table of scalar and planar irradi-
ances computed with the Hydrolight RT model [11] with our extensions for ocean IOPs into
the UV wavelength range [10]. We use the default boundary conditions for Hydrolight. The
incident sky radiance is calculated by the incorporation of a clear-sky spectral irradiance
model, a cloud cover correction, and a sky radiance distribution model [11]. According
to Mobley [11], “These models have proven sufficiently accurate for most HydroLight
applications. In particular, apparent optical properties (AOPs) are only weakly dependent
on the details of the sky radiance distribution—that is, after all, one of the main reasons for
using AOPs”.

The sea surface is assumed to be covered with waves that are parameterized as a
function of the surface wind speed. We assume the wind speed to be equal to 5 m/s. In our
atmospheric RT model, we do not consider a separation of the incident light into a clear-sky
fraction and a cloudy fraction. This approach is similar to that described in Frouin et al. [42].
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We scale the input surface irradiance for Hydrolight computations by our OMI-retrieved
spectral irradiance. We do not apply the default cloud cover correction in the calculations
because this correction has effectively been incorporated into the CT factor.

The IOP model used here is an extension of the Case I water model [43] to the spectral
region 290–400 nm. The model has been described in detail in Vasilkov et al. [10,44]; here,
we briefly describe the main features of the IOP model and its verification in Appendix A.
The only input parameter of the model is chlorophyll concentration.

The RT computations with Hydrolight were conducted for vertically homogeneous
waters. We do not account for non-elastic Raman scattering because its contribution to
the in-water radiation field in the UV region is small. This is due to a relatively large
wavelength shift between the vibrational Raman excitation and emission bands, which
is about 40–50 nm. Due to the sharp decrease of solar radiation at shorter wavelengths
in the UV region, the vibrational Raman excitation is significantly reduced at shorter
wavelengths, and thus the vibrational Raman emission at longer wavelengths is small. This
fact substantially limits the spectral performance of algorithms developed to estimate UV
underwater light attenuation from satellite hyperspectral observations from the in-water
vibrational Raman scattering signal [19]. Reliable results of the light attenuation retrieval
can be expected for longer wavelengths of the UV-A spectral range only. The attenuation of
the harmful UV-B radiation seems to be hardly estimated using the in-water Raman signal
from the theoretical point of view. It should also be noted that the Raman-based approach
for retrieving the light attenuation has another limitation; it is applicable for cloud fractions
less than 0.05 only [19]. Additionally, the Raman effect is significantly smoothed due to
the relatively low spectral resolution of OCI. The Raman effect strongly depends on the
spectral resolution of an instrument. Even at the OMI spectral resolution of about 0.5 nm,
the Raman effect does not exceed a few percent in the deepest Ca II Fraunhofer lines [45].

Lookup tables for in-water downward and upward irradiances were generated for the
UV wavelength range of 290–400 nm, for chlorophyll concentrations that varied from 0.01
to 10 mg/m3, for SZAs ranging from 0◦ to 80◦, and ozone column amounts from 150 to
550 DU.

2.5. Scalar Irradiance

For studying physical processes in the ocean, e.g., the heating rate, downward or
upward planar irradiance (i.e., energy flux through a horizontal plane) is essential. How-
ever, in biogeochemical studies, e.g., photosynthesis, photochemistry, UV effects on marine
ecosystem, etc., the scalar irradiance (density of radiant energy) is more appropriate [46].
The OMI UV irradiance product provides the planar irradiance, Ed, at the ocean surface.
The spectral planar downward irradiance (energy flux through a horizontal plane) is
defined as:

Ed(λ) =
∫

2π
I(λ, θ, φ)cosθ dω, (3)

where I is the radiance as a function of wavelength λ, zenith angle θ and azimuth angle
φ; ω is the solid angle, integration is performed over the upper hemisphere. The upward
irradiance is defined similarly with integration over the lower hemisphere. The scalar
irradiance (i.e., actinic flux in the atmospheric optics) is defined as:

