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Abstract: Vegetation isoline equations describe analytical relationships between two reflectances
of different wavelengths. Their applications range from retrievals of biophysical parameters to the
derivation of the inter-sensor relationships of spectral vegetation indexes. Among the three variants
of vegetation isoline equations introduced thus far, the optimized asymmetric-order vegetation isoline
equation is the newest and is known to be the most accurate. This accuracy assessment, however, has
been performed only for the wavelength pair of red and near-infrared (NIR) bands fixed at ∼655 nm
and ∼865 nm, respectively. The objective of this study is to extend this wavelength limitation.
An accuracy assessment was therefore performed over a wider range of wavelengths, from 400 to
1200 nm. The optimized asymmetric-order vegetation isoline equation was confirmed to demonstrate
the highest accuracy among the three isolines for all the investigated wavelength pairs. The second-
best equation, the asymmetric-order isoline equation, which does not include an optimization factor,
was not superior to the least-accurate equation (i.e., the first-order isoline equation) in some cases.
This tendency was prominent when the reflectances of the two wavelengths were similar. By contrast,
the optimized asymmetric-order vegetation isoline showed stable performance throughout this study.
A single factor introduced into the optimized asymmetric-order isoline equation was concluded to
effectively reduce errors in the isoline for all the wavelength combinations examined in this study.

Keywords: vegetation isoline; higher-order interaction; asymmetric; VI; LAI; RT model; inversion;
hyperspectral data

1. Introduction

Remotely sensed reflectance spectra have been used to estimate biophysical parame-
ters for terrestrial vegetation [1,2]. The simplest and most widely accepted approach for
this purpose is to use a spectral vegetation index (VI). Because VIs are often defined as
algebraic manipulations of reflectance spectra, VI model equations are also considered
a relationship that the reflectance spectrum should satisfy under a fixed biophysical pa-
rameter. In particular, a fundamental relationship between the reflectances of two bands
(e.g., red and near-infrared (NIR) bands) has been the basis of numerous VIs [3–9]. This
relationship is known as a vegetation isoline equation. The vegetation isoline concept has
been investigated intensively over the past two decades [10–15] and is considered a useful
tool [11,16,17] to explore various applications [18,19].

The concept of vegetation isolines originated from investigations examining the influ-
ence of soil brightness on VIs [3,20]. In general, soil brightness varies considerably with
changes in soil moisture, surface roughness, shadow amount, and soil characteristics such
as organic matter content [21–24]. These variations affect the soil background component
of reflectance spectra, which leads to variations in VI values [16,17]. This effect, known
as soil noise, has been a major issue in the field of land remote sensing. Studies seeking
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to minimize soil noise have paid particular attention analytically to a spectral trajectory
observed in the red–NIR reflectance subspace under a constant canopy [3,7]. The derived
concept, the vegetation isoline, has been applied to solve the issue of the influence of soil
brightness, which has affected various VIs to some extent [3–6,9,25].

The applications of the vegetation isoline concept are not limited to the analyses of VIs.
It can also be used to directly retrieve biophysical parameters such as the fraction of vege-
tation cover (FVC), leaf area index (LAI), and the chlorophyll-a and -b contents [19,26–28].
In addition, vegetation isoline equations that represent an analytical relationship of two
reflectances have been used in investigations of inter-sensor VI translation [18,29–33] in
the context of satellite constellations. The derivations of such isoline equations require
several simplifications of the model, which somewhat restricts their range of applications.

A system of vegetation canopy that is assumed for deriving vegetation isoline equa-
tions consists of a canopy layer, which is considered a turbid medium, and a soil layer
of a Lambertian surface underneath the canopy. For this system of layers, a top-of-the-
canopy (TOC) reflectance is represented by an analytical model known as the successive
order of scattering, in which the TOC reflectance is modeled by the sum of all the photons
categorized by the number of interactions between the soil surface and the canopy layers.
For example, the photons scattered only once by the soil surface are labeled as the first-order
interaction term. Using this analytical representation of TOC reflectance, the initial attempt
to derive a vegetation isoline equation was conducted by truncating the second-order and
the higher-order interaction terms between the vegetation canopy and soil surfaces [3,10].
The obtained isoline equation is referred to as the first-order vegetation isoline because the
isoline equation accounts only for the first-order interaction term. Although the derived
isoline equation is simple and suitable for the analyses of VIs, the simplification associated
with the truncation adversely affects its accuracy, especially when the soil brightness is
high. Researchers would later develop methods to overcome this weakness.

