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Abstract: Landslide disasters cause serious property losses and casualties every year. Landslide
displacement prediction is fundamental for mitigating landslide disasters. Several approaches have
been used to predict landslide displacement, yet a more accurate and reliable displacement prediction
still has a poor understanding of landslide early warning systems for landslide mitigation, due
to limited data and mutational displacements. To boost the robustness and accuracy of landslide
displacement prediction, this paper assembled a new hybrid model containing the local mean
decomposition (LMD), innovations state space models for exponential smoothing (ETS), and the
temporal convolutional network (TCN). The proposed model, which is based on over 10 years of
long-term time series monitoring GPS data, was tested on the selected case—stepwise Baijiabao
landslide in the Three Gorges Reservoir area of China (TGRA) was tested by the proposed model.
The results presented that the LMD–ETS–TCN model has the best performance in comparison with
other benchmark models. Compared with autoregressive integrated moving average (ARIMA),
support vector regression (SVR), and long short-term memory neural network (LSTM), the accuracy
was noticeably improved by an average of 40.9%, 46.2%, and 22.1%, respectively. The robustness
and effectiveness of the presented approach are attested, and it has discernible improvements for
landslide displacement prediction.

Keywords: landslide displacement prediction; temporal convolutional network; ETS model; local
mean decomposition; long-term time series analysis

1. Introduction

Landslides are frequent but dangerous geological disasters that threaten people’s
safety and property losses [1–5]. Numerous new landslides have happened because of
the initial impoundment of the Three Gorges Reservoir Area (TGRA) in June 2003 [6,7],
while numerous ancient landslides have shown signs of revival deformation [8,9]. Hence,
to analyze the mechanism of landslide evolution and to reduce the casualties caused by
landslides, early warning and long-term monitoring systems (EWLS) are set up in many
landslides in the TGRA [10–12]. Landslide displacement prediction (LDP) using monitoring
data is quite important for EWLS, providing alert information for decision-makers and
reducing the harm caused by landslides [13,14]. Thus, accurate and reliable landslide
displacement prediction is a useful approach to lessen landslide hazards.

Several approaches are used for predicting landslide displacement, mainly including
physically based and data-driven methods. Landslide displacement prediction can be
traced back to the three stages of the step-like landslide creep theory proposed by Saito in
the 1960s [15]. According to the creep theory and other physical models of soil and rock
masses, some deterministic models have been tested [16], such as the Saito model [15,17]
and the Voight model [18]. The characteristics of these models are that they have obvious
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physical mechanisms but have severe limitations of application and rely on the experience
of experts. Because models simplify geological and mechanical mechanisms, models may
not accord with facts. With the development of statistics, many statistical approaches
have been used to predict landslide displacement, such as the Verhulst model [19] and
the gray system model [20]. Most of these models are nonlinear models without certain
support by geological and mechanical mechanisms. In the past decade, with the rapid
development of artificial intelligence (AI), various studies have been devoted to applying
AI models to predicting landslide displacement. For example, Du et al. [21] trained a
backpropagation neural network (BPNN) model with chosen landslide-inducing factors
to predict displacement in two colluvial landslides. Huang et al. [22] utilized an extreme
learning machine (ELM) to forecast landslide displacement. Cai et al. [23] presented a
least-squares support vector machine (LSSVM) with a genetic algorithm (GA) for predicting
landslide displacement. However, these neural network models are fully connected, and
there may be producing information leakage during training, which leads to overfitting
of the training sets. To solve the mentioned issue, a kind of deep learning (DL) named
the recurrent neural network (RNN), whose architecture was designed for series data,
was applied to landslide displacement prediction [24]. RNN and its improved models,
including long short-term memory (LSTM) neural networks and gated recurrent unit
(GRU), have been extensively used in landslide displacement prediction [25–28]. DL has
exhibited superior operation over conventional machine-learning methods and has proven
to be a promising tool for landslide prediction [29–31].

Landslide cumulative displacement refers to geological conditions, hydrological en-
vironment, precipitation, and other external inducing factors. Cumulative displacement
decomposition is an additive decomposition that is divided into two parts: trend displace-
ment and periodic displacement, respectively [32,33]. The trend displacement determined
by geological conditions showed a long-term increase in the landslide. Periodic displace-
ment relies on external factors, such as reservoir level and precipitation [21]. Decomposing
cumulative displacement is beneficial to reduce the difficulty of prediction. Moving aver-
age, empirical mode decomposition (EMD), and modified EMD models, which include
ensemble empirical mode decomposition and complementary ensemble empirical mode
decomposition are regular methods to decompose landslide displacement [34–37]. The
moving average lags behind the latest datum by half the sample width [38]. By EMD
and modified EMDs, the upper envelope and lower envelope of the original signal are
obtained by cubic spline interpolation for all extremum points, respectively, which easily
forms an over-envelope or under-envelope. Polynomial fitting is often used for trend term
prediction, but polynomial fitting does not perform well for long-term series [39,40], which
need to be split into several parts [26]. The architecture of RNN has a major problem of
exploding or vanishing gradients, which has led to the progress of LSTM and GRU, as they
can easily consume a large amount of memory for storing the partial results generated by
the multiple cell gates, especially when the input sequence is lengthy.