Eo(λ) =
∫

4π
I(λ, θ, φ) dω, (4)

where the integration is performed over the entire 4π solid angle. The quantity Eo(λ)λ/(hc)
gives a number of photons in a unit of volume. We propose to estimate scalar irradiance,
Eo, at the ocean surface by scaling the planar irradiance, Ed, on a basis of Hydrolight
computations: Eo = f (λ, θ, Chl, Ω)Ed, where the scaling factor, f , depends on wavelength,
θ, chlorophyll concentration (Chl) and total column ozone amount Ω, is considered in
detail in Appendix B.
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3. Results
3.1. Surface Irradiance

The Marine Optical Buoy (MOBY) is a facility designed for the vicarious calibration of
satellite ocean color instruments [47]. Located in clear ocean waters near the island of Lanai,
Hawaii, MOBY measures the upwelling radiance and downwelling irradiance below the
ocean surface plus the incident solar irradiance just above the surface. The measurements
include a near-UV range down to about 350 nm.

Figure 2 shows the results of comparing the OMI-derived surface irradiance with
the MOBY-measured irradiance in the UV. Comparisons were carried out for OMI pixels
collocated over the MOBY site. Because the OMI equator crossing time is about 13:45
local time, the MOBY measurements at 14:00 local time are selected to ensure a minimum
time difference between the MOBY measurements and OMI overpass time. Only good
MOBY measurements under clear skies were used for the comparisons. OMI pixels were
collocated for different seasons to encompass the SZA variability over the year 2005. Using
the PACE recommended TSIS solar irradiance improved comparisons with MOBY by 2–3%.
As can be seen from Figure 2, the computed and measured irradiances agreed rather well;
the mean difference was less than 5%.

Figure 2. (a) A comparison of the smoothed Es measurements from MOBY (solid line) and OMI
(symbols) using the Solar Ultraviolet Spectral Irradiance Monitor (plus signs) and TSIS (asterisks)
extraterrestrial solar irradiance spectra for a selected OMI pixel. (b) The mean difference and standard
deviation between the OMI-derived surface irradiance and the MOBY-measured irradiance.

3.2. In-Water Irradiance

We first present the results, which show the main factors affecting the underwater UV
radiation field and then the results of the OMI-retrieved characteristics of the radiation field.

3.2.1. Spectral Irradiance

Here, we consider the spectral dependence of planar and scalar irradiances and DNA
action-weighted irradiance. The latter is defined as a product of the spectral irradiance
and the DNA damage action spectrum [48] (see also https://www.temis.nl/uvradiation/
product/action.html, accessed 30 March 2022). Figure 3 shows an example of absolute
values of the hyper-spectral planar and scalar irradiances at different depths and the
corresponding normalized irradiances along with the DNA action spectrum.

A comparison of the normalized irradiance spectra (Figure 3 right) near the ocean
surface and at the depth of 20 m shows how the spectra changed with depth. The most
significant reduction of the irradiance occured at shorter wavelengths. As the depth
increased, the ocean water mostly cut down the short-wave part of the solar spectrum due
to higher absorption at shorter wavelengths.

https://www.temis.nl/uvradiation/product/action.html
https://www.temis.nl/uvradiation/product/action.html
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Figure 3. Spectral planar (solid lines) and scalar (dashed lines) irradiances. Left: Absolute values
of the irradiances at two depths: 2 m (red lines) and 20 m (blue lines). Right: Planar and scalar
irradiances normalized over their values at 400 nm. The black line shows the DNA damage ac-
tion spectrum.

The DNA-weighted irradiances are shown in Figure 4. It is interesting to note that the
spectral maximum of the DNA-weighted irradiances slightly shifted from 303 nm to about
305 nm with depth increasing from 2 m to 20 m. This is explained by the larger absorption
of ocean water at shorter wavelengths resulting in the reduction of contribution of shorter
wavelengths to the DNA-weighted irradiance. An estimate of the diffuse attenuation
coefficient at 305 nm from in situ measurements [49] or satellite observations [16] can
provide information on the DNA damage penetration depth.

Figure 4. DNA-weighted planar (solid lines) and scalar (dashed lines) irradiances at two depths: 2 m
(red lines) and 20 m (blue lines).