In our previous work, we improved the accuracy of the first-order vegetation isoline
by accounting for the higher-order interaction term during the derivation. This improve-
ment was performed for the widely used red and NIR wavelengths. The derived form is
referred to as the asymmetric-order vegetation isoline equation because the second-order
interaction term is retained only in the NIR wavelength [13]. In addition, the accuracy
of the asymmetric-order vegetation isoline equation was improved dramatically by the
introduction of a single factor. The derived new isoline equation was named the “optimized”
asymmetric-order vegetation isoline equation [14,15]. Errors in the optimized asymmetric-
order isoline equation were reduced to 4% relative to the errors in the first-order isoline
equation [13] and were also reduced to 20% relative to the errors in the asymmetric-order
isoline equation [14]. After this improvement, the errors in the optimized asymmetric-
order isoline equations were smaller in magnitude than the magnitude equivalent to the
signal-to-noise ratio (SNR) of some existing sensors.

The accuracy improvements and evaluations of the vegetation isoline equations re-
ported in the previous works were limited to the pair of red and NIR bands—specifically,
those at ∼655 nm and ∼865 nm, respectively. This limitation should be extended to make
the derived isoline equations more useful for a broader range of applications. One such
application is hyperspectral sensors. In recent years, numerous hyperspectral sensors have
been available for Earth observation, and new missions are underway [34–40]. Such hyper-
spectral sensors enable us to process more than one hundred bands, which could improve
the accuracy in biophysical parameter retrievals. For these motivations, the wavelength
range should be extended to a broader range of visible-to-NIR wavelengths.

In the present work, the accuracies of the three variants of the vegetation isoline
equations are evaluated in the wavelength range from 400 to 1200 nm on the basis of
numerical simulations by a radiative transfer model. The explanation that follows starts
with the introduction of the three variants of the vegetation isoline equations. The numerical
experiments and their results are then described to evaluate their accuracy in a wide range
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of wavelengths. Finally, the results are further discussed and the study is concluded with
descriptions of some unresolved issues.

2. Three Variants of Vegetation Isoline Equations
2.1. First-Order Vegetation Isoline Equation

The first derivation of a vegetation isoline equation began with the approximation
of a linear relationship between reflectances measured at two distinct wavelengths, λ1
and λ2. During the derivation, the well-known concept of the soil line [41] was assumed.
The derived relationship is known as the first-order approximated vegetation isoline
equation. During the derivation of the first-order vegetation isoline, the second- and
higher-order interaction terms were truncated. The isoline equation is expressed by

ρλ2 = aγ1ρλ1 + D1 + ε1, (1)

with γ1 and D1 defined as

γ1 =
T2

λ2

T2
λ1

, (2)

D1 = bT2
λ2

+ ω
(
ρvλ2 − aγ1ρvλ1

)
, (3)

T2
λ = ωT2

λ + (1−ω), (4)

where ω is the FVC defined as a vertically projected area of vegetation canopy [42], ρλ1
and ρλ2 are the TOC reflectances of the different wavelengths, ρvλ1 and ρvλ2 are the “pure”
canopy reflectances (canopy path radiance), which are independent of the soil surface
beneath the canopy layer, and T2

λ1
and T2

λ2
represent the two-way transmittances of the

vegetation canopy, T2
λ, averaged over a target area with the FVC, ω, as its weight. The con-

tribution of higher-order interaction terms is represented by ε1. The two constants, a
and b, are the soil line slope and offset, respectively. Although the derived expression is
simple and sufficiently accurate to analyze the performance of VIs, the truncation error
represented by ε1 tends to be large when the soil reflectance becomes high [10,11]. In recent
years, this shortcoming has been overcome through a unique approach described in the
next subsection.

2.2. Asymmetric-Order Vegetation Isoline Equation

The asymmetric-order form was derived by including the interaction terms up to the
second-order in λ2; by contrast, in λ1, only the terms up to the first-order interaction were
considered [13]. The derived asymmetric-order vegetation isoline equation becomes

ρλ2 = a2ζρ2
λ1

+ aγ2ρλ1 + D2 + ε2, (5)

with the following definitions:

ζ = ωT2
λ2

Rvλ2 /(T2
λ1
)2, (6)

γ2 = γ1 + δ1, (7)

D2 = D1 + δ0, (8)

δ0 = ζ
(

bT2
λ1
−ωaρvλ1

)2
, (9)

δ1 = 2ζ
(

bT2
λ1
−ωaρvλ1

)
, (10)

where Rvλ2 represents the bi-hemispherical reflectance of the canopy layer at the bottom
surface, which appears only in the band λ2. The contribution of higher-order interaction
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terms in this case is represented by ε2, which is considered a truncation error during
numerical simulation.

The error of the derived isoline equation is decreased dramatically from that of the
first-order form [14]. Most notably, this increase in accuracy was achieved without losing
its simplicity in the analytical expression. To improve the accuracy one step further, a single
factor was introduced into the derived expression, which is considered the “optimized”
asymmetric-order vegetation isoline equation.