To address the defects of the above-mentioned models, the local mean decomposition
(LMD), innovations state space models for exponential smoothing (ETS), and temporal
convolutional network (TCN) were assembled as a hybrid approach to predict landslide
displacement, which was named LMD–ETS–TCN. Compared with other models used in
previous studies, LMD can avoid the disadvantages of over-envelope or under-envelope
in EMDs. Recently, researchers have tried to use LMD to decompose landslide displace-
ment [41]. The autocorrelation of the data is considered in the ETS models. ETS is the
advanced model improved by exponential smoothing (ES), which was a sophisticated way
to predict landslide trend displacement [42,43]. The TCN model also has some advantages.
Firstly, different from RNN, where predictions for subsequent timesteps wait for the prede-
cessors to end, convolutions of TCN can be performed in parallel because each layer uses
the same filter. Secondly, the TCN has residual blocks that avoid the problem of exploding
or vanishing gradients. The assembled hybrid model predicted displacement series in the
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Baijiabao landslide as a real application case. As a new model proposed only in recent
years, some scholars have applied TCN to research landslides [44,45].

In the LMD–ETS–TCN model, LMD was used to decompose displacement into trend
displacement and periodic displacement, the ETS (error, trend, seasonal) model predicted
trend displacement, then the TCN predicted periodic displacement. The predicted out-
comes were compared with the accuracy of benchmark models and measured displacement,
which validate the feasibility and accuracy of the presented approach. This approach is
expected to integrate the advantages of three models in decomposing and predicting dis-
placement series. The main innovations of our research are summarized below. Firstly, we
used LMD to eliminate the defects of EMDs. Secondly, ETS instead of ES was introduced
to predict trend displacement to excavate the autocorrelation of the time series. Next, a
hybrid model based on the TCN model was proposed to predict landslide displacement.
Lastly, the accuracy of the proposed model has been validated by the metrics.

2. Methodology
2.1. Local Mean Decomposition (LMD)

The LMD method is used to decompose a frequency-modulated signal from an
amplitude-modulated envelope signal. The LMD method involves progressively obtaining
envelope functions and frequency-modulated signals by using the envelope estimate and
the smoothed version of the initial signal [46]. Then, each envelope function is multiplied
by the frequency-modulated signals to obtain a product function. Continuing this process
until the residue signal has no more oscillations. For a given signal x(t), the process of
decomposition is shown below [46].

(1) Firstly, in each half-wave oscillation of the signal, the mean value mi of each two
following extrema ni and ni + 1 should be calculated as below:

mi =
ni + ni+1

2
(1)

Then, these local means should be smoothed by moving the average to form a smoothly
altering continued local mean function m(t).

(2) Each corresponding half-wave oscillation’s local magnitude is determined as below:

ai =
|ni − ni+1|

2
(2)

The local magnitudes are smoothed as the same to produce a smoothly varied contin-
ued envelope function a11(t).

(3) For the initial signal x(t), the original mean represented m11(t) is calculated by Equation
(1), and the initial envelope estimate denoted a11(t), and then outcome signal h11(t),
s11(t) is given as below:

h11(t) = x(t)−m11(t) (3)

s11(t) =
h11(t)
a11(t)

(4)

(4) The iteration procedure should repeat n times until a purely frequency-modulated
signal s1n(t) is calculated. Therefore,

h11(t) = x(t)−m11(t)
h12(t) = x(t)−m12(t)

...
h1n(t) = x(t)−m1n(t)

 (5)
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where
s11(t) = h11(t)/a11(t)
s12(t) = h12(t)/a12(t)

...
s1n(t) = h1n(t)/a1n(t)

 (6)

The corresponding envelope is given by

a1(t) =
n

∏
q=1

a1q(t) (7)

Until
lim

n→∞
a1n(t) = 1 (8)

(5) At this time, a product function PF1(t) is multiplied by s1n(t) and a1(t),

PF1(t) = a1(t) · s1n(t) (9)

(6) The initial signal x(t) subtracts PF1(t) to generate a new function u1(t), so the flow
should continue k times until uk(t) belongs to a constant or no more oscillations.

u1(t) = x(t)− PF1(t)
u2(t) = x(t)− PF2(t)

...
uk(t) = x(t)− PFk(t)

 (10)

Finally, the original signal is equal to the sum of uk(t) and PFs, as shown in Equation (11).

x(t) =
k

∑
p=1

PFP(t) + uk(t) (11)

2.2. ETS Model

The ETS model is a group of time series models. They are a generalization of simple
exponential smoothing for time series with trends and seasonalities [47]. Each model is
made up of a measurement equation that presents the observed series and a set of state
equations that express how the unseen parts or states (level, trend, seasonal) shift over time.
Hence, they have an underlying state-space model. Each state-space model is denoted as
ETS (·, ·, ·) for (error, trend, seasonal). The kinds for each component (or state) are: (error;
additive or multiplicative), (trend; additive, or additive with damped, or none), (seasonal;
additive, or multiplicative, or none). Thus, the ETS models are composed of a forecast
equation and three smoothing equations.

