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Abstract: Actual evapotranspiration modeling is providing useful information for researchers and
resource managers in agriculture and water resources around the world. The performance of models
depends on the accuracy of forcing inputs and model parameters. We developed an improved ap-
proach to the parameterization of the Operational Simplified Surface Energy Balance (SSEBop) model
using the Forcing and Normalizing Operation (FANO). SSEBop has two key model parameters that
define the model boundary conditions. The FANO algorithm computes the wet-bulb boundary condi-
tion using a linear FANO Equation relating surface temperature, surface psychrometric constant, and
the Normalized Difference Vegetation Index (NDVI). The FANO parameterization was implemented
on two computing platforms using Landsat and gridded meteorological datasets: (1) Google Earth
Engine (GEE) and (2) Earth Resources Observation and Science (EROS) Center Science Processing
Architecture (ESPA). Evaluation was conducted by comparing modeled actual evapotranspiration
(ETa) estimates with AmeriFlux eddy covariance (EC) and water balance ETa from level-8 Hydrologic
Unit Code sub-basins in the conterminous United States. FANO brought substantial improvements
in model accuracy and operational implementation. Compared to the earlier version (v0.1.7), SSEBop
FANO (v0.2.6) reduced grassland bias from 47% to −2% while maintaining comparable bias for
croplands (11% versus −7%) against EC data. A water balance-based ETa bias evaluation showed
an overall improvement from 7% to −1%. Climatology versus annual gridded reference evapotran-
spiration (ETr) produced comparable ETa results, justifying the use of climatology ETr for the global
SSEBop Landsat ETa that is accessible through the ESPA website. Besides improvements in model
accuracy, SSEBop FANO increases the spatiotemporal coverage of ET modeling due to the elimination
of high NDVI requirements for model parameterization. Because of the existence of potential biases
from forcing inputs and model parameters, continued evaluation and bias corrections are necessary
to improve the absolute magnitude of ETa for localized water budget applications.

Keywords: evapotranspiration; flux tower; water balance; Landsat; land surface temperature;
SSEBop; FANO Equation; google earth engine; ESPA

1. Introduction

Evapotranspiration (ET) estimation and mapping over large areas and longer time
frames has become an active applied research activity in recent years with the use of
satellite-derived inputs and the availability of global weather datasets. The level of com-
plexity of the various models can be broadly described as ranging from parametric- to
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process-based approaches. The parametric models estimate actual evapotranspiration (ETa)
by decomposing actual ET into independent parameters such as potential evapotranspira-
tion and factors that account for the limiting conditions [1–6]. The process-based models are
either based on mass balance approaches [7–10] used by prognostic hydrologic/biophysical
models or full energy balance approaches used by diagnostic ET models [11–14]. Models
require the estimation of parameters whose level of complexity tends to increase from
parametric- to process-based models [15]. Depending on the modeling principles, parame-
ters generally define model boundary conditions, control flux rates, or storage terms. With
a growing interest for global field-scale ETa within a time scale of agro-climatic decision-
making processes in agriculture and water resources, ETa modelers are expected to produce
accurate, consistent, and useful ET datasets. Modelers are continuously updating their
models for accuracy and computational efficiency as new input datasets, techniques, or
model parameterization schemes become available.

One of the models that is being used for operational global ETa mapping is the
Operational Simplified Surface Energy Balance (SSEBop) model [16]. SSEBop is being used
for field-scale and basin-wide estimation of ETa along for updating historical records (e.g.,
Senay et al. [17,18], Schauer and Senay [19]). SSEBop is a parametric energy balance-based
model that treats actual ET as a product of two independently estimated quantities: (1) ET
fraction (ETf ) and (2) the maximum ET under water-unlimited environmental conditions
(Equation (1)):

ETa = ETf · ETr (1)

where ETa is actual ET (mm) and ETr is alfalfa-reference (“maximum/potential”) ET (mm).
ETf is estimated from the observed satellite land surface temperature (Ts) using the

concept of satellite psychrometry that uses two model parameters to define the model
boundary conditions for minimum and maximum ET (Equation (2)) [6], expressed as:

ETf = 1 − γs(Ts − Tc) (2)

where ETf is the daily ET fraction (0.0–1.0) for each pixel; γs is the surface psychrometric
constant over a dry-bare surface and is the same as the inverse of the dT (temperature
difference, K) parameter in Senay et al. [15]; Ts is the dry-bulb surface temperature (K)
derived from the satellite thermal infrared band, and Tc is the wet-bulb reference surface
temperature (K) limit; The constant 1 represents the ET fraction value during maximum
ETa, i.e., when Ts = Tc.