2.3. Optimized Asymmetric-Order Vegetation Isoline Equation

The optimized asymmetric-order vegetation isoline equation was obtained by intro-
ducing a single factor k into the asymmetric-order form of the equation. After neglecting
the higher-order interaction term ε2 in Equation (5) [14], the factor k is introduced in the
third term of the right-hand side,

ρλ2 ≈ aγ1ρλ1 + D1 + k
(

a2ζρ2
λ1

+ aδ1ρλ1 + δ0

)
. (11)

The newly introduced factor k can be derived by solving Equation (11) for k:

k =
ρλ2 −

(
aγ1ρλ1 + D1

)
a2ζρ2

λ1
+ aδ1ρλ1 + δ0

. (12)

This representation of k implies that the factor depends on biophysical parameters,
as well as soil line parameters. That is, the factor is not a constant in this context. At the
same time, if we replace k by a constant, there would be an optimum value. Even though
the actual k is not a constant, such an “optimum” value for k can be expected to minimize
the error to some extent. Again, k in Equation (12) depends on the biophysical and soil
line parameters. It is not realistic, however, to find both biophysical- and soil-dependent k
in actual satellite data. To solve this problem, we attempted to find a constant factor as k
for each “wavelength pair” that minimizes the error of the isoline equation on the basis
of numerical simulations. In summary, the optimum constant factor for the replacement
of the variable k would depend heavily on the choice of the wavelength pairs (λ1 and λ2),
which is the central theme of the present study.

2.4. Demonstration of the Errors in the Vegetation Isoline Equations

In this subsection, we demonstrate the accuracy improvement of the isoline equations
by comparing the three forms of the previously introduced isolines. The errors of the
three isoline equations were simulated numerically by a radiative transfer (RT) model.
In this demonstration, the wavelength pair λ1 and λ2 was fixed at 655 nm (red) and 865 nm
(NIR), respectively. The PROSAIL model [43] was used to simulate both the spectral
reflectance as a function of the LAI and the soil reflectance spectra (from dark to bright
soil). The parameter settings of the RT model and the retrieval algorithms of the isoline
parameters [13,14] will be further explained in the following section.

Figure 1 shows the errors in the three forms of isolines (the top, middle, and bottom
plots correspond to the first-order, asymmetric-order, and optimized asymmetric-order
forms, respectively) as a function of the LAI and soil reflectance of the red wavelength
represented by RsR. The left and right columns in Figure 1 correspond to the cases of
FVC = 1.0 and 0.5, respectively. The error observed in the asymmetric-order form is
smaller than that in the first-order form, but it increases with increasing soil brightness.
On the contrary, the errors in the optimized asymmetric-order form are much smaller
than those in the other two forms even in cases where the soil brightness increased. This
accuracy improvement is a result of our optimization of the single factor introduced into
the asymmetric-order vegetation isoline equation [14].
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Figure 1. Errors in the first-order isoline equation (upper panels, (a,d)), asymmetric-order isoline
equation (middle panels, (b,e)), and optimized asymmetric-order isoline equation (bottom panels,
(c,f)) for red and NIR wavelength pairs as a function of the LAI and soil reflectance. The FVC is 1.0
for the left panels (a–c) and 0.5 for the right panels (d–f).

3. Numerical Simulations of Vegetation Isolines
3.1. Parameter Settings of Simulations to Determine Vegetation Isolines

Numerical simulations of vegetation isoline equations (Equations (1), (5), and (11))
were conducted with various settings of the LAI, FVC, and soil brightness for a wide range
of wavelength (band) pairs. TOC reflectance spectra were computed using a well-known
canopy radiative transfer code, PROSAIL [43], which is a combination of the leaf optical
properties model PROSPECT [44] and the canopy bidirectional reflectance model SAIL [45].
The parameter settings in the simulations are summarized in Table 1. The LAI was varied
from 0.0 to 4.0 in increments of 0.8 (six variants). The soil brightness is represented by
the factor “psoil” in the model, which was varied from 0.0 to 1.0 in increments of 0.2
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(six variants). The factor psoil represents the mixture ratio of the two representative soil
spectra (i.e., a wet soil spectrum and a dry soil spectrum) implemented in the RT model.
The canopy reflectance spectra obtained using PROSAIL were linearly mixed with the soil
spectra using the FVC, ω, as the weight, which was varied from 0.0 to 1.0 in increments of
0.2 (six variants).

For the leaf angle distribution (LAD), the spherical distribution model was assumed.
The other input parameters for PROSAIL were also fixed throughout the study, as summa-
rized in Table 1. Note that a single mesophyll size was assumed throughout the simulation.
Furthermore, note that the hotspot size parameter was assumed to be 0.01 to avoid the
strong contribution of this effect during the simulation. The total number of parameter
combinations was therefore 216 (6 × 6 × 6). The isoline equations for these conditions
were simulated for each pair of wavelengths, λ1 and λ2, where λ2 was varied from 410 to
1200 nm in 10 nm intervals (total of 80 discrete bands) and λ1 was varied from 400 to λ2 mi-
nus 10 nm at 10 nm intervals, resulting in a total of 80C2 (=3160) combinations. In summary,
for each pair of wavelength (band) combinations (3160 pairs), a total of 216 TOC reflectance
spectra were obtained by the numerical simulations.