ŷt|t−1 = (lt−1Ob(bt−1Odφ))Osst−m
lt = α(yt 	s st−m) + (1− α)(lt−1Ob(bt−1Odφ))
bt = β/α(lt 	b lt−1) + (1− β/α)bt−1
st = γ(yt 	s (lt−1Ob(bt−1Odφ)) + (1− γ)st−m

(12)

where Ob, Od, φ, Os denote trend operation, the operation linking trend, trend dampen-
ing factor, and seasonality operation, respectively. 	 is the respective inverse operation
(subtraction or division). Moreover, we denote with lt time level t, with bt the trend compo-
nent (or state), and with st the seasonal component (or state). α, β, γ represent smoothing
parameters, and m is the number of seasonal periods.
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2.3. Temporal Convolutional Network (TCN)

Bai et al. [48] described a family of architectures as a temporal convolutional network
(TCN). The TCN has two principles: the length of an input is the same as the output of
the network, and future information cannot leak into the past. A generic TCN approach is
composed of a 1D fully convolutional network (FCN) and dilated convolutions.

Dilated convolutions enable a receptive field that is exponentially large [49], which is
more suitable for longer history sequence tasks. For a 1D sequence input X ∈ Rn and a
filter f : {0, · · · , k− 1} → R , the dilated convolution operation F is

F(s) = (X ∗ d f )(s) =
k−1

∑
i=0

f (i) · Xs−d·i (13)

where s is the element of the sequence, d represents the dilation factor, k represents the filter
size, and s−d·i accounts for the direction of the past.

A residual module (shown in Figure 1) takes the place of a convolution layer in a
generic TCN model because layers can learn alterations efficiently to the individuality
mapping instead of the whole transformation, especially in very deep networks.

Figure 1. The structural design of the TCN.

2.4. Prediction Process and Experimental Settings

The mean square error (MSE) was selected as the loss function of the TCN model.
Adam [50] was selected as the optimizer in the gradient descent optimization of the
stochastic objective function of the TCN model. We set the kernel size as 3, and epochs as
400, respectively.

Landslide cumulative displacement was measured monthly from January 2007 to July
2018 for a total of 144 months. The dataset was separated into three parts: the training,
validation, and testing data. The early 96 months from January 2007 to December 2014
made up the training, and the validation data comprised the next 24 months from January
2015 to December 2016. We retained the last 24 months, from January 2017 to December
2018, as the test set.

Firstly, landslide accumulative displacement is decomposed by LMD into two terms:
periodic term and trend term. According to Equation (11), the displacement series would
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be decomposed into PFs and uk(t). Then, the PFs obtained by LMD are added into a sum
sequence, which is considered as the periodic term of the accumulative displacement. The
residue uk(t), which is not oscillating, is considered the trend term. The hyperparameters
of displacement predictors should be tuned in the validation set before the test set is used
to estimate the performance of the models. The grid search is used to determine the state
space of the ETS model and hyperparameters of the TCN model, which are kernel size
and dilation. Through the analysis of the monitoring data, the landslide-inducing factors
that trigger the periodic displacement are chosen, and the gray relational grade is used to
quantitatively determine the correlation between the candidate landslide-inducing factors
and periodic displacement.

To predict the displacement of t time in the test set after tuning the hyperparameters,
the procedural steps are as follows:

Step 1. The predicted trend displacement r̂t is predicted by the ETS model fitting the trend
term.

Step 2. A TCN approach is trained to forecast the landslide-predicted periodic displacement
p̂t based on the periodic term.

Step 3. The cumulative predicted displacement ŝt is the sum of the predicted trend dis-
placement r̂t and the predicted periodic displacement p̂t.

Step 4. Predict the displacement of t + 1 time by repeating steps 1 to 4.

Figure 2 shows the whole process of landslide displacement prediction.
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We contrasted our proposed approach and another existing approach to verify the
accuracy of the predicted displacement. According to previous studies [26,51,52], we chose
three approaches as benchmarks for comparison: autoregressive integrated moving average
(ARIMA), support vector regression (SVR), and long short-term memory neural network
(LSTM). The GA was used to tune the hyperparameters of SVR, while grid search was
used for ARIMA and LSTM. The details of the parameters are designed in Table 1. All
experimental processes were implemented in Python, and some Python packages were
invoked, including Darts [53], scikit-learn [54], and PyTorch [55].
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Table 1. The detailed settings of used models.

Model Hyperparameter Explanation

TCN Kernel size = 3
dilation = 3

Kernel size: The size of every kernel in a convolutional
layer.
dilation: The base of the exponent determines the dilation
on every level.

ARIMA
p = 2
q = 2
d = 0

p: Number of time lags of the autoregressive model (AR).
q: The size of the moving average window (MA).
d: The order of differentiation.