The surface psychrometric constant (γs) is determined based on energy balance princi-
ples. The γs parameter was calculated using data from ERA5 (5th generation European
Center for Medium-Range Weather Forecasts Reanalysis) for the primary inputs of net
radiation parameters [16] and is available for the globe [17].

Here, we present the formulation of an improved parameterization scheme for the
SSEBop model in the estimation of the Tc parameter using an innovative analytical solution.
The main innovation involves the elimination of the high NDVI (Normalized Difference
Vegetation Index) requirement and replacing it with a deterministic equation that expands
the spatiotemporal coverage of the SSEBop model. While γs may be assumed constant for
a given location (1 km × 1 km) and day-of-year, Tc is considered spatiotemporally dynamic
and must be determined for each satellite overpass. Earlier versions of SSEBop determined
Tc by identifying dense green vegetation using the NDVI (>0.7) and corresponding land
surface temperature (Ts) to calibrate the air temperature for establishing Tc for each overpass
image (Senay et al. [18]; Senay [6]). Although this approach worked adequately for images
with sufficient calibration points (high NDVI), there were at least three major limitations:
(1) high NDVI images that meet the NDVI > 0.7 criterion may not be available in arid
and semi-arid regions or outside of major growing seasons in different parts of the world,
(2) high NDVI calibration landscapes are not uniformly distributed in a given image, thus
extrapolating Tc to the entire image from isolated calibration points could introduce errors
in hydro-climatically complex regions, and (3) the NDVI threshold could create widely
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varying Tc ranges because some images may only have a narrow range of NDVI that is
closer to the threshold (NDVI = 0.7) while others may have Tc values derived from pixels
with NDVI far higher than the 0.7 threshold (e.g., NDVI = 0.9). The difference in Ts between
NDVI 0.7 and 0.9 could be as high as 4 to 5 K [16].

To estimate ETa in all landscapes and all seasons regardless of vegetation cover density
and to improve model accuracy by avoiding extrapolation of Tc to non-calibration regions,
a new parameterization algorithm is developed for determining Tc. The algorithm follows
a Forcing and Normalizing Operation (FANO): every pixel in the landscape is forced to
have its own Tc using an algebraic equation that requires a normalization operation as
described below.

The main objectives of this study are: (1) outline the formulation of the FANO pa-
rameterization in SSEBop, (2) describe the implementation of the updated model in two
computing platforms, (3) present evaluation results using station-based ET measurements
and water balance ET approaches, and (4) feature illustrative ET maps in different parts of
the world.

2. Methods
2.1. Auxiliary Data

Auxiliary inputs to the SSEBop ETa modeling include maximum air temperature (Ta),
inverse of the psychrometric constant (dT), and alfalfa-reference evapotranspiration (ETr).
The SSEBop model uses long-term climatological datasets for each of these variables. The
dT dataset is created from ERA5 radiation data along with other weather variables and
condensed into a daily median [17]. The maximum air temperature is the 1981–2010 clima-
tological normal (30-year daily mean) and is a combination of two datasets: Daymet Version
4 for North America and CHELSA Version 2 for the globe outside of North America [19,20].
Both the dT and Ta datasets are at 1 km resolution. The ETr is also a 1981–2010 climatological
normal but is a fusion of different model assimilated products.