Table 1. Input parameters used in the numerical simulations [14].

Geometry

Solar zenith angle 30◦

Observation zenith angle 10◦

Relative azimuth angle 0◦

Pixel heterogeneous property

Fraction of vegetation cover (FVC) 0.0–1.0

Canopy properties

Leaf area index (LAI) 0.0–4.0
Hotspot size parameter 0.01

Leaf structural and chemical properties

Leaf angle distribution (LAD) Spherical
Leaf mesophyll structure 1.5
Chlorophyll-a and -b 40 µg/cm2

Carotenoid content 8 µg/cm2

Leaf mass per area 0.009 g/cm2

Equivalent water thickness 0.01 cm
Brown pigment content 0

Soil properties

Soil factor (mixture ratio of wet and dry soils) 0.0–1.0 [0.0: wet soil; 1.0: dry soil]

Spectral bands

Wavelength λ2 410 nm to 1200 nm
Wavelength λ1 400 nm to (λ2 − 10) nm

The algorithm used to determine the parameters in the vegetation isoline equations
is identical to that used in numerous previous studies [10–14]. The canopy reflectance
parameter ρvλ was computed using the spectrally flat zero reflectance of the soil surface.
The two-way transmittances for vegetation canopy, T2

vλ, were approximated on the basis of
the simulated TOC reflectance with a soil reflectance of medium brightness, where ρvλ was
computed in the previous step [14]. In the simulation, the TOC reflectances in the λ2 were
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approximated from the first- and the second-order interaction terms between the canopy
layer and the soil surface:

ρλ2 ≈ ωρvλ2 + T2
λ2

Rsλ2 + ωT2
λ2

Rvλ2 R2
sλ2

. (13)

where Rsλ2 represents the bi-hemispherical reflectance of the soil surface for the λ2 band.
The spherical albedo of the canopy layer, Rvλ2 , was obtained by solving Equation (13) for
Rvλ2 , in which the soil spectrum was brighter than that in the simulation used to compute
T2

λ. The soil spectrum was also spectrally flat in this case [13]. The slope and offset of the
soil line equation over the λ1 and λ2 reflectance space were obtained by linear regression
of the reflectance spectra for the wet and dry soils (Table 1). The TOC reflectance spectra
used to depict true isolines were simply the output of PROSAIL under the assumption of
zero-brightness soil.

3.2. Definition of Errors in Isoline Equations and Determination of the Optimum Value of kopt

Errors of the vegetation isoline equations were measured using the distance between
the true and the approximated isolines (ε(k)):

ε(k) = ||ρ̂(k)− ρ||2, (14)

where ρ̂(k) represents the spectrum derived by asymmetric-order vegetation isoline equa-
tions as a function of k and ρ denotes the spectrum on the vegetation isoline including
all the higher-order interaction terms (i.e., the true spectrum). Note that the first-order
and the asymmetric-order isoline equations correspond to the cases of k = 0 and k = 1
in Equation (11); thus, the errors in the three isoline equations can be simply measured
using Equation (14). We again note that the RT simulations were conducted with 216 dif-
ferent parameter settings, which resulted in 216 different values of ε(k) for each pair of
λ1 and λ2. For the sake of total evaluation, these ε(k) values were averaged over the
216 simulation cases to obtain a mean error represented by ε(k). In the following discus-
sion, we use the term “mean error” and “mean epsilon, ε(k)”, interchangeably because,
as previously described, Equation (14) (i.e., ε(kopt)) can be applicable to all the cases when
k is set appropriately.

The optimum value of k in Equation (11) for each wavelength pair was explored
on the basis of ε(k). First, the values of k were computed from Equation (12) for all
216 parameter combinations. The maximum and minimum were then found among the
216 different k values. Finally, within the range of the maximum and minimum values,
the optimum value of k, referred to as kopt, was searched, which resulted in a minimum
of the mean ε(k) (i.e., the minimum of ε(k)) [14,15]. Apparently, this minimum of ε(k) is
identical to the mean of ε(kopt) (i.e., ε(kopt)), which is defined as the mean error (or mean
epsilon) of the optimized asymmetric-order vegetation isoline.

4. Results
4.1. Analysis of kopt

Figure 2 depicts the typical variation patterns of kopt as a function of λ1 and λ2.
The value of kopt is greater than 1.0 for the combinations visible as λ1 and NIR as λ2.
Specifically, these wavelength combinations are located in the upper-left region of Figure 2;
λ1 and λ2 range from 400 nm to 710 nm and from 720 nm to 1200 nm, respectively. On the
contrary, the value of kopt is negative, with a relatively larger magnitude within a limited
region indicated in blue at the lower left. This small region of wavelengths represents the
combinations of green as λ1 and red as λ2. For these two distinct regions of the subspace,
the factor k strongly affects the error reduction. Meanwhile, for the upper-right region and
near the lower-left corner of the subspace, the value of kopt is scattered around zero. This
result implies that the effect of factor k on the error reduction is relatively less significant
than in the two aforementioned regions. These trends shown in Figure 2 are common to all
the cases considered in the present study.
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Figure 2. kopt as a function of λ1 and λ2.