SVR C = 518.243
γ = 0.01

C: Regularization parameter.
γ: Determine how much influence a single training
example has.

LSTM Hidden layer size = 25 Hidden layer size: Size for each hidden LSTM layer.

2.5. Metrics

Verifying the models is quite a significant step for prediction accuracy. In this study,
mean absolute error (MAE), root mean squared error (RMSE), and coefficient of determina-
tion (R2) were used to evaluate the performance of the models [25–28]. The three metrics
above are calculated as presented below.

MAE =
1
n

n

∑
i=1
|ŷi − yi| (14)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (15)

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 (16)

where yi and ŷi denote the observed displacement and predicted displacement, respectively,
and y is the average displacement of n measured displacements. The smaller values of MAE
and RMSE show better prediction accuracy and a larger R2 represents better prediction
accuracy.

3. Case Study
3.1. Topography and Geological Setting

The Baijiabao landslide is sited in Guizhou town, Zigui County, Hubei Province,
China, on the west side of the Xiangxi River. The coordinates of latitude and longitude are
30◦58′59.9′′ N, 110◦45′33.4′′ E. The landslide is about 2.5 km upstream of the confluence
of the Xiangxi River and the Yangtze River (Figure 3). The primary sliding direction of
the Baijiabao landslide is oriented at N 85◦E. The shear outlet of the landslide varies in
elevation between 125–135 m above sea level, and the toe of the landslide is submerged
in the Xiangxi River. The left and right boundaries are identified by bedrock and a gully,
respectively. The trailing edge of the landslide is limited by bedrock at an elevation of
265 m. The short tongue-shaped landslide is a width of around 400 m, a length of around
400 m, and an average depth of approximately 45 m, as indicated by boreholes. Hence, the
Baijiabao landslide contains 2.2× 105 m2 and has an approximated volume of 9.9 × 106 m3.
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This landslide belongs to an anti-dip colluvial landslide (Figure 4) [56]. The landslide
mass is composed of loose Quaternary deposits, which are made of greyish-yellow to
brownish-yellow gravelly soil, and silty clay with fragmented rubble. The sliding zone
is mainly silty clay, which is greyish yellow in the plastic. The lithology of the bedrock
is feldspar–quartz sandstone and mudstone, belonging to the Triassic Badong Formation,
while Quaternary sediments and soil are noticed under the front of the landslide. The
Triassic strata have an approximately 30◦ dip, and the dip direction is nearly 260◦, which is
parallel to the landslide surface slope.
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3.2. Time Series Monitoring Data and Deformation Analysis

The six global positioning system (GPS) monitoring stations (ZG220, ZG221, ZG323, to
ZG326) were installed to monitor the surface displacement in late 2006. The ZG323-ZG326
monitoring stations were established in the middle of the landslide area near the road,
whereas ZG220 and ZG221 were established as the datum stations. Hence, monitoring data
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were obtained from January 2007 to July 2018, as shown in Figure 5. Every time step of the
data is one month. The records of four monitoring stations showed step-like characteristics,
which meant there was a suddenly increased landslide displacement between April and
September (Figure 5).
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Figure 5. Precipitation, reservoir level, and measured cumulative displacement in the Baijiabao
landslide: white fill—dry season; gray fill—rainy season.

We chose the Baijiabao landslide as the case study for the following reasons. Firstly,
the Baijiabao landslide has been monitored for over ten years, which provided enough
time series of high-quality data for training machine-learning models. Four GPS stations
in the landslide measured obvious growth of surface displacement, indicating that the
landslide is indeed in the stage of deformation. Secondly, the Baijiabao landslide is a
typical colluvial landslide in the Three Gorges Reservoir Area. The step-like increase in
landslide displacement occurs every summer, which shows the regular distribution. Finally,
previous studies [56,57] analyzed the deformation characteristics and triggering factors of
the Baijiabao landslide, which provided the basis for our study.

Since the GPS stations were set, the Baijiabao landslide has been continuously de-
formed. Until December 2018, the maximum displacements recorded by ZG323, ZG324,
ZG325, and ZG326 were 1255 mm, 1464 mm, 1362 mm, and 1708 mm, respectively. Except
for the largest displacement at the monitoring station, ZG326, located on the right of the
Baijiabao landslide, the displacement records of the other three stations were similar, which
represented that the Baijiabao landslide deformed synchronously [58].

The increase in landslide displacement shows cyclical regularity. From October to
April of the subsequent year, there is a dry season. The displacement increased very slowly
in the dry season when the landslide area experienced scarce rainfall, and the reservoir
remained at a high level. However, from May to September in the rainy season, when
rainfall was rich, the reservoir level was at a low elevation, and the displacement of the
landslide increased rapidly, which contributed to over 70% of the yearly displacement
to endow the cumulative time–displacement curves with step-like characteristics. For
example, the whole-year displacement of ZG324 in 2009 was 199.8 mm, while the monthly
displacement of ZG324 between July and August was 97.1 mm and 81.6 mm, which
endowed the increase of the annual displacement by 45% and 41%, respectively. The reason
is that the increase in precipitation leads to a rise in the underground water level in the
landslide body, the decrease in the reservoir water level leads to the water head increasing,
and the landslide body produces hydrodynamic pressure directing to the free face and
along the path of the landslide, which is detrimental to the landsliding stability. When
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the reservoir water level is high and the precipitation is low, the hydrodynamic pressure
pointing to the slide surface is generated, which makes the landslide stable.