3.2.2. K-Functions in the UV

In-water attenuation of Ed and Eo with depth is characterized by the diffuse attenuation
coefficient (K-function):

K(z) = −d ln(E)/dz, (5)

where E is either Ed or Eo, z is the depth and the wavelength dependence is omitted for
briefness. Then, the propagation of E to depth is described by the exponential function:

E(z) = E(0) exp(−
∫ z

0
K(z)dz), (6)

where E(0) is the irradiance value at the surface. A penetration depth, zp, can be defined
as a depth at which the quantity E decreases to a pre-defined fraction of its surface value
ε = E(zp)/E(0). For instance, in the case that K equals a constant and the commonly used
value ε = 0.1 for defining the euphotic zone depth, z10% [50], the penetration depth is
zp = − ln(0.1)/K.
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The diffuse attenuation coefficient at a given depth depends on the angular distribution
of radiance and IOPs, e.g., [51]. Here, we compare the diffuse attenuation coefficients for
downwelling planar irradiance, Kd, and scalar irradiance, Ko, as a function of different input
variables. Figure 5 shows the dependence of Kd and Ko on depth, wavelength, chlorophyll
concentration and SZA.

Figure 5. Diffuse attenuation coefficient Kd (red lines) and Ko (blue lines) as a function of: (a) wave-
length, (b) depth for two SZAs of 15◦ (solid lines) and 60◦ (dashed lines), (c) chlorophyll concentration
for two wavelengths 300 nm (solid lines) and 380 nm (dashed lines) and (d) SZA for two values of
chlorophyll concentration 0.1 mg/m3 (solid lines) and 1.0 mg/m3 (dashed lines).

The data in Figure 5 show that the dependences of the diffuse attenuation coefficient
of scalar and planar irradiance on depth were quite close to each other. Given that the
average cosine of the downwelling radiance is defined as µ(z) = Ed(z)/E0(z), this means a
weak dependence of µ in UV on depth in the upper layer of the ocean due to the following
relationship dµ/dz = µ(Kd − Ko). The weak dependence of µ on depth results in a weak
dependence of the K functions on depth (see Figure 5b) because we assume a vertically
uniform distribution of IOPs. This assumption is well justified for the well-mixed upper
layer of the ocean. The weak dependence of the K functions on depth in the upper layer
allows for the use of a single value of the K functions averaged over the upper layer for
predicting the penetration depths in the UV. This is particularly important for satellite
estimates of the diffuse attenuation coefficients [16] because the satellite estimates are based
on the measurement of water-leaving radiance, which is primarily formed in the upper
layer of the ocean.

The wavelength dependence of the K function shown in Figure 5a was determined
by the IOP wavelength dependence. The dominant role in this dependence is played by
the spectral dependence of the total absorption coefficient, which significantly increases
with decreasing wavelength. Similarly, the dependence of the K functions on chlorophyll
(Figure 5c) is explained by the increase in the total absorption coefficient with the increasing
chlorophyll concentration (see Appendix A). Figure 5d shows that the K functions increase
slightly with increasing SZA. This is explained by the fact that the average cosine of the
downwelling radiance decreases due to an increased fraction of the diffuse light in the
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incident radiation. The dependence of Kd and Ko on ozone amount is quite small and is not
shown in Figure 5.

3.2.3. OMI Retrievals

In this section, OMI retrievals are shown for OMI orbit 2573 on 7 January 2005. All
the retrievals are limited to SZA < 80◦. The retrievals include the surface erythemal dose
rates and penetration depths for the DNA damage dose rates. The DNA damage dose rate
at a given depth is defined as the integral of the DNA-weighted irradiance over the UV
spectral range:

D(z) =
∫ 400

290
E(λ, z, SZA)A(λ) dλ, (7)

where E(λ, z) is either the planar or scalar irradiance, A(λ) is the DNA damage action
spectrum [48] and SZA is defined for each OMI pixel at the time of the satellite overpass.
The penetration depth is calculated from the following equation: D(zp) = εD(0), where
ε = 0.1.

Figure 6 shows maps of the main input parameters of orbit 2573 used for the OMI
retrievals. The chlorophyll concentrations shown in Figure 6 were obtained from the
MODIS/Aqua chlorophyll-a product [52]. We use the monthly averaged Level 3 MODIS
chlorophyll product, which is reported at a spatial resolution of 4 km [53]. All available
monthly MODIS chlorophyll data within the OMI field-of-view (FOV) were averaged. In
the case where MODIS data were not available from the monthly product for an OMI FOV,
gap filling was performed using monthly climatology. If monthly data were unavailable,
an annual mean was used.