To observe the details of the variations, we plot the cross-section of the figure. Figure 3a,b
show kopt as a function of λ1 for four different values of λ2 (810, 860, 910, and 940 nm).
In Figure 3a, the variations of kopt are shown within the λ1 range from 400 to 930 nm.
To further investigate the details of the differences in the visible region, we plot the results
for λ1 shorter than 700 nm in Figure 3b. The values of kopt vary from 1.2 to 1.4 when
λ1 is shorter than 700 nm; it then decreases sharply at 700 nm and approaches zero as
λ1 increases.

Figure 3. (a) The value of kopt as a function of λ1 for four λ2 wavelengths (810, 860, 910, and 940 nm).
(b) Enlarged view of (a) in the range from 400 to 700 nm.

As the next step of the analysis, we referred to a band configuration of an existing
satellite sensor. For this purpose, we focused on a new-generation geostationary satellite,
Himawari-8 [46]. We applied the band configuration of the Advanced Himawari Imager
(AHI) to investigate the behavior of kopt in greater detail to meet the needs of this emerging
field of study [42,47–52]. Figure 4a–d show kopt as a function of λ2 for four λ1 wavelengths
((a) 470, (b) 510, (c) 640, and (d) 860 nm). Notably, λ2 was assigned as the horizontal axis
in this case. The wavelengths chosen for λ1 correspond to the visible-to-NIR bands of
the AHI.
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In general, the variation patterns of kopt as a function of λ2 show a local minimum
and/or maximum in the four cases. Regarding the range, the value of kopt falls between
−0.5 and 1.4 when λ1 is in the visible wavelength region. On the contrary, kopt varies
in a relatively smaller range (from 0.0 to 0.35) when λ1 corresponds to the NIR band
(Figure 4). A local maximum and minimum were found in the results in Figure 4 for
the case of λ1 = 470 nm. The local maximum is 0.92 at a wavelength near 550 nm,
and the local minimum is 0.36 near 670 nm. Similarly, the local maximum and minimum
for the case of λ1 = 510 nm were found at approximately the same wavelengths as in
the case of λ1 = 470 nm. Interestingly, no local maximum was observed in the case of
λ1 = 640 nm. Although both a local maximum and minimum were observed in the case
of λ1 = 860 nm, their locations differ substantially from those in the other three cases.
From these results, special caution is needed when the wavelengths (or bands) from both
NIR regions are combined.

Figure 4. The value of kopt as a function of λ2 for four λ1 wavelengths ((a) 470, (b) 510, (c) 640,
and (d) 860 nm).

Several aspects of the variation of kopt can be explained from the spectral shape of the
TOC reflectance. One example is the value of kopt when the TOC reflectance of λ2 is greater
than that of λ1. Such a case occurs when λ1 and λ2 are chosen from the visible and NIR
bands, respectively. For example, Figure 5a,b show the TOC reflectance spectra for various
LAI values with the bright and the dark soils, respectively. In the figure, the reflectance
spectra for the visible bands are much smaller than those for the NIR bands, as expected.
In this case, the value of kopt becomes greater than 1.0. On the contrary, kopt is expected
to be smaller than 1.0 or even a negative value when the TOC reflectance of λ2 is smaller
than that of λ1. Furthermore, the value of kopt tends to be nearly zero when the TOC
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reflectances of the two wavelengths are chosen from a similar wavelength region. When
we chose the two wavelengths from a similar region, the vegetation isoline tended to be
linear. Because the higher-order interaction term does not need to be included to obtain
a linear relationship, the value of kopt results in a small-magnitude value to minimize
the correction term of the isoline equation. Note also that the fundamentals of the error
reduction mechanism of the asymmetric-order vegetation isoline equation were described
in [13].

Figure 5. Simulated TOC reflectance spectra for various LAI values with (a) bright soil and
(b) dark soil.

4.2. Accuracy of the Three Vegetation Isolines

In this subsection, we focus on evaluating the accuracy of the three vegetation iso-
line equations. Recall that the three forms of isolines are denoted by the first-order,
the asymmetric-order, and the optimized asymmetric-order vegetation isoline equations.
Comparisons of the accuracy were based on the arithmetic mean of ε(k) computed from
the 216 simulations corresponding to different conditions for each wavelength pair.