Before the filling of the Three Gorges Reservoir along the Yangtze River, the Baijiaobao
landslide had little creep behavior, but obvious deformation behavior was observed after
filling [57]. At the head of the landslide, two arcuate tension cracks were observed on
the right and left boundaries in June 2007. The right crack was 1–3 cm wide and the left
crack was 1–5 cm wide. These cracks were 160 m long and 10 cm deep. Meanwhile, tiny
tension cracks were observed near Zi-Xing Road in the middle part of the landslide, which
damaged the surface of the road.

In May 2009, heavy rainfall lasting for six days induced many cracks trending N20E
to develop along Zi-Xing Road, whose width was approximately 15 cm and depth was
approximately 25 cm.

In the head part of the landslide, many large arcuate cracks became interconnected
and practically continuous at the landslide boundaries in July 2012. Near the toe of the
landslide, the cracks stretched into the reservoir’s hydro-fluctuation belt. In July 2015,
new tension cracks, ranging in width from 1 to 5 mm, were discovered at the head of the
landslide on the right boundary. There were also a few tension cracks along Zi-Xing Road,
particularly where the road crossed the landslide laterally. The cracks ranged in size from 1
to 5 mm in width and 1 to 10 m in length.

We carried out two field surveys in July 2021 and April 2022. In the first field survey, a
DJI Matrice 300 RTK Unmanned Aerial Vehicle (UAV) was used to perform 3D modeling of
the landslide in Figure 6. The surveys indicated that the landslide currently remained in a
relatively stable state. However, with the long-term influence of underground water and
reservoir water, especially the sudden increase or decrease in reservoir water, the landslide
stability will gradually deteriorate, and it will be unstable at an unknown time point and
conditions.
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By comparing the deformation characteristics and displacement, we find that the years
with obvious cracks are consistent with the years that have large displacement growth
(2009, 2012, and 2015). Cracks usually developed on the road in the middle part and near
the boundaries of the landslide during the rainy season. The cracks caused the water
to easily infiltrate the landslide body, which resulted in a rapid rise in the groundwater
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level. Therefore, the hydrodynamic pressure was increased, reducing the effective stress
on the landsliding mass movement. In addition, long-term saturation would reduce
the mechanical strength of the soil. These reasons explain why developed cracks cause
landslide displacement to increase.

4. Results
4.1. Cumulative Displacement Decomposition

We decomposed four GPS monitoring stations of the Baijiabao landslide cumulative
displacement by LMD. The PFs of each station’s cumulative displacement were regarded
as the periodic displacement, and the residue of each station was considered as trend
displacement (Figure 7). The trend displacement showed the increased tendency of the
developing displacement without the step-like characteristic, and the periodic displacement
changed over time as a time series.
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Figure 7. (a) Cumulative displacement of four GPS stations; (b) trend displacement of four GPS
stations by LMD; (c) periodic displacement of four GPS stations by LMD.

4.2. Trend Displacement Prediction

First, the grid search was used to determine the state space of the ETS model before
predicting trend displacement. Then, we trained each kind of ETS model in the training set,
and the AIC corrected for small sample bias (AICC) was used here to decide which of the
ETS models was most suitable (shown in Table 2).
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Table 2. The AICC results of the trend displacement in four GPS stations.

ZG323 ZG324 ZG325 ZG326

ETS (A, A, N) 398.164 388.168 371.580 353.010
ETS (A, Ad, N) 399.886 391.479 373.780 358.070
ETS (A, A, M) 401.779 419.033 653.940 390.110

ETS (A, Ad, M) 405.402 443.103 407.100 395.750
ETS (M, A, N) 407.325 957.639 500.880 470.510
ETS (A, A, A) 408.013 417.567 653.730 386.480

ETS (M, Ad, N) 408.481 1033.737 512.030 479.280
ETS (A, Ad, A) 410.877 421.896 406.080 392.370
ETS (M, A, A) 418.297 946.128 515.820 480.750
ETS (M, A, M) 429.235 776.559 532.780 500.510
ETS (M, Ad, A) 431.305 523.652 528.800 491.650
ETS (M, Ad, M) 441.487 783.988 544.840 510.350
ETS (A, N, N) 714.137 740.008 728.970 765.490
ETS (A, N, M) 742.629 775.787 761.540 797.760
ETS (A, N, A) 744.536 771.705 761.480 798.000
ETS (M, N, N) 746.094 1024.060 819.330 798.650
ETS (M, N, A) 777.466 876.940 848.900 827.650
ETS (M, N, M) 778.535 985.622 851.510 830.750

The results show that the ETS (A, A, N) was most appropriate for trend displace-
ment. The curves of the predicted trend displacement are exhibited in Figure 8, and the
performance of the results are demonstrated in Table 3 by ETS (A, A, N). ETS (A, A, N)
showed the best performance in ZG323, and the MAE, RMSE, and R2 of the ZG323 trend
displacement were 0.646, 0.831, and 0.999, respectively.
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Figure 8. (a) Predicted and observed trend displacement in the test set of ZG323; (b) predicted and
measured trend displacement of ZG324; (c) predicted and measured trend displacement of ZG325;
(d) predicted and measured trend displacement of ZG326.