Figure 6. Maps of the main input parameters: (a) solar zenith angle; (b) chlorophyll concentration in
mg/m3; (c) ozone amounts in DU; and (d) effective cloud optical depth at 360 nm.

Figure 7 shows maps of the OMI-derived surface erythemal dose rates. The dose
rates were calculated using the planar and scalar irradiances convolved with the erythemal
action spectrum [54] (see also, https://www.temis.nl/uvradiation/product/action.html,
accessed on 30 March 2022).

As expected, the scalar erythemal dose rates were noticeably higher than the planar
erythemal dose rates. Both planar-based and scalar-based erythemal dose rates depend on
SZA and cloud cover. The erythemal dose rates exhibit a strong spatial correlation with
the effective cloud optical depth shown in Figure 6d. The ratio of the scalar dose rates to
the planar dose rates (Figure 7c) was highly correlated with SZA (Figure 6a) and increased
with SZA except for very high SZA > 70◦ in the northern part of the orbital swath. For
those high SZAs, the ratio decreased with increasing SZA (see Figure A2b of Appendix B).
This dependence of the ratio on SZA for high values of SZA was similar to the so-called
Umkehr effect that is related to ozone absorption in the atmosphere. In general, the ratio

https://www.temis.nl/uvradiation/product/action.html
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of the scalar erythemal dose rates to the planar erythemal dose rates varied from 1.5 to
about 3.0.

Figure 7. Maps of the surface erythemal dose rates: (a) calculated using the scalar irradiance;
(b) calculated using the planar irradiance; (c) ratio of the scalar erythemal dose rate to the planar
dose rate.

Figure 8 shows maps of the penetration depths of the DNA damage dose rates cal-
culated using the planar and scalar irradiance and their difference. The maps of the
penetration depths show that a governing parameter that mostly defines the penetration
depth is chlorophyll concentration. There is a strong spatial correlation between the chloro-
phyll concentration (Figure 6b) and the penetration depths (Figure 8a,b). Other input
parameters play an insignificant role in the spatial distribution of the penetration depths.
The penetration depths vary from a few meters in areas of productive waters of the South-
ern Ocean to about 30–35 m in the clearest waters of the South Pacific Gyre. Differences
between the planar penetration and scalar penetration depths are small. They do not exceed
a couple of meters (Figure 8c). This fact follows from Hydrolight computations that show a
small difference between K functions for the planar and scalar irradiances for a wide range
of input parameters (Figure 5).

Figure 8. Maps of the penetration depths for the DNA damage dose rates: (a) calculated using the
planar irradiance; (b) calculated using the scalar irradiance. (c) The difference between the planar
penetration and scalar penetration depths. The color bars represent the penetration depths in meters.
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3.3. Machine Learning Results

Forward radiative transfer modeling from tools such as Hydrolight can be compu-
tationally inefficient due to the large number of complex non-linear physical equations.
The current and future Earth observing satellites continue to provide measurements at
higher spectral, spatial and temporal resolutions. As a result of the increased number of
measurements, traditional physically based radiative transfer models will not be feasible in
operational processing. Machine learning approaches have been proposed to overcome
these computational challenges. Machine learning models such as neural networks (NNs)
can learn how to represent the complex physical relationships in the radiative transfer
simulations through statistical equations [55,56].

Here, we explore the feasibility of using an NN to reproduce the physics-based pene-
tration depth simulations from Hydrolight so that the retrieval algorithm can be applied
to an operational sensor such as OMI. The inputs used to estimate penetration depth are
SZA, chlorophyll concentration, total column ozone and surface irradiance. For this work,
we used a simple four-layer feed-forward neural network with an input layer, two hidden
layers and an output layer that predicts planar and scalar penetration depth. The neural
network uses a sigmoid activation function for each hidden layer and an adaptive moment
estimation optimizer was used to minimize the error with a learning rate of 0.01. We trained
the NN with 80% of the samples from two orbits from 7 January 2005 (orbits 2570 and
2572), which include a well-distributed sampling of Case I open waters (low chlorophyll
concentration) as well as Case II coastal waters (higher chlorophyll concentration). The
neural network was able to predict the penetration depth in approximately two seconds of
the computer time for a single orbit as compared with a few minutes of the computer time
needed for processing a single orbit by the physics-based algorithm.