Figure 6 shows the mean epsilon as a function of λ1 and λ2 for the first-order,
the asymmetric-order, and the optimized asymmetric-order isolines (Figure 6a–c). The mean
epsilon of the asymmetric-order vegetation isoline is smaller than the first-order vegetation
isoline when λ1 is chosen from the range between 400 and 710 nm and λ2 is chosen from
the range between 710 and 1200 nm. By contrast, the mean epsilon of the asymmetric-order
vegetation isoline is greater than that of the first-order vegetation isoline in the case where
both λ1 and λ2 are chosen from the NIR range from 720 to 1200 nm. The mean epsilon of the
asymmetric-order isoline is similar to that of the first-order isoline when both λ1 and λ2 are
chosen from the visible range (400–700 nm). The optimized asymmetric-order vegetation
isoline resulted in a much smaller value of the mean epsilon, which is mostly less than 0.001
for all the regions. The results show the superiority of the optimized asymmetric-order
vegetation isoline over the other two isolines.
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Figure 6. Mean epsilon for (a) first-order, (b) asymmetric-order, and (c) optimized asymmetric-order
isoline equations as a function of λ1 and λ2.

The mean epsilons of the three isolines were directly compared in detail as a function
of λ1 while λ2 was fixed at 810 (Figure 7a), 860 (Figure 7b), 910 (Figure 7c), and 940 nm
(Figure 7d). The mean epsilon of the first-order isoline is mostly greater than those of
the other two isolines when λ1 is less than ∼700 nm for all four cases of λ2. The error
in the first-order vegetation isoline, however, decreases with the decreasing difference
between λ1 and λ2. The mean epsilon of the first-order isoline becomes smaller than that
of the asymmetric-order isoline when λ1 is greater than ∼750 nm. The mean epsilon of the
asymmetric-order vegetation isoline becomes (2.0–3.0) × 10−4 for λ1 < 700 nm, but the
mean epsilon increases rapidly for λ1 > 700 nm. This result indicates that the correction
term introduced in the asymmetric-order isoline makes the error even larger than that of
the simplest isoline equation. This error deterioration in the asymmetric-order isoline is
improved by introducing the factor k. The optimized asymmetric-order vegetation isoline
results in the smallest values of the mean epsilon for all the investigated wavelength pair
combinations. These results indicate that the accuracy of the three types of isolines heavily
depends on the selected wavelength combination, which implies the importance of the
optimization factor k. Importantly, however, the value of k should be set appropriately for
each wavelength pair to reduce the error.
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Figure 7. Comparisons of the mean epsilon among the first-order, the asymmetric-order, and the
optimized asymmetric-order isolines as a function of λ1 at four fixed values of λ2: (a) 810 nm,
(b) 860 nm, (c) 910 nm, and (d) 940 nm.

Similar comparisons were made for the mean epsilon of the three types of isolines.
Figure 8a–d show a plot of the mean epsilon as a function of λ2 at four fixed values of λ1.
The value of λ1 was fixed at 470 (Figure 8a), 510 (Figure 8b), 640 (Figure 8c), and 860 nm
(Figure 8d) in the four cases. The mean epsilon of all three isolines is close to zero in the
λ2 range less than 700 nm, except for the result shown in Figure 8d, which is the case of
λ1 = 860 nm. By contrast, the mean epsilon shows increasing trends when λ2 is greater
than 700 nm. Overall, the mean epsilon of the first-order isoline is the greatest among
the mean epsilons of the three isolines. The mean epsilon of the asymmetric-order isoline
equation, however, becomes the largest in the case of λ1 = 860 nm (Figure 8d). This result
also indicates the need for special caution when choosing the wavelength pair. The results
in Figures 7 and 8 imply that the first-order isoline equation could be more accurate than the
asymmetric-order isoline equation in the case of some specific wavelength pairs. The reason
for this somewhat unexpected result is carefully investigated in the next subsection.
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Figure 8. Comparisons of the mean epsilon among the first-order, the asymmetric-order, and the
optimized asymmetric-order isolines as a function of λ2 at four fixed values of λ1: (a) 470 nm,
(b) 510 nm, (c) 640 nm, and (d) 860 nm.

4.3. Influence of the Higher-Order Interaction Terms Demonstrated in the Reflectance Subspace

Figure 9 shows the true vegetation isoline and the spectra predicted by the three
vegetation isoline equations plotted in the reflectance subspace. The wavelength for λ2 was
fixed at 860 nm, whereas λ1 was varied among four discrete values: (a) 690 nm, (b) 710 nm,
(c) 730 nm, and (d) 850 nm, covering from the red edge to the NIR region. Note that the
last selected λ1 in Figure 9d is close to λ2; the difference between the two wavelengths is
only 10 nm. This choice was made on the basis of the results in Figure 7b, which shows an
interesting behavior of the first-order and the asymmetric-order isolines. The values for the
LAI and FVC were fixed during the simulation at 1.6 and 1.0, respectively.