Table 3. The predicted accuracy for the training models.

MAE RMSE R2

ZG323 0.645 0.831 0.999
ZG324 2.071 2.425 0.998
ZG325 1.072 1.448 0.999
ZG326 2.323 2.961 0.999
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4.3. Periodic Displacement Prediction
4.3.1. Selection of Inducing Factors

Precipitation is one of the major inducing factors triggering landslides in the
TGRA [59,60]. On one hand, rainfall seeps into rock fractures and soil porosity to cause the
underground water level to rise in the landslide body, which softens the rock and soil and
decreases the shear strength on the surface of the rupture. Therefore, the resisting forces are
reduced. On the other hand, seeped water increases the weight of the landslide body, which
leads to enhancing the driving forces. Thus, the landslide becomes unstable, increasing
the landslide displacement [61]. The periodic displacement of the Baijiabao landslide
fluctuated with the variation in numerous external inducing factors. Figure 9 shows that
the monthly precipitation had a positive correlation with the periodic displacement rate,
while the cyclicity of displacement exhibited a slight lag hysteresis compared to the cyclic-
ity of monthly precipitation. A possible explanation for this might be that the landslide
maintained a stable state when rainfall did not exceed a threshold [62]. The fluctuation
in reservoir level also had an important effect on the deformation of landslides [26]. As
illustrated in Figure 9, as the reservoir water level rose, the periodic displacement decreased.
When the reservoir water level remained stable, the periodic displacement tended to be
steady. In general, cyclical fluctuations in the reservoir water level should lead to fluctu-
ations in periodic displacement. Reservoir level fluctuation and rainfall are typically the
major landslide-inducing factors that influence the displacement of the step-like reservoir
bank landslide. Consequently, the key to accurate periodic displacement prediction is the
selection of influencing factors [63]. Precipitation and reservoir water level have a lag effect
on the landslide periodic displacement, and the landslide periodic displacement also has
autocorrelation. Referring to other research [27,64], we selected the periodic displacement,
precipitation, and reservoir water level over the past three months as landslide-inducing
factors. The gray relational grade (GRG) was used to assess the relationship between
landslide-inducing factors and periodic displacement as shown in Table 4.
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Figure 9. Precipitation, reservoir level, and periodic displacement rate in ZG323 to ZG326. White
fill—dry season; gray fill—rainy season.
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Table 4. Input data for the approaching of the periodic displacement and the GRA between inducing
factors and periodic displacement.

ZG323 ZG324 ZG325 ZG326

Periodic displacement over one month 0.863 0.906 0.877 0.891
Periodic displacement over two months 0.778 0.845 0.795 0.820

Periodic displacement over three months 0.715 0.794 0.733 0.766
Precipitation in the current month 0.687 0.731 0.774 0.897

Precipitation in the previous month 0.706 0.746 0.751 0.844
Precipitation in the two months before 0.729 0.761 0.788 0.915

Reservoir level in the current month 0.725 0.749 0.760 0.734
Reservoir level in the previous month 0.671 0.716 0.717 0.695

Reservoir level in the two months before 0.614 0.679 0.675 0.658

4.3.2. The TCN Prediction of Periodic Displacement

Table 5 demonstrates the accuracy of the predicted results of the TCN model at four
GPS stations. Figure 10 shows that the predicted values were close to the measured
displacement of the periodic term. However, at the maximum and minimum points of
the periodic displacement, the predicted accuracy shows obvious errors. For example, in
ZG323 from July 2017 to August 2017, the displacement of the periodic term increased from
−28.6 mm to 28.7 mm. Such a sudden shift reduced the prediction accuracy of the TCN
and caused the model to overestimate the periodic displacement of the following month
(September 2017). Similarly, in ZG324 from July 2017 to August 2017 and from July 2018 to
August 2018, the periodic displacement increased suddenly, resulting in poor accuracy of
the periodic displacement in these periods and one month later. In the summers of 2017
and 2018, the periodic displacement increased suddenly and rapidly from the bottom to the
head. Due to the large displacement changes, the displacement prediction in this period
had a large error and showed a lag effect.

Table 5. Prediction accuracy of periodic displacement in ZG323 to ZG326.