Over the conterminous United States (CONUS), the 1981–2010 daily ETr of Gridmet is
used and scaled by a factor of 0.85 to reduce the generally high bias from Gridmet [21]. The
Gridmet ETr is at 4 km resolution in CONUS. For areas outside of CONUS, coarser resolu-
tion (refined to 12 km) ETr is utilized, which is derived from the MERRA-2 (Modern-Era
Retrospective analysis for Research and Applications) data and processed by the National
Oceanic and Atmospheric Administration (NOAA) Physical Sciences Laboratory [22]. The
MERRA-2 ETr was scaled to match the relative magnitudes of Gridmet by utilizing the
WorldClim Version 3 Potential Evapotranspiration dataset (ETr). The WorldClim Version
3 ETr is a climatological dataset from 1970–2000. Terrestrial ecoregions for 2017 from the
One Earth/RESOLVE organization were used to scale the ETr [23,24]. These datasets were
combined to determine a daily global ETr dataset with Gridmet ETr over CONUS and
MERRA-2 ETr for all areas outside CONUS. The areas outside of CONUS were scaled for
each ecoregion, smoothed, and resampled to 1 km resolution [25].

2.2. FANO Illustration: Data and Development

We propose a linear relation between a normalized land surface temperature difference
and NDVI difference using the dT parameter and a proportionality constant (Equation (3)).
This governing equation is named “Senay Approximation,” after the primary author who
formulated it in this study:

∆Ts∗

dT∗
= − f ·∆NDVI∗. (3)

where * denotes a large area (~5 km) average value of the parameter in question; ∆Ts*

represents the expected land surface temperature difference (K) between the observed Ts
(spatial average) and expected wet-bulb (Tc); ∆NDVI* is the NDVI difference between the
observed (spatial average) and theoretical maximum NDVI of 0.9 that would correspond to
the wet-bulb pixels; dT* is the inverse of the surface psychrometric constant that defines the
temperature difference between a dry-bare surface and the canopy level air temperature [6];
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f is a proportionality “FANO” constant formulated in this study that relates the ratio
∆Ts*/dT* to ∆NDVI*. The negative sign indicates the known inverse relation between Ts
and NDVI, which translates into a smaller ∆Ts at high NDVI and a larger ∆Ts at lower
NDVI surfaces.

It is important to note that the left side of Equation (3) is the same form as the ETf in
Equation (2) without the constant term 1 and is equivalent to a sensible heat fraction (Hf ),
assuming a negligible ground heat flux at a daily time scale. Simply, the Senay Approxi-
mation states that over a large area, the average ETf or Hf is linearly related to changes in
NDVI (from maximum) for all seasons and locations with a proportionality constant f and
this relationship can be used to determine the wet-bulb land surface temperature, Tc.

In this study a “global” average value for f of 1.25 was used as described below. This
value can be more accurately determined by plotting the ratio ∆Ts/dT against ∆NDVI for a
more localized application. The large-area average requirement denoted by * indicates the
importance of spatial scale in the established linear relationship.

2.2.1. Study Area

The determination of the FANO constant f requires the gathering of empirical data
in different parts of the world. Below is an example obtained from a study site by Carson
City, Nevada, United States (Figures 1 and 2). It is important to note that the form of the
FANO formulation (Equation (3)) is theoretical and thus not tied to the empirical data
from the study site. The lack of observed data from multiple sites should only affect the
determination of the magnitude of f and its variability in space and time, which requires
an independent study.
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United States are displayed. 

Landsat 8 data, acquired on 1 July 2020 from path/row 043/033, covering the western 
part of Nevada in the United States (Figure 1), was used for Ts and NDVI. The image was 
chosen due to various levels of irrigation and vegetation condition to have a good range 
of NDVI and Ts distribution. To keep the effect of elevation on Ts to the minimum level, 
we used a digital elevation model (DEM) [26] to sample NDVI and Ts within a relatively 
narrow range of elevation between 1200 m and 1500 m. The temperature difference dT 
(25.25 K) for the same day was extracted for the study area from the global dT dataset [17]. 

The Landsat image was grouped into nine bins using a 0.1 NDVI interval from 0.05 
to 1.0 except the last bin with an interval of 0.15 because of the rarity of pixels with NDVI 
> 0.95. In each bin, the spatial average of NDVI and Ts were calculated, yielding NDVI* 
and Ts*, respectively. The Ts magnitude within the NDVI bin of 0.85–1.0 was considered 
to represent the wet-bulb with a value of 302.2 K (Table 1). The maximum NDVI associ-
ated with the wet-bulb Ts was set to be 0.9 when using surface reflectance-based NDVI. 
The derivation of the change in NDVI (ΔNDVI*) and the normalization of change in Ts 
using dT (i.e., ΔTs*/dT*) is described below. 

