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Abstract: The topographical morphology of the loess landform on the Loess Plateau exhibits re-
markable textural features at different spatial scales. However, existing topographic texture analysis
studies on the Loess Plateau are usually dominated by statistical characteristics and are missing
structural characteristics. At the same time, there is a lack of regularity calculation methods for DEM
digital terrain analysis. Taking the Loess Plateau as the study area, a regularity calculation method
based on the improved normalized distance matching function (INDMF) is proposed and applied to
the classification of a loess landform. The regularity calculation method used in this study (INDMF
regularity) mainly includes two key steps. Step 1 calculates the INDMF sequence value and the peak
and valley values for the terrain data. Step 2 calculates the significant peak and valley, constructs
the significant peak and valley sequences, and then obtains the regularity using the normalised
ratio value. The experimental results show that the proposed method has good anti-interference
ability and can effectively extract the regularity of the main landform unit. Compared with previous
methods, adding structural features (i.e., INDMF regularity) can effectively distinguish loess hill and
loess ridge in the hilly and gully region. For the loess hill and loess ridge, the recognition rates of
the proposed method are 84.62% and 92.86%, respectively. Combined with the existing topographic
characteristics, the proposed INDMF regularity is a topographic structure feature extraction method
that can effectively discriminate between loess hill and loess ridge areas on the Loess Plateau.

Keywords: DEM; loess hilly and gully region; INDMF regularity; terrain texture; landform recognition;
Loess Plateau

1. Introduction

China’s Loess Plateau has experienced more than two million years of loess trans-
portation and accumulation. Under various factors, it has developed into the geomorphic
characteristics of “thousands of gullies” based on the ancient landform of rock strata. Many
scholars have studied the landform of the Loess Plateau from different perspectives: many
research achievements have been made in the causes of the Loess Plateau [1–3], the mode
of loess erosion [4,5], the development of loess landform [6–8]. These results clarify the
significance of the Loess Plateau in the material and energy cycle and ecological environ-
ment protection in China and even the world. In addition, with the development of sensor
technology and remote sensing technology, DEM data is becoming one of the key data for
the study of China’s Loess Plateau [9–13].

The topography of the Loess Plateau has significant self-similarity [14], which makes
it feasible to study the terrain quantification, recognition and classification of the Loess
Plateau by using texture features [15,16]. Figure 1 is a visualisation of the DEM (Digital
Elevation Model) for typical landforms of the Loess Plateau. Figure 1a presents the early
stage of loess tableland. Figure 1b shows the late stage of loess tableland. Figure 1c is
the loess ridge area. Figure 1d is the loess hill area. These four samples are distributed
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sequentially from south to north, the gully erosion gradually intensifies, and the texture
primitives visually change from coarse to fine. At the same time, the gullies themselves and
their spatial distribution have significant self-similarity. The research on the self-similarity
topographic characteristics and spatial distribution law of the Loess Plateau has important
theoretical significance and application prospects for clarifying the spatial pattern of soil
erosion on the Loess Plateau [4], guiding the protection of soil and water loss on the Loess
Plateau [17,18], optimizing land use evaluation [19].
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Figure 1. DEM visualisation of typical landform of Loess Plateau. (a) the early stage of loess tableland;
(b) the late stage of loess tableland; (c) loess ridge area; (d) loess hill area.

The self-similarity of the Loess Plateau can be calculated and quantified by texture
analysis. With the development of aerial sensors, data acquisition technology for high-
resolution remote sensing images and digital elevation models has been widely used.
Texture analysis has been an important means of geomorphic mapping and terrain clas-
sification in the field of geoscience [20,21]. Many research works have applied textural
features to the digital topography analysis of the Loess Plateau. In 2011, Tao [22] elaborated
on the concept of topographic texture. In his loess topography analysis, the author per-
formed scale analysis and quantitative feature comparison by using the moment invariant,
GLCM (Gray-level Co-occurrence Matrix) texture operator and three-dimensional porosity
methods which verify the effectiveness of texture features for loess landform recognition
and classification. On the basis of a DEM and remote sensing image data, Liu et al. [23]
analysed the differences in the texture features of the Loess Plateau. The authors selected
eight different geomorphic sample areas to compare and analyse the effectiveness, stability
and intergroup differences of topographic features. His experimental results show signifi-
cant differences in texture features between the DEM and the remote sensing images. The
DEM can more directly describe the feature changes caused by topographic fluctuations,
and remote sensing images are greatly affected by the loess surface cover. In recent years,
with the continuous progress of soil and water conservation in the Loess Plateau, DEM has
gained significant advantages in the topographic analysis of the Loess Plateau. In addition,
the derived factors of the DEM, such as the second-order texture features of slope and
illumination simulation, also have good intergroup discrimination. Then, aiming at the
stability of the texture features of topographic relief in the loess landform, Huang et al. [24]
and Li et al. [25] analysed the degree of texture change through the GLCM and RILBP
(Rotation-Invariant Local Binary Pattern) methods, respectively. Both methods clearly show
that the resolution of the DEM has a significant impact on texture recognition, and different
resolutions lead to different recognition efficiencies and result accuracies. Huang adjusted
the texture parameters of the GLCM operator, compared them item by item and found that
four parameters in multiple features have a good recognition rate. Li et al. [25] also consid-
ered the significant impact of scale, and different loess landforms have different stability
scales. Ding et al. [26] used 48 random loess areas, and the terrain texture measure was
significantly correlated with the gully density, slope and other terrain factors, indicating
that the terrain texture measure based on the stability analysis unit can reflect the basic
characteristics of the topographic morphology.
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From the above literature, we can know that texture features are gradually applied
in the topographic analysis of the Loess Plateau from theoretical research. Although
the amount of relevant literature is limited, feasible conclusions have been given on the
applicability of texture features in the topographic analysis of the Loess Plateau. However,
the current research is mostly based on the statistical method, which is based on the
probability density distribution between pixels. There are few cases of texture analysis
using structural features.