MAE RMSE R2

ZG323 10.423 13.061 0.602
ZG324 13.133 16.938 0.650
ZG325 9.795 14.663 0.694
ZG326 17.371 21.005 0.850

4.4. Cumulative Displacement Prediction

We used SVR, ARIMA, and LSTM to predict periodic landslide displacement from
ZG323 to ZG326 GPS monitoring stations as compared to models. Adding the trend
displacement to the periodic displacement, the predicted values of cumulative displacement
were obtained. Figure 11 presents the predicted cumulative displacement of ZG323 to
ZG326 Baijiabao GPS stations in the test set from January 2017 to December 2018. In Table 6,
we can see the evaluation index of each station.

Table 6. Prediction accuracy of cumulative displacement in ZG323 to ZG326.

MAE RMSE R2

ZG323 10.340 12.821 0.927
ZG324 13.615 17.545 0.907
ZG325 9.720 14.854 0.915
ZG326 17.314 21.380 0.896
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Figure 10. (a) The TCN prediction of periodic displacement in ZG323; (b) the TCN prediction of
periodic displacement in ZG324; (c) the TCN prediction of periodic displacement in ZG325; (d) the
TCN prediction of periodic displacement in ZG326.
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Figure 11. (a) Comparison of different models for cumulative displacement in ZG323; (b) comparison
of different models for cumulative displacement in ZG324; (c) comparison of different models for
cumulative displacement in ZG325; (d) comparison of different models for cumulative displacement
in ZG326.

5. Discussion

Analyzing the error of the results assists us to find the regularities of prediction
accuracy. According to Figure 11 and Table 7, TCN was the best-performing model, the
secondary performance model was LSTM, and ARIMA performed better than SVR in ZG323
and ZG325 but worse in ZG324 and ZG326. Compared with ARIMA, SVR, and LSTM, the
accuracy of TCN was improved by an average of 40.9%, 46.2%, and 22.1%, respectively.
This indicates that the robustness of the TCN approach has the best performance.
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Table 7. Cumulative displacement of accuracy assessment with different predicted models in ZG323
to ZG326.

MAE RMSE R2

ZG323

ARIMA 11.732 15.224 0.897
SVR 15.348 17.637 0.862

LSTM 11.584 14.836 0.902
TCN 10.340 12.821 0.927

ZG324

ARIMA 16.371 20.225 0.876
SVR 14.393 18.993 0.891

LSTM 13.615 17.545 0.907
TCN 9.140 13.800 0.942

ZG325

ARIMA 13.106 17.410 0.883
SVR 15.183 21.029 0.829

LSTM 12.759 19.825 0.848
TCN 9.720 14.854 0.915

ZG326

ARIMA 24.300 30.726 0.785
SVR 23.056 26.120 0.845

LSTM 18.797 24.616 0.862
TCN 17.314 21.381 0.896

The MAE, RMSE, and R2 represent the metrics for evaluating the mean error of the
total predicted displacement values, but the bias of the predicted values should also be
considered. Boxplots of absolute errors in Figure 12 show the discrete distribution and
skewness in ZG323 to ZG326. Although the extreme value of the error is not always the
smallest, the interquartile range (IQR) of the TCN is always the smallest among the four
GPS stations.
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Figure 12. (a) Boxplots of absolute predicted errors for each model in ZG323; (b) boxplots of absolute
predicted errors for each model in ZG324; (c) boxplots of absolute predicted errors for each model in
ZG325; (d) boxplots of absolute predicted errors for each model in ZG326, the points represent the
outliers.

ARIMA is a classical time series forecasting model; however, by comparing the pre-
diction accuracy of four GPS monitoring stations, it is found that their performance is not
stable enough. In ZG323, the ARIMA-predicted accuracy is higher than that of the SVR
model and close to that of the LSTM model. However, ARIMA is the worst-performing
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model in ZG324 and ZG326. The reason may be that ARIMA is a univariate prediction
model and cannot input multiple influencing factors. ZG324 and ZG326 are two GPS
stations with larger displacement increases. Therefore, larger displacement increases are
more likely to lead to the lower predicted accuracy of the univariate model. The prediction
curve of SVR was linear and did not show the characteristics of sharply increasing step-like
displacement. This may be due to several reasons: although the optimization algorithms
were used, it was difficult to acquire ideal values for SVR’s hyperparameters because of
the lack of prior knowledge. SVR relies on a split of the training data because the training
data within the loss function are disregarded. The local predicted accuracy of SVR in the
neighborhood of the training points has a limitation on account of noticeable deviations
between actual responses and estimated responses at the training points [65].

In addition, as shown in Table 7 and Figure 12, the predicted accuracy of LSTM is only
worse than that of TCN, but the bias of predicted displacement values is higher than that of
TCN. Its interquartile range is wider than that of the TCN. Overall, the prediction accuracy
of LSTM is the second highest after TCN. Both LSTM and TCN are deep-learning models,
and their prediction accuracy is higher than that of the classical statistical model ARIMA
and the classical machine-learning model SVR. Moreover, it is shown that deep-learning
models designed for sequential data could outperform traditional statistical models and
machine learning on small samples.