Figure 1. Location of eddy covariance (EC) towers used in this study; qualified eight-digit Hydro-
logical Unit Code (HUC8 selected, HUC8 FANO) boundaries for the one-to-one evaluation of two
versions (v0.1.7 and v0.2.6, respectively) of SSEBop model (red, HUC8 selected) and additional
qualified HUC8 with SSEBop v0.2.6 alone (green, HUC8 FANO); unqualified watersheds for water
balance-based ET evaluation are shown in blue (HUC8). FANO procedure test site covering the
western part of Nevada (Landsat path/row: 043/033) along with the six regions of the conterminous
United States are displayed.
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Table 1. Spatial-average values for Landsat NDVI and Ts, and dT parameters corresponding to the 1
July 2020, image. Pixel count refers to the number of 30 m pixels for each parameter. The * indicates
spatial averages for each NDVI bin.

NDVI Bin Pixel Count NDVI* dT* Ts* ∆Ts* ∆NDVI* ∆Ts*/dT*

0.05–0.15 2,249,526 0.11 25.26 327.5 25.3 −0.79 1.00
0.15–0.25 639,361 0.18 25.26 324.8 22.6 −0.72 0.90
0.25–0.35 174,131 0.29 25.26 320.2 18.0 −0.61 0.71
0.35–0.45 140,212 0.39 25.26 317.3 15.0 −0.51 0.60
0.45–0.55 118,247 0.50 25.26 314.7 12.5 −0.40 0.49
0.55–0.65 104,927 0.61 25.26 311.5 9.2 −0.29 0.37
0.65–0.75 78,558 0.73 25.26 308.3 6.1 −0.17 0.24
0.75–0.85 57,827 0.82 25.26 305.2 3.0 −0.08 0.12
0.85–1.00 26,426 0.89 25.26 302.2 0.00 −0.01 0.00
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Figure 2. FANO test site highlighting in gray elevation ranges between 1200 m and 1500 m above
mean sea level. Greener colors indicate irrigated lands with green vegetation. Spatially averaged
NDVI, Ts, and dT were extracted over the gray region over multiple NDVI bins (Table 1).

Landsat 8 data, acquired on 1 July 2020 from path/row 043/033, covering the western
part of Nevada in the United States (Figure 1), was used for Ts and NDVI. The image was
chosen due to various levels of irrigation and vegetation condition to have a good range
of NDVI and Ts distribution. To keep the effect of elevation on Ts to the minimum level,
we used a digital elevation model (DEM) [26] to sample NDVI and Ts within a relatively
narrow range of elevation between 1200 m and 1500 m. The temperature difference dT
(25.25 K) for the same day was extracted for the study area from the global dT dataset [17].

The Landsat image was grouped into nine bins using a 0.1 NDVI interval from 0.05
to 1.0 except the last bin with an interval of 0.15 because of the rarity of pixels with NDVI
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> 0.95. In each bin, the spatial average of NDVI and Ts were calculated, yielding NDVI*

and Ts*, respectively. The Ts magnitude within the NDVI bin of 0.85–1.0 was considered to
represent the wet-bulb with a value of 302.2 K (Table 1). The maximum NDVI associated
with the wet-bulb Ts was set to be 0.9 when using surface reflectance-based NDVI. The
derivation of the change in NDVI (∆NDVI*) and the normalization of change in Ts using dT
(i.e., ∆Ts*/dT*) is described below.

The pixel count for each of the bins ranged from 26,426 to 2,249,526, which corresponds
to about 24 km2 (highest NDVI bin) to 2025 km2 (lowest NDVI bin), respectively (Table 1).
This ensures a reliable average value for NDVI and Ts regardless of differences in the
number of pixels among the different NDVI bins. The average NDVI ranged from 0.11 in
the lowest bin to 0.89 in the highest bin with the corresponding Ts* varying from 327.5 K
to 302.2 K yielding a difference of 25.3 K between the extreme NDVI bins. This observed
Ts difference between the low and high NDVI locations within the study site (Figure 2) is
coincidentally very close to the theoretically derived dT value of 25.26 K (Table 1). Figure 3
shows the temporal variability of dT for the study site with a peak (~25 K) in the summer
and a minimum in the winter (~7 K).
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Figure 3. Timeseries of dT (climatology) for the study region (gray area in Figure 2) showing seasonal
evolution that mimics net radiation patterns of the region. Time series represents the period from
1 January through 31 December of a given year.