Figure 9 shows comparisons of the NN estimates of penetration depth compared to
those from the Hydrolight simulations. This figure shows comparisons for orbits included
in the training (left panel) as well as additional independent testing orbits not included
in the NN training (right panel). There was excellent agreement between the NN results
and the Hydrolight simulations with an R2 of nearly 1 and RMS error of 0.08–0.1 m. The
comparisons were quite similar for the training orbits and independent orbits, suggesting
that the NN works well for all conditions and is not overfitting to the training samples.

Figure 9. Comparisons of Hydrolight penetration depth simulations and neural network estimate for
7 January 2005. Left panel shows comparisons for orbits included in neural network training while
right panel shows orbits on this date not included in the training.

Figure 10 shows maps of the planar penetration depth from Hydrolight (top) and
the estimated planar penetration depth from the NN (middle). The NN does well in
reproducing the planar penetration depth; differences with Hydrolight were generally
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<±2%. There were some larger differences off the immediate coast of Antarctica, which
are likely due to misclassification of snow or sea ice.

Figure 10. Map of planar penetration depth on 7 January 7 2005. Top panel shows planar penetration
depth from Hydrolight, middle panel shows planar penetration depth from the neural network and
the bottom shows the percent difference of Hydrolight versus the neural network estimate. The color
bars represent the penetration depths in meters and the percent difference.
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4. Discussion
4.1. IOP Model Limitations

The largest source of uncertainty in the estimation of UV penetration into the ocean
is related to the IOP model used in RT computations with Hydrolight. HydroLight is
a radiative transfer numerical model that computes radiance distributions and derived
quantities for natural water bodies. This model solves the unpolarized RT equation to
obtain the radiance distribution within a plane-parallel water body. We neglect the errors
of solving the RT equation with Hydrolight because a main source of the errors in the
Hydrolight output is related to uncertainties in the Hydrolight input. In general, the
Hydrolight inputs consist of the absorbing and scattering properties of water, the properties
of the wind-blown ocean surface, the reflectance of the bottom in the case of shallow waters
and the angular distribution of radiance incident on the ocean surface.

Here, we assume the Case I model of IOPs that allows us to minimize the number
of input parameters and, therefore, to use the standard satellite ocean color product as
input for Hydrolight. Within the Case I model, the IOPs of ocean water are assumed to be
fully correlated and can be parameterized through chlorophyll concentration. The Case I
ocean water model is supposed to work well for open ocean waters where the influence of
terrigenic matter is negligible. The Case I model is not applicable for coastal zones of the
world ocean where suspended particulate matter and CDOM may not be fully correlated
with chlorophyll concentration.

Our parameterization of the particulate-matter absorption coefficient, aph, Ref. [10] is
based on in situ data collected on the California Cooperative Oceanic Fisheries Investiga-
tions (CalCOFI) cruises in different areas and seasons. The CalCOFI region encompasses a
large dynamic range of coastal and open ocean trophic structures. The optics data have
been collected for Chl-a concentrations at the surface, ranging four orders of magnitude,
from 0.05 mg m−3 for offshore stations to about 20 mg m−3 and higher. The taxonomic
composition across the onshore-offshore gradient ranges from a dinoflagellate/diatom-
dominated coastal community to a pico-plankton-dominated community offshore. The
offshore region of CalCOFI is typical of the open ocean oligotrophic subtropical gyres with
low surface Chl-a and a deep Chl-a maximum between 100–130 m.