In Figure 9, the first-order, the asymmetric-order, and the optimized asymmetric-order
isolines are indicated by blue circles, a red dashed line, and green crosses, respectively.
In Figure 9a, the asymmetric-order isoline (red dashed line) is closer to the true isoline
(black solid line), clearly indicating that the accuracy of the asymmetric-order vegetation
isoline is greater than that of the first-order vegetation isoline. The asymmetric-order isoline
in Figure 9b is even closer to the true one compared with that in Figure 9a. Interestingly,
the superiority of the asymmetric-order isoline over the first-order isoline is inconsistent.
For example, in Figure 9c, the spectra approximated by the asymmetric-order isoline (red
dashed line) exceed the true isoline (black solid line), and the distance between the true
isoline and the asymmetric-order isoline is almost identical to the distance between the
true isoline and the first-order isoline (blue circles). The distance between the true isoline
and the asymmetric-order isoline becomes even larger in Figure 9d. The first-order isoline
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obviously accurately describes the true isoline in the case of Figure 9d, indicating that the
influence of the last term of the asymmetric-order isoline adversely affects the accuracy in
this case. This problem in the asymmetric-order isoline has been dramatically improved
by the introduction of the optimization factor k (the optimized asymmetric-order isoline
represented by the green crosses) in all the investigated cases.

Figure 9. Scatter plot of true spectra and the three variants of isoline equations in the reflectance
subspace. The wavelength λ2 was fixed at 860 nm, whereas λ1 was selected from (a) 690 nm,
(b) 710 nm, (c) 730 nm, and (d) 850 nm (λ1 minus 10).

To confirm the influence of the higher-order term and its optimization performance
represented by the last term in Equation (11), we conducted further error comparisons
among the three isolines. Recall that Equation (11) is identical to the first-order vegetation
isoline when k = 0. When k = 1 and k = kopt, Equation (11) results in the asymmetric-
order and the optimized asymmetric-order isoline, respectively. Thus, the expression of
Equation (11) covers the three types of isoline equations simply because of the selected k
factor. We refer to the last term as the “over-correction term” because it is intentionally
introduced to overly increase ρλ2 to compensate for the higher-order truncations.

Figure 10a–d show this overcorrection term computed from the last term for the
asymmetric-order isoline, k = 1 (red line), and the optimized higher-order isoline, k = kopt
(green crosses). Furthermore, the error of the first-order isoline, which corresponds to the
case of k = 0, is shown by the blue line. The combination of the wavelengths, λ1 and λ2, is
the same as in the case shown in Figure 9. In the cases of Figure 10a,b, the two wavelengths
differ to a certain extent; thus, the asymmetric-order isoline shows high accuracy. As evident
in the figures, both the green crosses (the optimized asymmetric-order isoline) and the red
line (the asymmetric-order isoline) are close to the blue line (the error of the first-order
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isoline), as we expected. However, when the two wavelengths are similar, the first-order
isoline results in better accuracy significantly than the asymmetric-order isoline. This case
corresponds to Figure 10c,d, in which the influence of the correction term of the optimized
asymmetric-order isoline (green crosses) is much closer to the error of the first-order isoline
(blue line) than the correction term of the asymmetric-order isoline (red line). This result
implies that the optimized asymmetric-order isoline includes an appropriate value for k and
that, because of this appropriate choice of k, the overcorrection term becomes close to the
error of the first-order isoline (the truncation error of the isoline) based on the wavelength
pair. In summary, the optimized higher-order term nicely minimized the truncation error
of the isoline for all combinations of wavelengths, retaining high accuracy irrespective of
the wavelength combination.

Figure 10. Plot of the error in the first-order vegetation isoline equation (blue line) and the over-
correction terms of the asymmetric-order vegetation isoline equation (red line) and the adjusted
overcorrection term with kopt (green crosses). The wavelength pair of λ1 and λ2 is the same as
in Figure 9. The wavelength λ2 was fixed at 860 nm, whereas λ1 was selected from (a) 690 nm,
(b) 710 nm, (c) 730 nm, and (d) 850 nm (λ2 minus 10).

5. Discussion

The original motivation for developing the isoline formula (the first-order isoline
equation) was to analyze the behaviors of the vegetation isoline itself and the spectral
VI [10,11]. The derived first-order isoline equation is the simplest among the three isoline
equations; hence, it still has an advantage in various analyses. For example, several
studies have demonstrated a method that uses the isoline concept for retrieving biophysical
parameters such as the FVC and LAI [19,27,53–55]. If the first-order isoline equation is used
to retrieve these biophysical parameters, the errors caused by the truncation of the higher-
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order interaction terms will be a major source of error in the retrieved results. For instance,
the errors of the first-order isoline are not negligible when it is used for high-accuracy
parameter retrievals. This problem should be addressed by retaining its simplicity in the
isoline formulation, which was the major challenge of the present research. The initial
attempt was to include the higher-order interaction term in a unique manner [13]. The new
isoline formula (i.e., the asymmetric-order isoline) can achieve better accuracy than the first-
order isoline. However, because the formulation was somewhat unusual (asymmetrical
inclusions of the higher-order term), we encountered unexpected behavior in the present
study. In particular, the behavior of the errors caused by the choice of the wavelength pair
needed to be addressed thoroughly.