The above method is mainly used in theoretical research on the texture features of the
loess landform. In recent years, texture features have been applied to practical classification
and recognition. Zhao et al. [27] constructed a combination of topographic characteristics
(e.g., mean slope and elevation range) and textural characteristics (e.g., slope contrast
and elevation variance) on the basis of the SRTM (Shuttle Radar Topography Mission)
DEM data, using small watersheds at a regional scale. The authors found that the highest
accuracies were obtained in the Loess station and the loess mountain among the seven
typical loess landforms. At the same time, relatively low recognition accuracies were
obtained for loess hills, ridges and slopes, although the overall recognition accuracies
are better than those of the features without texture. Li et al. [28] researched the slippery
slope identification method based on the combination of DEM and remote sensing imaging
data. On the basis of the comprehensive analysis of six features, such as roughness,
cutting degree and undulation, the neural network is used for nonlinear combination and
supplemented with the NDVI (Normalized Difference Vegetation Index) for identification.
The results show that the accuracy recognition rate for landslides is 71.03%, indicating that
the landslide range can be well-identified. Using the nine statistical features [9] obtained
by the GLCM method, Ding took Zhifang’s small watershed as the measured area to
improve the recognition accuracy of the positive and negative terrains in the loess’s small
watershed, and the recognition accuracy improved by almost 6%, thereby optimising the
accuracy of the positive and negative terrain mapping in small watersheds. In recent years,
object-oriented methods have been used in loess landform recognition and classification,
and texture features are classified as a very important basic feature [29]. Texture features
can improve the accuracy of classification and recognition [15,30–32].

The above literature review indicates that the texture feature based on DEM has
been applied in the Loess Plateau and made achievements in topography recognition and
classification. However, the current texture features are mainly statistical. These features
mainly use the GLCM method and the probability density distribution between pixels
for the pattern recognition of the topography [33,34]. In the Loess hilly and gully area,
loess hill and loess ridge are difficult to distinguish based on the textural characteristics
obtained by the GLCM, according to the literature and previous experiments [14,22,23].
Therefore, the use of the texture structure characteristics of loess to improve the accuracy
of recognition and classification is an important part of texture methods in topographic
analysis [20,35]. In addition, the combination of texture and structural features can form
a uniform framework for texture methods and expand new methods for digital terrain
analysis [36].

From the above literature analysis, we can know that the geomorphic units in the
hilly and gully areas of the Loess Plateau have strong structural self-similarity, but struc-
tural texture features are rarely used in analysis and processing. Haralick [33] divided
textures into two types: tone dominated, and structure dominated. Among them, structure-
dominated texture is also called approximate regular texture, which emphasizes the spatial
relationship between texture primitives. Regularity, or periodicity, is an important in-
dex for the description and classification of approximate regular texture features [37]. At
present, one of the main ideas to calculate the regularity is to extract features first and
then perform periodic operations. The feature extraction methods include autocorrelation
function [38,39], Fourier spectrum feature [40,41], vertical and horizontal section line [42]
and grey level co-occurrence matrix (GLCM) feature [43], and then several methods are
used to calculate the period and regularity based on the extracted features. However, these
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methods still have the following shortcomings: (1) parameter setting. For example, the au-
tomatic performance of the autocorrelation method is limited by parameter setting, which
is difficult to set automatically. (2) Noise interference problem: noise interferes with peak
extraction, such as extracting texture curve features in remote sensing images by vertical
and horizontal section line method, which is often interfered with by noise and secondary
texture primitives, so as to extract falser peak and valley values. In order to reduce the
adverse effects of the above problems, the distance matching function (DMF) was proposed
by Oh, et al. [44]. Subsequently, Asha, et al. [45] proposed the sum-up distance matching
function (SDMF). The experimental results in Asha’s paper show that the SDMF method
can extract the period of the texture image quickly, with good accuracy and stability. The
principle of the DMF and SDMF method is that the grey periodic change on the texture
image is used as a key texture index for texture classification and recognition [42,46,47].
Therefore, the SDMF has a practical application value. For automatic period extraction
based on the SDMF, the distance of the first peak is usually used as the period of the entire
texture image [48]. However, using only the first peak as the period, the anti-interference
ability against noise and geometric distortion is relatively weak. To improve the reliability
of extracting the structural texture period, Jiang et al. proposed an improved normalised
DMF (INDMF) method [49].