Unfortunately, there are few measurements of particulate-matter absorption below
350 nm. That is why a direct comparison of our parameterization with other data is limited.
The lack of the aph(λ) data compels us to assume an arbitrary spectral dependence of aph in
the UV. For instance, Westberry et al. [57] assume that aph is spectrally flat for λ < 412 nm,
which is rather unrealistic. However, this model is currently embedded in NASA’s SeaDAS
software. A classification of aph(λ) measured down to the 350 nm at 5 nm step was proposed
in [58]. The aph spectra were divided into twelve groups based on a value of aph(440),
covering oligotrophic oceanic waters to waters with phytoplankton blooms. However,
a parameterization of aph in UV that would be suitable for a global application was not
proposed. Morrison et al. [59] show two normalized phytoplankton absorption spectra
from 300 to 750 nm taken at the Bermuda Atlantic Time Series (BATS) site. Their spectra
are highly variable with seasons and depths between 300 and 365 nm. This variability is
likely due to mycosporine-like amino acids (MAAs), which strongly absorb near 320 nm.
The shape of the summer spectrum [59] is quite different from our paramterization. This is
explained by averaging many spectra collected in different seasons in our parameterization,
while Morrison et al. [59] show examples of the phytoplankton absorption spectra. This
discussion suggests the development of a new parameterization based on simultaneous
measurements of chlorophyll and MAA concentrations. Hedley and Mobley [60] attempted
to combine the data from Vasilkov et al. [10] with the spectra from Morrison et al. [59] in
the latest version of Hydrolight. Their attempt gives an absorption model that roughly
corresponds to the mid-range of UV absorptions seen in Morrison et al. [59]. We think that
this model may be too speculative and do not use it in our computations.

Quantifying the pure water absorption coefficient, aw, is important because there
is no consensus on the aw values. There are significant differences between different
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datasets of aw in the UV. We have discussed the pure water absorption and compared the
different datasets in Vasilkov et al. [44,61] (see, e.g., Figure 12 in Vasilkov et al. [61]). The
estimates from Vasilkov et al. [61] show that the IOP model could be improved for very
low chlorophyll concentrations if we use the data from Lee et al. [62]. However, those data
were not derived from direct measurements; they were retrieved from comparisons of the
modelled and measured remote sensing reflectances. Moreover, the spectral range of aw
data in Lee et al. [62] is not suitable for our purposes because it is limited by the shortest
available wavelength (350 nm). That is why we do not use those data.

4.2. Verification of the IOP Model

We have verified the ocean RT and IOP model by comparing the calculated and
measured diffuse attenuation coefficients in Vasilkov et al. [10]. Here, we briefly describe
the results of the verification. In situ data used in the comparisons are from measurements
taken during the Aerosol Characterization Experiment. The (ACE)-Asia experiment was
carried out in 2001 in the Pacific Ocean. The dataset includes profile measurements of
downward irradiance Ed and upward irradiance Eu at 17 wavelengths ranging from 313
to 710 nm. In the field measurements of Kd, the surface-wave introduced fluctuations in
the subsurface light field make it hard to accurately determine Kd(z). To compare with the
calculated Kd, we averaged the measurements over a 10 m layer using linear regression
analysis between ln(Ed(z)) and z. Comparisons of the calculated and measured Kd, which
were completed for chlorophyll concentrations less than 0.7 mg/m3 to ensure the validity
of the Case I water model, showed that the correlation coefficient varied from 0.89 at 313,
320 and 340 nm to 0.87 at 380 nm. The relative RMS error for all the cruise stations was less
than 20%. There was no obvious bias between the measured and calculated Kd, suggesting
that the IOP model reasonably reflects the observed absorption and scattering in the ocean.
Comparisons between the calculated and measured quantities were also carried out for
the diffuse reflectance, R = Eu/Ed in Vasilkov et al. [44]. The comparisons showed a good
agreement between the data: the correlation coefficient varied from 0.85 to 0.90 depending
on wavelength.

4.3. Ozone Availability for OCI

Daily column ozone fields are necessary to apply our underwater UV retrieval algo-
rithm to OCI. OMI no longer achieves daily global coverage due to a partial instrument
blockage at the Earth-view entrance port. Total column ozone is also available from the
series of Ozone Mapping and Profiler Suite (OMPS) nadir mapper (NM) instrument, which
will be operating on the Joint Polar Satellite System (JPSS) missions into the next decade.
However, it would be preferable for our retrievals to use total ozone produced from the
OCI itself. Mannino et al. [63] demonstrated the feasibility of retrieving ozone from PACE,
if the UV spectral range of OCI could be extended to bands centered at 322 and 325 nm.
They find the quality of retrieved ozone from their approach suitable for the atmospheric
correction of ocean color products, and the same is true for underwater UV irradiances.