Figure 4 illustrates the strong inverse linear relation between ∆Ts*/dT* and ∆NDVI*

created using an NDVImax = 0.9 and dT = 25.25 K. The FANO constant f is shown to be
1.23 in this example. However, f is expected to vary among samples (exploratory analysis
shows a possible range between 1.10 and 1.40), but an average value of 1.25 is expected
to provide a reasonable estimate for general and operational applications. The difference
between f = 1.25 and f = 1.10 or between f = 1.25 and f = 1.40 is expected to result in an
absolute error of 2 K in the estimation of Tc at low NDVI (0.3) landscapes or only an error
of 1 K at high NDVI (0.6) landscapes, which is close to the uncertainty of the Land Surface
Temperature and its effect on ETa estimation is relatively small.

According to Figure 4, the normalized Ts difference (∆Ts* /dT*) is expected to be 0.0
when the average NDVI is 0.9 because the maximum NDVI is expected to be 0.9. In the
SSEBop formulation, ∆Ts*/dT* is the same as 1.0−ETf or simply the sensible heat fraction,
Hf, in which case a minimum Hf (0.0) and maximum ETf (1.0) is attained at NDVI* = 0.9.
For example, at NDVI* = 0.1, ∆NDVI* is 0.8 which translates to ∆Ts*/dT* = 0.98 using the
y = −1.23x Equation in Figure 4. Thus, Hf is high, close to 1.0, which indicates a negligible
ETf around 0.02.
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The next sections describe a generalized FANO Equation, which is expected to apply
to all hydro-climatic conditions for any remotely sensed image collection that produces Ts
and NDVI.

2.2.2. Forcing Operation in FANO: Tc Determination

Following Equation (3), a normalizing operation is required to establish a stable linear
relationship through the averaging of parameters.

∆Ts* = −f·dT* · ∆NDVI*. (4)

By definition,
∆Ts* = Ts* − Tc*. (5)

where Tc* is the expected (ideal) wet-bulb (cold) reference surface temperature (K) at
maximum NDVI (NDVImax) over a grid that includes the “warm” surface temperature (Ts*);
Ts* is the observed warm surface temperature over a chosen grid size. This is designated as
warm surface temperature because it represents the landscape surface temperature with
an average NDVI most likely lower than the ideal NDVImax that could correspond to the
reference wet-bulb (cold) temperature.

For averaging Ts and NDVI, we use a 5 km × 5 km grid size for Landsat. The size
of the grid is determined by the stability of the relation between NDVI and Ts. If it is too
small, the expected linear relationship may not hold due to differences in the inherent pixel
size and co-registration issues between the thermal and NDVI datasets. Furthermore, other
confounding factors such as partial cloud contamination and haze that affect the thermal
infrared and NDVI bands differently would introduce random errors in the relationship.
Thus, the average over a relatively large grid size is recommended. However, if the grid
size is too large, the relationship may also be affected by other confounding factors such as
elevation and latitude that affect the NDVI and Ts differently as well as different ecoregions
such as valleys and mountains. In this study, grid sizes of 1, 3, 5, 10, 25, 50, 100 km were
evaluated for Landsat, and the 5 km was found to show a more natural variation in space
although the differences among the different sizes was not too large, validating the stability
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of the relation between averaged NDVI and Ts over different spatial scales. The change in
NDVI is calculated from a maximum NDVI (Equation (6)).

∆NDVI* = NDVI* − NDVImax. (6)

where NDVImax represents an ideal maximum NDVI constant that corresponds to an ideal
wet-bulb surface temperature (Tc*); NDVI* is the spatial-average observed NDVI (5 km ×
5 km) that corresponds to the observed warm surface temperature (Ts*).

In this study, the NDVImax from Landsat surface reflectance (SR) data was assumed
to be NDVI = 0.9. On a separate investigation (data not shown) involving multiple scenes,
the top-of-atmosphere (TOA) NDVI was found to be about 12% lower than the SR NDVI
for the same vegetation cover; thus, adjusting the threshold values is necessary when using
TOA NDVI.