Taking INDMF as the basic model, this paper will build a terrain regularity calculation
method based on DEM data. This method can effectively reduce various interference factors
in the terrain and extract the regularity of main landform units. In addition, the regularity
is applied to the classification of loess landform, so as to improve the recognition accuracy
of hilly areas of the Loess Plateau. Finally, the application scope of the proposed regularity
is also discussed in this paper. The authors also expect that this method can expand and
deepen the application scope of DEM digital terrain quantification research.

2. Materials and Methods
2.1. Study Area and Sample Data

The study and sample areas in this study are shown in Figure 2. The sample area
is located northwest of the neotectonic movement zoning line, mainly because this area
includes typical loess landforms, such as loess tableland, residual tableland, loess hill,
loess ridge and mountain areas [50]. This area also includes some areas with low erosion,
such as the sand-covered loess and rocky mountainous areas, which meet the research
requirements in terms of topographic typicality and comprehensiveness.
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A total of 138 sample areas are used (see Figure 2 for details). Of these sample areas,
28 are used as training data, 77 as test data and 33 as confusion data. The confusion data
are mainly transitional areas or areas with atypical geomorphic types.

In this paper, the typical landforms of loess are classified into seven categories: the loess
plain, loess ridge, loess hill, loess long ridge residual tableland, loess residual tableland,
loess tableland and loess mountain area. For each category, four similar geomorphic types
are selected, 28 samples are used as training samples, and the remaining 77 data are used
as test data. The visual schematic of the training samples is shown in Table 1. For samples
of the different sample areas, the selection is as representative as possible, significantly
reflecting the geomorphic characteristics of the sample areas and avoiding the transition
areas between different sample areas as far as possible. For the unavoidable transition areas,
the selection of a sample with a dominant appearance is attempted. For similar samples,
the selection principle is consistent. The sample size is divided into 512 × 512 pixels by
referring to the existing research results [22,51].

Table 1. Training samples of typical landforms.

Landform Type Sample 1 Sample 2 Sample 3 Sample 4

loess plain
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The selection of sample data is based on the following principle. For a Loess Plateau
study sample area facing a small watershed, the most important principle is that sample
selection needs typicality. Typicality is the need to select representative areas of common-
alities in terms of individuality and, thus, in terms of typicality. For the region-oriented
Loess Plateau study sample, the essential principles are diversity and integrity. The sample
area’s diversity and completeness will directly determine its reliability for the entire study.

The ground sampling distance of the DEM data used in this study is 25 m/pixel.
The DEM data used in this paper was produced by Shaanxi Surveying and Mapping
Bureau through aerial photogrammetry combined with postproduction. At the same time,
aerial images and ground control points were also collected by the Shaanxi Surveying
and Mapping Bureau. Gaussian Kluger projection was adopted, using the 1980 national
geodesic coordinate system and the 1985 national elevation datum. The production process
follows the data production process in the technical regulations for the production of a
digital elevation model. In this process, the DEM generation method is used to construct
the tin from the digital topographic map contour. Then, it is interpolated into a regular grid
DEM. According to the actual measurement, the data can meet the accuracy requirements
of this study. The DEM data used in this paper is produced by the Shaanxi Bureau of
Surveying and mapping. The original data of the DEM data is a contour topographic map.
Therefore, after digitizing the contour lines, engineers use ArcGIS software to generate TIN,
and then interpolate it into regular grid DEM.

2.2. Methods
2.2.1. INDMF Regularity Calculation

The distance matching function (DMF) was proposed by Oh et al. in 1999 [44]. To
improve the reliability of extracting the structural texture period, Jiang et al. proposed an
improved normalised DMF (INDMF) method [49]. This method uses the step length with
the longest lifetime in the period, i.e., the mode, as the period index. For image f (x,y) of M
rows and N columns, the INDMF in the row and column directions are expressed as:

INDMFr(d) =
1

(M− d)× N ∑N
j=1∑M−d

i=1 | f (i, j)− f (i + d, j)| (1)

INDMFc(d) =
1

(N − d)×M ∑N−d
j=1 ∑M

i=1| f (i, j)− f (i, j + d)| (2)

where INDMFr(d) represents the INDMF value with pixel distance d, and r represents
the number of lines in the image, i.e., the horizontal direction. Similarly, c represents the
number of columns in the image, i.e., the vertical direction. M and N, respectively, represent
the length and width of the image, and I and j, respectively, represent the position of the
row and column where the central pixel of the analysis window is located. In this paper,
row direction and column direction are used for calculation. The regularity calculation of
row and column directions is the most basic description of texture primitives. The outer
rectangular range of rectangular texture primitives can be constructed through row period
and column period.

The result of Jiang’s experiment reveals that the INDMF formula has better anti-
distortion and anti-noise ability than the original DMF and SDMF [49]. Given the com-
plexity of the realistic geomorphic form, DEM data usually have much inevitable noise
and geometric distortions. Therefore, the INDMF is suitable for the DEM data involved
in this paper (the conclusion is obtained from the effectiveness experiment below). The
INDMF can adjust the peaks and valleys of the periodic histogram to a unified scale, which
is conducive to the periodic extraction of the gullies and valleys of the loess landform
and the spatial positioning of the texture elements and optimise the stability of peak and
valley extraction.