Another possibility to obtain total column ozone is the use of monthly climatological
values. However, some differences between the daily ozone and climatological amounts
will inevitably exist. They will lead to errors in the surface and underwater irradiances.
For the typical 5 DU (2%) ozone uncertainty, the surface UV uncertainty is 1–3% at 310 nm,
increasing to 5–8% at 300 nm and 10–15% at 295 nm. The UV sensitivity to total ozone and
its vertical distribution increases for high SZAs and short UVB wavelengths due to the
Umkehr effect (see the discussion of Figures 3 and 4 in Krotkov et al. [35]).

5. Conclusions

Scalar irradiance at the ocean surface can be derived from satellite estimates of planar
irradiance using the scaling factor from Hydrolight computations. For a clear sky, the
scaling factor is a function of wavelength, SZA and ozone amount. The scalar erythemal
dose rates calculated at the ocean surface are noticeably higher than the planar erythemal
dose rates; their ratio varies from 1.5 to about 3.0. In-water attenuation of Ed and Eo with



Remote Sens. 2022, 14, 2278 16 of 21

depth is quite similar. Differences in the corresponding K-functions are very small for
the wide range of input parameters, which include depth, wavelength, SZA, chlorophyll
concentration and ozone amount.

A dominant factor defining the UV penetration depths is chlorophyll concentration.
Other input parameters play a less significant role in the spatial distribution of the penetra-
tion depths. The penetration depths vary from a few meters in areas of productive waters
to about 30–35 m in the clearest waters. The machine learning algorithm shows a very good
performance with the selected NN architecture in predicting the penetration depths. The
NN reproduces the planar penetration depth with errors <±2%.
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Abbreviations

The following abbreviations are used in this manuscript:
AU Astronomical Unit
BWF Biological Weighting Function
CDOM Colored Dissolved Organic Matter
DNA Deoxyribonucleic Acid
DU Dobson Unit
FOV Field of View
IOP Inherent Optical Property
MOBY Marine Optical Buoy
MODIS Moderate Resolution Imaging Spectroradiometer
OCI Ocean Color Instrument
OMI Ozone Monitoring Instrument
RMS Root Mean Square
RT Radiative Transfer
SZA Solar Zenith Angle
TOA Top of the Atmosphere
TSIS-1 HSRS Total and Spectral Solar Irradiance Sensor Hybrid Solar Reference Spectrum
UV Ultraviolet

Appendix A. IOP Model

To carry out RT computations with Hydrolight we need to specify the absorption and
scattering coefficients of ocean water along with a phase-scattering function. The total IOPs
are built up as a sum of IOPs attributable to the various components of the water body.
Thus, the total absorption coefficient is:

a(λ) = aw(λ) + aph(λ) + aCDOM(λ), (A1)

https://disc.gsfc.nasa.gov/datasets/OML1BRUG_004/summary
https://disc.gsfc.nasa.gov/datasets/OML1BRUG_004/summary
https://lasp.colorado.edu/lisird/data/tsis1_hsrs
https://disc.gsfc.nasa.gov/datasets OMTO3_003/summary
https://oceancolor.gsfc.nasa.gov/
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where aw is the pure ocean water absorption coefficient, aph is the particulate-matter
absorption coefficient and aCDOM is the CDOM absorption coefficient. Similarly, the total
scattering coefficient is calculated as follows:

b(λ) = bw(λ) + bph(λ), (A2)

where bw is the pure ocean water scattering coefficient, and bph is the particulate-matter
scattering coefficient.

Additionally, we need to specify a phase-scattering function. An intercomparison of
different phase scattering functions was carried out in Vasilkov et al. [10] by comparing the
calculated Kd with the measured Kd for different chlorophyll concentrations. Data in this
paper show that the physically-based Fournier–Forand (FF) phase function [64] is better
in predicting downwelling irradiances than the average Petzold phase function. The FF
phase function with a backscatter fraction of 0.003 was used in the computations. This
conclusion was confirmed by Vasilkov et al. [44], where comparisons of the calculated
diffuse reflectance and measured reflectance were performed.

An important feature of the IOP model in the UV region is quantifying the pure water
absorption coefficient, aw. At present, there are significant differences between different
datasets of aw in the UV region. A detailed discussion on pure water absorption and
comparisons of the different datasets can be found in Vasilkov et al. [44,61]. In this study, we
use interpolation between data given in Pope and Fry [65] and Quickenden and Irvin [66],
as suggested by Fry [67].