Once the average values for NDVI, dT, and Ts are established, Tc* can be estimated
from an algebraic rearrangement of Equation (3) (Senay Approximation) by combining
Equations (4)–(6), leading to the FANO Equation

Tc* = Ts* − f ·dT*(NDVImax − NDVI*) (7)

Using optimized values of 1.25 for f and 0.9 for NDVImax, the FANO Equation is
simplified to:

Tc* = Ts* − 1.25dT*(0.9 − NDVI*). (8)

Thus, Equation (8), hereafter referred to as the FANO Equation, can be used to predict
the average Tc* from the observed Ts, NDVI, and predefined dT for any location and date
without requiring knowledge of high NDVI calibration points unlike the previous versions
of SSEBop. The following sections will also show the procedures used to determine higher
resolution (~1 km) Tc from coarse resolution Tc* (~5 km) using a c factor, like the earlier
version of SSEBop [18].

2.2.3. Normalizing Operation in FANO: Parameter and Spatial Scale

The forcing and normalizing operations occur simultaneously. The FANO implemen-
tation has two key procedures: (1) because the slope between Ts and NDVI varies by season,
the normalization of ∆Ts by dT allows a season- and location-independent relationship,
and (2) because the relation between Ts and NDVI tends to be dispersed due to pixel size
differences and other confounding factors, only an average over a relatively large area is
expected to dampen the effect of random errors and establish a stable linear relationship.
Thus, key input parameters for the FANO Equation were averaged over a large area. As
noted above, 5 km is recommended in this study. Unlike the observed Ts, the predicted
wet-bulb Tc is expected to be unform over a large area; thus, the use of an average over
5 km is justified.

FANO assumes an inverse linear relation between Ts and NDVI; thus, landscapes
that violate this assumption will be filtered out before spatial averaging of Ts, NDVI, and
dT for use in FANO. These surfaces are generally water bodies and wetlands where low
NDVI is associated with low Ts. We used a combination of Landsat Quality bands, NDVI,
and the Modified Normalized Difference Wetness Index (MNDWI) [27] to identify “wet”
(surface water and/or wetlands) pixels and remove these pixels from the averaging (see
“Wet Mask” in Figure 5). In each 5 km × 5 km grid, if more than 10% of the pixels are
identified as wet, the averaging is conducted over a much larger area at 100 km × 100 km
after excluding the wet pixels (see Table 2). This procedure is particularly important over
expansive coastal wetlands and rice growing regions. The larger area window increases the
opportunity to find an adequate number of non-wet pixels to be used for the determination
of Tc* with FANO.
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Table 2. NDVI-based filtering procedures for FANO parameterization. Priority in the outcome is
ranked from highest (“a”) to lowest (“d”).

Landscape Condition Filtering
Condition Temperature Assignment Outcome (priority)

FANO land condition (0 ≤ NDVI* ≤ 0.9) Tc* = Tc*
5km FANO at 5 km resolution (d)

FANO wet condition (0 ≤ NDVI* ≤ 0.9) & (wet pixels
> 10% in 5 km grid) Tc* = Tc*

100km FANO at 100 km resolution (c)

Surface water Unmasked NDVI* < 0 Tc* = Ts* Water pixels retain average
surface temperature (b)

Dense green vegetation NDVI* > 0.9 Tc* = Ts* High NDVI pixels retain average
surface temperature (a)

The FANO flowchart in Figure 5 illustrates how the different inputs (Ts, NDVI, dT,
and Ta) are filtered, averaged, and ultimately applied to the FANO Equation to determine
Tc*. However, certain conditions, such as low NDVI associated with low Ts* from water
bodies and wetlands or high NDVI above the NDVI value of 0.9 require Ts values that
have not been adjusted via the FANO Equation. The assumption here is that these are
already representative of the wet-bulb condition and that Tc* should be determined using
an un-adjusted Ts*. Referring to Table 2, we note that 5 km pixels that correspond to surface
water conditions (NDVI* < 0) are assigned Ts* that does not mask out the water pixels. This
is a wet-bulb condition; therefore, masking is not necessary. Conditions where NDVI* > 0.9
(average over 5 km × 5 km) are exceedingly rare. However, if that is encountered, the
pixels are assigned a Ts* that is not modified by the FANO Equation, but it is masked for
water pixels. This also amounts to a wet-bulb condition. For these conditions (Table 2), Ts*
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values are assigned to the final Tc* grid. All other pixels return Tc* derived from Ts* that is
calculated using the FANO Equation.