On the basis of the INDMF, this paper proposes the calculation method of the INDMF
regularity. In regular or approximately regular texture images, period refers to the step
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value of the repeated occurrence of texture primitives. Theoretically, the average step
value of the directed sequence between peaks obtained by the INDMF should be equal or
approximately equal to an integer multiple of the average distance between the texture
primitives. However, the gullies of the loess landform show an approximate regular
or random texture. If the gullies show an approximate regular texture, the step value
difference of the sequence between the peaks calculated by the INDMF is within a certain
threshold range. Otherwise, no significant sequence of peak and valley values exists. The
flow chart of the calculation method of regularity based on the INDMF proposed in this
paper is shown in Figure 3.
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The calculation method of the INDMF regularity is described in detail as follows:
Step 1: Calculate the INDMF for the data and calculate all the peak and valley values of

the INDMF sequence. f (x) represents the INDMF, and its formula is shown in Formulas (1)
and (2). It is a list of data sequences, which can be approximately regarded as a continuous
function. On this basis, the data sequence is calculated. Let f (x) have second derivative
f ′′(x) at point x0, f ′(x) = 0 and f ′′(x) 6= 0; when f ′′(x) < 0, function f (x) at x0 obtains the
maximum value, i.e., the peak value; when f ′′(x) > 0, function f (x) obtains the minimum
value at x0, i.e., the valley value.

Step 2: Calculate the significant peak and valley values according to the results of
Step 1 and complete the construction of significant peak and valley sequences. Specifically,
calculate the difference between the adjacent peak and valley values. When the difference
is greater than or equal to a specific threshold, the peak is a significant peak and valley.
After calculating many samples, this study confirms that it has good applicability when the
specific threshold is set to [max(INDMF)−min(INDMF)]/20.

Step 3: When the number of significant peaks and valleys is less than or equal to 2, the
data is a random image, set the regularity to 0, and end the calculation. Otherwise, skip to
Step 4.

Step 4: Calculate first period value d1 and second period value d2 on the basis of the
sequence of significant peaks and then obtain the regularity through the normalised ratio.
In the calculation of second periodic value d2, derive the second-order derivative of the
INDMF in the interval [d1 + 1, 3d1 − 1] and obtain the maximum value. The above interval
is selected to set the size range of second period d2 as [1, 2d1], i.e., the minimum is 1 and the
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maximum is twice the value of d1. Its rationality has been confirmed in the literature [49].
The first and second periods are selected to calculate the regularity because the main period
of the first two has optimal stability, so they can have the anti-interference ability caused by
random factors. Regularity is denoted as Rn and expressed as Formula 3:

Rn =
abs[d1 − abs(d2 − d1)]

d1
, and d1 ≥ 1, (1 + d1) < d2 ≤ (3d1) (3)

when first period value d1 and second period value d2 are equal, the normalised regularity
is Rn = 1, and the regularity is the largest. When d2 and d1 exist and are not equal, the
value range of Rn is (0, 1).

The first period value d1 step of the above INDMF’s significant peak can represent the
size of the main texture primitive. The calculation of normalised regularity can be applied
to the row and column directions of the INDMF and any other direction. Generally, after
calculating the regularity in multiple directions, the maximum regularity is taken as the
judgment basis for whether the image has approximated regular texture primitives.

The INDMF regularity calculation involved in this section is encoded by MATLAB
software. The version of MATLAB is 9.4 and the location is Nanjing The calculation results
are saved in CSV format and used for subsequent recognition.

2.2.2. Typical Loess Landform Recognition Combined with INDMF Regularity

To test the application of the proposed INDMF regularity in the recognition of typical
landforms on the Loess Plateau, the INDMF regularity is added on the basis of the existing
landform recognition methods to verify whether the typical landform recognition accuracy
is improved. The existing method comes from the recognition and classification method
in [23,24]. The main process is as follows. The slope derivation factor and GLCM texture
features for the DEM data are calculated. Then, the sample data is used to train multi-
layer recognition rules. Finally, the trained rules are applied to the test data to obtain
the recognition results and accuracy. The process of loess typical landform recognition
combined with the structural characteristics proposed in this paper is shown in Figure 4.
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As shown in Figure 4, the proposed method mainly makes two improvements on the
basis of the existing methods. The first improvement is that in Steps 3 and 4, the positive
and negative terrains of the DEM are calculated, effectively simplifying the DEM data, but
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retaining the core valley terrain features. The second improvement is the incorporation of
the INDMF regularity into the hierarchical recognition as a structural feature.

The positive and negative terrains are calculated because the morphological character-
istics of the combination of the positive and negative terrains are the most intuitive and
an external expression of the difference law of the loess geomorphic zone, and it is an
effective carrier to express the terrain texture of the loess geomorphology [52]. Taking the
loess shoulder line as the boundary, the area above the line is the positive terrain, and the
area below the line is the negative terrain. Through the calculation flow [53], the positive
terrain is assigned as 1 and the negative terrain is assigned as 0, so as to simplify the terrain.
The positive and negative terrain extraction method used in this paper is the classical
neighbourhood analysis method [53] which has the following main steps: (1) set the size of
the analysis window; (2) perform neighbourhood analysis based on DEM data; (3) subtract
the original DEM from the neighbourhood analysis results (the grid greater than 0 is the
positive terrain, and that less than 0 is the negative terrain). After obtaining the positive
and negative terrain data, the INDMF regularity is calculated.