To reduce a number of input parameters to the IOP model, we assume the so-called
Case I water model [43,68]. According to this model, all ocean water constituents are of
biogenic origin and can be related to a single parameter—chlorophyll concentration. A
parameterization of the particulate matter absorption coefficient in the UV as a function
of chlorophyll concentration is based on in situ data collected in the framework of the
California Cooperative Oceanic Fisheries Investigations (CalCOFI) [10].

The particulate matter absorption coefficient is expressed through a chlorophyll-a
concentration and a chlorophyll-specific absorption coefficient similar to that used in the
visible part of the spectrum:

aph(λ) = A(λ) Chl1−B(λ), (A3)

where the coefficients A(λ) and B(λ) are tabulated in [10]. The spectral dependence of
aph and its dependence on chlorophyll concentration are shown in Figure A1 for low
chlorophyll concentrations, which are typical for open ocean waters (Case I waters).

Figure A1. The particulate-matter absorption coefficient. Left panel: aph as a function of wave-
length for different chlorophyll concentrations: 1—Chl = 0.55 mg/m3; 2—Chl = 0.13 mg/m3; 3—
Chl = 0.03 mg/m3. Right panel: aph as a function of chlorophyll concentration for different wave-
lengths: 1–300 nm; 2–340 nm; 3–380 nm.
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An important absorber in UV is the colored (or chromophoric) dissolved organic
matter (CDOM). The spectral CDOM absorption is parameterized in the conventional form:

aCDOM(λ) = aCDOM(λ0) exp[−S(λ − λ0)], (A4)

where λ0 = 440 nm is the reference wavelength, and S is the spectral slope. The CDOM
spectral slope typically has somewhat higher values in the UV region as compared with the
Vis region. We assume S = 0.017 nm−1, as recommended for the UV [69]. Following Morel
and Maritorena [68], the CDOM absorption coefficient at 440 nm is parameterized as:

aCDOM(440) = 0.2[aw(440) + 0.06 Chl0.65], (A5)

where aw = 0.0063 m−1 is the pure seawater absorption coefficient [70]. This parameteriza-
tion assumes that there is some CDOM absorption even in the absence of chlorophyll and
models the presence of background CDOM in ocean waters.

The spectral dependence of the particulate matter scattering coefficient is approxi-
mated by a power law:

bp(λ) = b0(λ/λ0)
n, (A6)

where λ0 = 550 nm is the reference wavelength and the power-law exponent is set to
n = 1 [43]. A value of the particulate matter scattering coefficient at the reference wave-
length is parameterized through the chlorophyll concentration [68]:

b0 = 0.416 Chl0.766

Thus, all the input parameters are functions of only one input quantity—the chloro-
phyll concentration.

Appendix B. Scaling Factor

The scaling factor f (λ, SZA, Chl, Ozone) = Eo/Ed derived from Hydrolight computa-
tions allows us to estimate the scalar irradiance at the ocean surface provided the planar
irradiance is known from an external source. In our case, the external source is satellite-
derived planar irradiance at the surface. Then we can propagate the scalar irradiance
into the ocean body using Hydrolight. The Hydrolight computations are carried out for a
specified angular distribution of incoming radiance at the surface, which may differ from
the actual angular distribution of incoming radiance. The below results refer to the default
boundary conditions of Hydrolight.

Figure A2 shows the scaling factor just above the ocean surface as a function of
different input variables.

The most notable dependence of the scaling factor on input parameters is its de-
pendence on SZA (Figure A2b). The scaling factor increases with SZA increasing up to
SZA ≈ 70◦. Then, the scaling factor decreases with increasing SZA. This dependence of the
scaling factor on SZA for high values of SZA is similar to the so-called Umkehr effect. Such
a dependence of the scaling factor on SZA is explained by a different ozone absorption of
the direct and diffuse solar light as a function of SZA in the atmosphere.
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Figure A2. The scaling factor dependence on different variables; (a) the f dependence on wavelength
for different SZAs; (b) the f dependence on SZA at 300 nm for different ozone amounts; (c) the f
dependence on chlorophyll concentration for different wavelengths. (d) The f dependence on ozone
amount for different wavelengths.
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