In our previous work, we discussed the accuracy of the vegetation isolines for pairs of
red and NIR wavelengths by referring to the bands of some existing sensors [14]. For ex-
ample, when a wavelength pair of 655 and 865 nm is chosen for the red and NIR bands,
respectively, we found that the best accuracy was achieved using the optimized asymmetric-
order isoline among the three isoline formulas. This study shows that the findings of the
previous study remain the same for all the investigated wavelength combinations; the
wavelength pair is not limited to the combination of red and NIR wavelengths to support
the findings in the previous work [14]. The advantage of the optimized asymmetric-order
isoline can also be seen by considering the specifications of the existing hyperspectral
sensors. For example, the signal-to-noise ratio (SNR) of EnMAP is 400 in the optical re-
gion [38]. The corresponding value of Hyperion is even lower: 144 at 650 nm [56]. Since the
reflectance level assumed for the SNR is 0.3 [38], the noise equivalent reflectance becomes
7.5 × 10−4 for EnMAP and 2.1 × 10−3 for Hyperion. From Figure 7a–c, the mean epsilon
of the optimized asymmetric-order isoline (black line) is well below the noise equivalent
reflectance of those sensors.

On the contrary, the magnitude of the errors in the asymmetric-order isoline is not
always smaller than the errors in the first-order isoline, which is a somewhat unexpected
result from our previous work [14]. For example, in cases such as those shown in Figure 9c,d,
the asymmetric-order isoline showed larger errors than the first-order isoline despite the
higher-order interaction term being considered during the derivation. This result implies
that special caution is needed to include the higher-order interaction term asymmetrically.
Interestingly, the optimization factor k can overcome this difficulty in a wide range of
wavelength pairs when the optimum value for k is determined algorithmically. From these
results, by using the optimized asymmetric-order isoline, the wavelength region can be
extended without exacerbating the errors.

The advantages of the optimized asymmetric-order isoline are improvements in both
the accuracy and the flexibility of the wavelength choice. These advantages will lead to
better accuracy in parameter retrievals if the first-order isoline is replaced by the optimized
asymmetric-order isoline. Suppose that one attempts to retrieve a biophysical parameter
using the first-order vegetation isoline equation. Because the error of a retrieved biophysical
parameter is expected to be proportional to the error of the isoline equation, an error of
nearly 8% [10,11] relative to the retrieved value would be observed when the soil of the
canopy background is bright. (This error is due to the relatively larger contribution of
the higher-order interaction terms.) This error could be reduced to 1/25 by replacing the
first-order isoline by the optimized asymmetric-order isoline. Although the magnitude
of the error reduction depends on the wavelength pair, replacement of the isoline may
provide a great advantage in various fields of application in which the isoline concept plays
an important role [18,33,57–59]. This study investigated the errors in the isoline equations
within a limited set of parameter settings. This limitation should be noted to consider the
results of this study.

6. Conclusions

In our previous work, accuracy assessments were limited to a common pair of red
and NIR wavelengths. This limitation was problematic when the isoline concept was
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used in a broader wavelength region. This study addressed this problem by extending
the wavelength range from 400 to 1200 nm. We conducted a set of numerical simulations
to characterize the behavior of the three isoline equations. Specifically, the investigation
focused on the optimization factor k of the optimized asymmetric-order vegetation isoline.

The factor k introduced in the asymmetric-order isoline equation was simulated under
various conditions for each wavelength pair, and its optimum value, kopt, was determined
algorithmically for each wavelength pair. The value of kopt was found to strongly depend on
the choice of the wavelength pair. In general, three trends were observed in the relationships
between the kopt and the wavelength choice. The trends were identified on the basis of the
relative differences between the two reflectances. When the reflectance of λ2 was greater
than that of λ1, the value of kopt tended to be greater than 1. The value of kopt was mostly
between 0 and 1 when the reflectances of λ1 and λ2 were similar. Finally, the value of kopt
tended to be less than 0 when the reflectance of λ2 was less than that of λ1.

With respect to the accuracy of the three variants of the vegetation isoline, the opti-
mized asymmetric-order isoline equation was the most accurate for all the wavelength
pairs investigated in the present study. The asymmetric-order isoline equation, in general,
showed better accuracy than the first-order isoline equation; however, this trend did not
hold for some wavelength pairs. Specifically, when the reflectances of the two wavelengths
were similar, the accuracy of the asymmetric-order isoline equation was worse than that
of the first-order isoline equation. This result could have been caused by the effects of the
asymmetrical inclusion of the higher-order interaction. This negative influence of the asym-
metric term was clarified in the present study. We expect the developed isoline formula
to be useful in a wide range of applications involving analytical and numerical tools. The
application of the optimized asymmetric-order isoline equation to actual data processing
of existing hyperspectral sensors remains undone, which should be considered as a future
effort. Further efforts will be needed to facilitate the isoline formula as a practical tool for
processing satellite data.
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