As shown in Table 2, the third level feature is added to the multi-level feature recogni-
tion rules on the basis of the existing methods [23,24]. This paper does not use all terrain
data and all GLCM features but optimizes and refines them on the basis of existing research.
The purpose of this is to clarify the improvement of the actual recognition effect brought
by the INDMF regularity. In the first level (level 1), significant slope differences exist
among the loess plain, hilly and gully, and tableland areas. The use of basic terrain factors
is the most effective method. In the second level (level 2), the GLCM features based on
DEM data can effectively represent the local morphological characteristics of the terrain
under different quantitative parameters. GLCM contrast and homogeneity are considered
to be the two most effective quantitative factors for the typical landforms of the Loess
Plateau [23,24]. In the third level (level 3), using the DEM and positive and negative terrain
data, the INDMF regularity is calculated to characterise the local structural characteristics
of the terrain that can distinguish and quantify the structural morphological characteristics
of the loess hilly and gully areas.

Table 2. Three-level recognition rules of typical landforms in the Loess Plateau.

Level Feature Description Feature Space Selection Quantitative Index

level 1 global features basic terrain factors average slope

level 2 local morphological feature DEM GLCM contrast
GLCM homogeneity

level 3 local structural features DEM, positive and negative terrain data INDMF regularity

The software used in the typical loss landform recognition method involved in this
section is Weka, and its version is 3.7.8. In addition, the average slope and GLCM features
involved in this section are extracted using QGIS whose version is 3.22. The calculation
results are saved in CSV format.

3. Results

On the basis of the sample data of the Loess Plateau (see Section 2.1 for details), the
recognition results of typical landforms of the Loess Plateau are obtained by using the
INDMF regularity (see Section 2.2.1 for details) and multi-level feature recognition (see
Section 2.2.2 for details).

Combined with the existing methods, using the decision tree analysis module in
Weka software, the multi-level recognition rules are obtained. The flow chart of three-level
recognition rules of typical landforms in the Loess Plateau is shown in Figure 5. In Level
1, the average slope (AS) can be used to effectively distinguish the plain, hilly and gully,
tableland and residual tableland areas of the Loess Plateau. When the average slope of the
sample area is less than 8◦, the area usually has a flat terrain, and the corresponding type is
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loess plain. When the average slope of the sample area exceeds 19◦, the areas correspond
to the hilly and mountainous areas of the Loess Plateau, including the loess hill, loess ridge,
loess long ridge residual tableland and loess mountain areas. When the average slope
ranges from 8◦ to 19◦, the recognition objects corresponding to the training data in this
work are loess residual tableland and loess tableland.
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The second level recognition rules (Level 2) for loess hilly areas are shown in Figure 5b,c.
In Level 2, as shown in Figure 5b, the GLCM features based on the DEM data can effectively
represent the local morphological characteristics of the terrain based on different quantita-
tive parameters. According to the analysis conclusions of the existing methods and decision
tree analysis module in Weka, the two most effective parameters are selected; the GLCM
contrast (GC) and the GLCM homogeneity (GH). When GC is greater than 15.211 and GH
is less than 0.314, it can effectively distinguish loess gully areas from loess mountain and
loess long ridge residual tableland areas. For the loess mountain and long ridge residual
tableland areas, a significant difference feature is DEM average elevation (AE). The AE of
the loess mountain is relatively high, effectively distinguishing mountain and long ridge
residual tableland areas. When GC ≤ 15.211 and GH ≥ 0.314 and the average elevation
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exceeds 1498 m, the category is loess mountain areas. When GC ≤ 15.211 and GH ≥ 0.314
and the average elevation is less than or equal to 1498 m, the category is long ridge residual
tableland areas.

In Level 2, the second level recognition rules for loess tableland and residual tableland
areas are shown in Figure 5c. After the basic terrain factor average slope of the first level is
used to distinguish these areas, the two must be subdivided. The main difference between
the loess tableland and residual tableland areas lies in their different degrees of geomorphic
development. The difference in surface morphology between the two can be distinguished
by GLCM contrast and GLCM homogeneity. When GC ≤ 7.124 and GH > 0.703, this type
is loess tableland. Conversely, when GC > 7.124 and GH ≤ 0.703, this type is loess residual
tableland.

In Level 3, the DEM is used to generate positive and negative terrain data, and the
INDMF regularity is calculated to characterise the local structure characteristics of the
terrain. The loess top surface of the loess ridge area is well preserved and belongs to the
inter gully land type. The surface erosion and rill and gully erosion on the beam slope are
in the stage of accelerated development. The texture features have a regular rectangular
distribution, and the width of the beam is relatively consistent. The third level recognition
rules of the loess hilly and gully area are shown in Figure 5d. The positive and negative
terrain INDMF regularity (RPNI) is calculated as the recognition quantitative index. When
RPNI > 0.59, the area is determined as a loess ridge area. When RPNI ≤ 0.59, the area is
determined as a loess hill area.