As seen in Figure 11, sharply step-like increased landslide displacement of four GPS
stations occurred in July 2017 and in July 2018, which were in the latter half of the year.
The predicted landslide displacement values became inaccurate after sharp increases in
landslide displacement occurred. Therefore, we split the predicted values by every half
of the year and then compared the metrics of the first half of the year and the latter half
of the year. The results shown in Table 8 represent that the metrics in the latter half of the
year are less than half of those in the first half of the year. The increase in displacement
from July to September contributed to over 90% of the yearly displacement to endow the
cumulative time–displacement curves with step-like characteristics. The RMSE of ARIMA,
SVR, LSTM, and TCN from July to September were 32.027, 25.408, 31.537, and 24.342,
respectively, which were bigger than RMSE in the test set. It confirmed that the step-like
period of the landslide conducted large, predicted errors. Consequently, the performance
of landslide displacement does not only rely on the beginning and the end of sharply
increased landslide displacement.

Table 8. Comparison of accuracy between the first half and latter half of the years.

MAE RMSE R2

First Half of
Years

Latter Half
of Years

First Half of
Years

Latter Half
of Years

First Half of
Years

Latter Half
of Years

ZG323

ARIMA 9.731 13.734 10.889 18.574 0.896 0.786
SVR 14.161 16.535 16.395 18.796 0.763 0.781

LSTM 8.179 14.989 9.731 18.589 0.917 0.785
TCN 8.014 12.667 9.683 15.329 0.917 0.854

ZG324

ARIMA 13.375 19.366 17.030 22.981 0.826 0.790
SVR 9.768 19.017 11.947 24.057 0.915 0.770

LSTM 11.344 15.886 13.374 20.899 0.893 0.826
TCN 5.870 12.410 7.549 17.992 0.966 0.871

ZG325

ARIMA 8.528 17.683 9.788 22.593 0.930 0.748
SVR 8.899 21.467 11.134 27.576 0.910 0.624

LSTM 8.599 16.920 10.254 26.095 0.924 0.664
TCN 4.455 14.985 5.672 20.227 0.977 0.798

ZG326

ARIMA 12.523 36.077 14.776 40.864 0.909 0.526
SVR 20.493 25.619 23.386 28.594 0.771 0.768

LSTM 12.074 25.520 13.803 31.959 0.920 0.710
TCN 8.963 25.664 10.091 28.503 0.957 0.769



Remote Sens. 2023, 15, 229 18 of 21

We used the LMD–ETS–TCN model in four Baijiabao landslide stations from ZG323 to
ZG326. The predicted performance is ZG323>ZG325>ZG324>ZG326, which is the same in
cumulative, trend, and periodic displacement. The step-like increased displacement in the
rainy season contributed over 70% of the annual displacement in Figure 5. Therefore, it may
be that the model performs worse in the unstable part of the landslide. Compared with the
metrics of trend displacement (Table 3), periodic displacement (Table 5), and cumulative
displacement (Table 6), the predicted errors were mainly from periodic displacement.

As mentioned above, the main predicted errors resulted from periodic displacement
and occurred in sharp displacement in the latter half of the years. Moreover, the predicted
displacement had a lag period that delayed the measured displacement. Some previous
studies have tried to improve the accuracy of sharply increased displacement by using
ensemble learning and feature engineering [61,64], which could provide some inspiration.

In recent research, models updating constantly can only ensure prediction of the
future landslide displacement in a finite period. Reservoir level and rainfall mainly affect
landslide displacement through groundwater, which is an indirect process. Therefore,
rainfall and reservoir level may not be very relevant to landslide displacement. The
monitoring of landslide displacement widely uses the global positioning system (GPS) in a
landslide early warning and long-term monitoring systems [66]. However, only surface
displacements can be obtained using GPS, and environmental variation has a significant
impact on measuring accuracy [67–69]. With development, the monitoring system should
record more correlative landslide-inducing factors, such as underground water and deep
displacement, the monitoring frequency should be shortened to days and hours, and
feature engineering should be carried out through big data analysis to select and analyze
the factors that are more relevant to the impact of landslide displacement, geology, and the
mechanical mechanism of displacement.

6. Conclusions

To sustain landslide early warning, this paper proposed a hybrid model named
LMD–ETS–TCN to predict landslide cumulative displacement. Compared with other ap-
proaches, including ARIMA, SVR, and LSTM, the TCN model has the best performance,
not only in prediction accuracy but also in prediction bias, at four time-series GPS moni-
toring stations of the Baijiabao landslide in the TGRA region. Meanwhile, we found that
the deep-learning models were better than the traditional models. Considering that the
total sample size was only 144, this result showed that deep-learning models designed for
sequential data could outperform traditional machine learning even on small samples. By
comparison, it was found that the errors were mainly obtained from periodic displacement
prediction. Furthermore, it was also found that the more unstable part of the landslide
may lead to worse prediction accuracy. During the step-like period of the landslide, the
displacement sequence increased rapidly from minimum to maximum, resulting in a large
predicted error. Hence, future research into landslide displacement prediction should focus
on the step-like period. In the step-like period, studies are required to gain more time
series monitoring data, which are more correlative landslide-inducing factors, such as
underground water and deep displacement, to explore the law of landslide evolution.
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