To further test the effectiveness of the multi-level recognition rules in this paper, each
sample area uses 15 samples to build a test database. In addition, another 33 confusion
sample areas are added, mainly transition areas or areas with atypical geomorphic types.
Test and mixed samples together add up to 138 sample areas.

In this paper, retrieval precision is used as the accuracy evaluation, rather than directly
using the confusion matrix as the evaluation basis. The decision tree level is constructed
according to the prior knowledge, and then the local optimal classification is carried out
on the basis of the decision tree category. In the test, the retrieval precision is shown in
Formula (4):

CP =
NC

Nlayer_total
× 100% (4)

where CP represents the precision of the correct category, NC represents the number
of correct categories retrieved, Nlayer_total indicates the number of all correct categories
contained in the corresponding recognition hierarchy.

According to the three-level recognition rules shown in Figure 5, the statistical table of
the first level precision rate is shown in Table 3. The average slope is used for the first level
classification of seven typical sample areas of the Loess Plateau. The correct precision rate
for plain areas is 86.67%, that for hilly and gully and mountainous areas is 96.67%, and that
for tableland and residual tableland is 93.33%. Through the average slope, three types of
shapes and areas with slope differences can be significantly distinguished.

Table 3. Statistical table of the first level precision rate.

Level Type Correct Category Number Sample Number CP

level 1
loess plain 13 15 86.67%

loess hilly and gully and mountain area 58 60 96.67%
loess tableland area 28 30 93.33%

After the Level 1 recognition, Table 4 shows the statistical results of the second level
precision rate of hilly and gully and mountain areas. According to characteristics of the
GLCM contrast and GLCM homogeneity, the vector is constructed based on 64 grey levels
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and combined with four directions (i.e., 0◦, 45◦, 90◦, 135◦). The feature vector can well
distinguish loess long ridge residual tableland, loess hill, loess ridge and loess mountain
areas. Among them, combined with the average elevation topographic data, the precision
of the loess mountain area is 100%. The average elevation combined with texture features
can significantly distinguish the loess mountains.

Table 4. Statistical results of the second level precision rate of hilly and gully and mountain areas.

Level Type Correct Category Number Sample Number CP

level 2
loess ridge residual tableland 12 14 85.71%
loess hill and loess ridge area 27 30 90.00%

loess mountain area 14 14 100.00%

Table 5 is the statistical table of the second level precision rate of loess tableland and
loess residual tableland. Among them, the accurate number of loess residual tableland is 10,
and the retrieval accuracy rate is 76.92%. The main difference between loess tableland and
loess residual tableland lies in their different degrees of geomorphic development which
shows that the degree of erosion is more intense than that of loess tableland. However,
when a specific part of the Loess residual tableland is extremely broken, it will be confused
with loess long ridge areas, resulting in misrecognition.

Table 5. Statistical results of the second level precision rate of tableland and residual tableland area.

Level Type Correct Category Number Sample Number CP

level 2
loess residual tableland 10 13 76.92%

loess tableland 14 15 93.33%

Table 6 shows the statistics of the precision rate of the loess hill and loess ridge areas
on the basis of the third level rule. The erosion of the loess hill area is worse than that of the
loess ridge area, and the texture features are characterised by vertical and horizontal gullies
in the entire area. In the loess ridge area, the texture features have a regular rectangular
distribution, and the width of the loess beam is relatively consistent, with a precision rate
of 92.86%. However, for the loess hill area, the regularity of some hilly hills is low, causing
misclassification with the confused samples, such as loess residual tableland and loess
stream land, resulting in misclassification phenomena in the hilly area, with a precision
rate of 84.62%.

Table 6. Statistical results of the third level precision rate of the loess hill and loess ridge areas.

Level Type Correct Category Number Sample Number CP

level 3
loess hill area 11 13 84.62%

loess ridge area 13 14 92.86%

4. Discussion
4.1. Effectiveness of INDMF Regularity

To test the effectiveness of the INDMF regularity, this section uses the DEM data
of loess hilly and gully areas (i.e., the loess hill and loess ridge areas) for comparative
analysis. From the natural surface of the Loess Plateau to the DEM and then to the positive
and negative terrains, the positive terrain can be approximately expressed as significant
geomorphic units, such as loess tableland, loess ridge and loess hill. Thus, in a certain area,
a texture distribution mode of “macro regular and local irregular” is formed based on the
positive and negative terrains to characterise the terrain texture of the Loess Plateau.
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First, the loess hill area is discussed. Figure 6 contains three sample areas of the loess
hill areas and the INDMF diagram of the maximum regularity direction. Taking Sample
area 1 of the loess hill area as an example, as shown in Figure 6a, it is the visual effect
diagram of the DEM. Figure 6b shows the positive and negative terrains extracted by
the method proposed in [52], and Figure 6c is the INDMF and the red circles represent
significant peaks. The image sequence of sample areas 2 and 3 in the loess hill area is
consistent with that of sample area 1. Through calculation, the results of the INDMF main
period and regularity in the loess hilly area are shown in Table 7.
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Figure 6. INDMF regularity based on loess hill areas. (a) sample 1; (b) positive and negative terrains
of sample 1; (c) INDMF of sample 1; (d) sample 2; (e) positive and negative terrains of sample 2;
(f) INDMF of sample 2; (g) sample 3; (h) positive and negative terrains of sample 3; (i) INDMF of
sample 3.

Table 7. Results of main period and INDMF regularity in the loess hill areas.

Sample Maximum Direction of Regularity Main Period (Pixel) INDMF Regularity

sample 1 (Figure 6a) row direction 21 0.54
sample 2 (Figure 6d) row direction 22 0.42
sample 3 (Figure 6g) column direction 22 0.47

average 21.6 0.48

Then the loess ridge area is discussed. Figure 7 includes three sample areas of the loess
ridge areas and the INDMF diagram in the maximum regularity direction. Taking Sample
area 1 of the loess ridge area as an example, Figure 7c shows the row direction INDMF. The
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image sequence of sample areas 2 and 3 is consistent with that of sample area 1, which are
Figure 7d,g, respectively. The results of the INDMF main period and regularity in the loess
ridge area are shown in Table 8.
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Table 8. Results of main period and INDMF regularity in the loess ridge areas.

Sample Maximum Direction of Regularity Main Period (Pixel) INDMF Regularity

sample 1 (Figure 7a) row direction 21 0.58
sample 2 (Figure 7d) row direction 20 0.65
sample 3 (Figure 7g) row direction 20 0.70

average 20.3 0.64

The analysis results in Figures 6 and 7 and Tables 7 and 8 indicate that the average
main period of the loess hill area is 21.6 pixels, the actual distance is 540 m, and the average
regularity is 0.48. The average main period of the loess ridge area is 20.3 pixels, which is
basically consistent with the loess hill area. The actual distance is 507.5 m, and the average
regularity is 0.64. The texture primitives of the positive and negative terrains formed by the
loess ridge area have higher regularity than those formed by the loess hill area, which is
consistent with the actual situation. This phenomenon occurs because the individual hills
in the loess hill area are more regular than those in the loess ridge area. However, overall,
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the regularity of the arrangement of the hill elements of loess hill is not as good as the beam
elements of loess ridge in a certain direction, and the difference in regularity is 0.16. The
above analysis indicates that facing the hilly and gully area of the Loess Plateau, the hilly
and gully region can be effectively distinguished in the spatial structure arrangement on
the basis of the INDMF regularity of the positive and negative terrains. INDMF regularity
can provide support for the accurate recognition and classification of the loess landform.
The purpose of the INDMF proposed in this paper is to obtain the approximate regularity
of complex texture primitives. Due to the particularity of the loess hill and loess ridge, it is
very similar to primitives in texture images. Therefore, the INDMF method is used in this
paper. The INDMF method can approximately quantify the shape and spatial distance of
the principal texture primitives of loess hill and loess ridge, which can be used as one of
the important quantitative indexes.

4.2. Role of Positive and Negative Terrain in Recognition

The geomorphic form of thousands of gullies on the Loess Plateau shows the most
external and core geomorphic features between gullies through the staggered distribution
of the positive and negative topography and the twists and turns along the gullies [53–55].
Zhou et al. [53] summarised the characteristics of positive and negative terrains as follows:
the first characteristic is macro abstraction. The positive and negative topographies of
the Loess Plateau are the most dominant binary structure model in the Loess geomorphic
system. The combined form of the positive and negative topographies is the abstraction
and generalisation of the macro form of the loess geomorphology. The second charac-
teristic is quantifiability. Quantitative analysis can be carried out through the attribute
characteristics of the positive and negative terrains, such as area, elevation mean value
and slope characteristics of DEM, or through the relationship between the positive and
negative terrains, such as correlation degree, spatial distribution and other characteristics.
The third characteristic is geomorphic correspondence. Different geomorphic types of Loess
Plateau correspond to different forms of positive and negative topographies. According to
the quantifiable characteristics of morphology, different geomorphic types of loess can be
analysed quantitatively.

For real-world terrain data, there are often interference factors, so INDMF usually
needs to be used together with a terrain simplification algorithm to achieve better results.
This paper uses positive and negative terrain, which is essentially a way of terrain sim-
plification. Taking the loess shoulder line as the boundary, the area above the line is the
positive terrain, and the area below the line is the negative terrain. Through the calculation
flow [53], the positive terrain is assigned as 1 and the negative terrain is assigned as 0,
so as to simplify the terrain. In the hilly and gully region of the Loess Plateau, for the
regions with significant positive and negative terrains, Figure 8a shows the loess hilly
and gully region, such as the Suide and Lishi. Figure 8b shows the loess tableland area,
such as the Luochuan. For the positive and negative terrains shown in Figure 8a, the
positive terrain includes beam and ridge top and gully slope, and the negative terrain is
loess gully. For the positive and negative terrains shown in Figure 8b, the positive terrain
mainly includes tableland surface and ridge slope, and the negative terrain is also loess
gully [21,56]. The topographic texture of the Loess Plateau is the spatial distribution pattern
formed by the arrangement and combination of loess geomorphic units. Among them, the
geomorphic unit is the texture primitive. Through the definition and the characteristics of
the positive and negative terrains, the positive and negative terrain unit can be simplified
and abstracted into the texture primitive of the terrain texture of the Loess Plateau. From
the natural surface of the Loess Plateau to the DEM and then to the positive and negative
terrains, the positive terrain can be approximately expressed as significant geomorphic
units, such as tableland, beam, hill, sand dune and gully. Thus, in a certain area, a texture
distribution mode of “macro regular and local irregular” is formed based on the positive
and negative terrains to characterise the terrain texture of the Loess Plateau.
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and gully area; (b) loess tableland area.

When positive terrain and negative terrain are not used, due to the interference of a
large number of secondary texture primitives on DEM, the regularity of the loess ridge
area and loess hill area is close to 0, that is, both of them show an irregular phenomenon.
Section 4.1 shows that the positive and negative terrains can indeed reduce the noise
interference in the DEM data of the real terrain and retain the characteristics of the most
core ditches and valleys in the Loess Hills, providing a data basis for effectively extracting
the regularity.

4.3. Scope of Application of the Regularity Proposed in This Paper

The two innovations of this paper are: (1) taking INDMF as the basic model, this paper
constructs a terrain regularity calculation method based on DEM data. This method can
effectively reduce various interference factors in the terrain and extract the regularity of
main terrain units. (2) The regularity is applied to the classification of loess landforms, so
as to improve the recognition accuracy of hilly and gully areas of the Loess Plateau. Then,
for the regularity in contribution 1 of this paper, can we apply it to the recognition of other
landforms? Can it be used elsewhere? The key to its applicability is whether the landform
unit (or texture primitive) has structural characteristics in spatial distribution. According
to this judgment condition and the author’s follow-up research, at least two cases can use
the regularity of this paper as one of the characteristics: the first is the artificial landform,
and the second is the natural landform with significant structural characteristics.

For artificial landforms, Yalniz and Aksoy [42] have applied regularity calculation to
the identification of artificial vegetation. Another important artificial landform is terraced
fields, including terraced fields on the Loess Plateau [10,57] and Honghe Hani rice ter-
races [58]. Terraced fields show obvious stripe texture on DEM data, which is suitable for
the operation of regularity. Taking the terraced fields on the Loess Plateau as an example,
Figure 9 shows the DEM-based hillshade map of a small watershed on the Loess Plateau of
China. Figure 9a corresponds to the terraced field, and Figure 9b corresponds to the gully
bottom area with serious erosion. Through the authors’ regularity calculation, it is found
that the regularity of Figure 9a is significantly higher than that of Figure 9b. At the same
time, it is found that the regularity between different terraced fields also has numerical
differences. Therefore, regularity can become one of the important indicators to identify
terraced fields. In addition to artificial landforms, natural landforms with significant struc-
tural characteristics can also use the regularity proposed in this paper. One of the cases
is Telbisz and Keszler’s [59] research on DEM-based sand dune patterns. The other case
is from Ely, et al. [60] for the research on Drumlins. The above two research objects have
significant structural texture features and have the potential to use the regularity of this
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paper. In addition, the terrain of the hilly and gully region of the Iranian Loess Plateau is
similar to that of the Chinese Loess Plateau [61], which also provides the possibility for the
subsequent use of regularity. Moreover, with the development of deep learning in landform
classification [62,63], the regularity proposed may also become one of its effective features.
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5. Conclusions

Taking the Loess Plateau as the study area and the 25 m/pixel DEM as the sample
data, a regularity calculation method based on the INDMF is proposed and applied to
the recognition experiment on typical landforms on the Loess Plateau. The results of the
experiment show that the average regularity of the loess hill area is 0.48 and that of the loess
ridge area is 0.64. Based on this, the INDMF regularity can effectively distinguish loess hill
areas and loess ridge areas. To further test the application of the structural characteristics
of regularity in the recognition of typical landforms on the Loess Plateau, this paper
adds INDMF regularity on the basis of the existing landform recognition methods. The
recognition rules based on multi-level features are applied to the test data. The experimental
results show that compared with previous methods, adding structural features (i.e., INDMF
regularity) can effectively distinguish loess hills and loess ridges in the hilly and gully
regions. For loess hills and loess ridges, the recognition rates of the proposed method are
84.62% and 92.86%, respectively. Combined with the existing topographic characteristics,
the proposed INDMF regularity is a topographic structure feature extraction method that
can effectively discriminate between loess hill and loess ridge areas on the Loess Plateau.

The purpose of the INDMF proposed in this paper is to obtain the approximate
regularity of complex texture primitives. Due to the particularity of the loess hill and loess
ridge landform, it is very similar to the primitive texture image, so it is suitable for the
INDMF method used in this paper. The INDMF method can quantify the shape and spatial
distance of the principal texture primitives of loess hill and loess ridge, which can be used
as one of the important quantitative indexes. For other loess areas of the world, if the region
has significant spatial distribution characteristics of texture primitives, INDMF regularity
can also be used to extract regularity and quantify features. At the same time, we also see
that the use of INDMF features has limitations. For real terrain data, it often has a lot of
noise. Therefore, INDMF usually needs to be used together with a terrain simplification
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algorithm to achieve good results. This paper uses positive and negative terrain for terrain
simplification.
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