Table 2 shows wet-bulb temperatures applied at coarse scales for various conditions.
Each condition in Table 2 is listed in descending order based on the associated NDVI
(and percentages of wet pixels) that define it. Areas with substantial green vegetation
(NDVI* > 0.9) or surface water/wet (NDVI* < 0) are assigned a wet-bulb temperature of
the average Ts of all the pixels in a 5 km grid. The layers of Tc* are mosaicked together
based on “priority” (“a” is highest priority and “d” is lowest).

The filtering procedure in Table 2 ensures that pixels that are already representative of
wet-bulb conditions do not require the use of the FANO Equation. All other conditions are
subject to the FANO Equation to produce a continuous and dynamic field of area-averaged
(5 km) wet-bulb temperature, Tc*.

2.2.4. Calculation of c Factor

Within FANO, the wet-bulb Tc* is only determined at a coarse resolution (5 km grid or
larger) and thus the 1 km air temperature is used to disaggregate and create the final Tc at a
1 km resolution using a similar c factor calculation as in previous publications (e.g., Senay
et al. [15,18]. The disaggregation is generally useful in complex topography where the Tc
may show a substantial spatial variation within a 5 km grid.

c =
Tc∗

Ta∗
(9)

where c is the factor that relates wet-bulb reference surface temperature with air temper-
ature; Ta* is the spatially averaged (5 km) maximum daily air temperature (climatology);
and Tc* is the predicted wet-bulb reference surface temperature as defined earlier at 5 km.

Tc = c·Ta (10)

where Tc is the final wet-bulb reference surface temperature at 1 km; and Ta is the 1 km
maximum daily air temperature (climatology) that is used to disaggregate Tc* using the c
factor. Note the absence of * in Equation (10), indicating the absence of large area averaging.

2.3. Model Performance Evaluation
2.3.1. Water Balance Evaluation

An independent water balance ETa (WBET) generated at the Hydrological Unit Code
(HUC) sub-basin (HUC8) scale [28] was compared with SSEBop ETa at the water-year
(1 October–30 September) timestep. The water-year scale minimizes the effect of unac-
counted storage changes that are important at shorter time scales. The water-year, hereafter
named as annual WBET for HUC8s, was computed as:

WBET = P−Q− ∆S (11)

where P, Q, and ∆S are annual precipitation, runoff, and storage change, respectively, at
HUC8 sub-basins.

For the WBET estimation at the HUC8 scale, P and Q data were used. Monthly
P at 4 km spatial resolution was obtained from the Parameter-elevation Regressions on
Independent Slopes Model (PRISM) [29]. Monthly P was aggregated to annual totals to
obtain a single basin-average value for each HUC8. Annual Q for HUC8s was obtained from
the U.S. Geological Survey (USGS) WaterWatch (https://waterwatch.usgs.gov/, accessed
on 20 June 2022). These annual Q values (non-spatial) at the HUC8 scale are generated
from historical flow observations at the USGS stream gages, drainage basin boundaries of
the stream gages, and the HUC8 boundaries [30]. Following previous studies [16,31,32],
the annual storage change (∆S) was assumed to be negligible (0.0) during the study period.

Following similar assumptions and techniques reported in the literature [16,33,34],
several filters were applied to exclude HUC8s where the water balance is not expected to

https://waterwatch.usgs.gov/
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close (WBET 6= P − Q). The HUC8s with Q/P > 0.40 [16], HUC8s with WBET greater than
potential ET, and HUC8s with SSEBop ETa greater than precipitation (heavily irrigated
HUC8s that the ETa from WBET does not consider) were excluded.

The annual total ETa from SSEBop v0.1.7 [16,35] and SSEBop v0.2.6 (FANO) were
compared with WBET for average and individual years during the 5-year (2009, 2011, 2013,
2016, 2018) period. These years were selected to include both wet (2016), dry (2011), and
normal (2009, 2013, 2018) years. The 5-year average ETa comparisons were also grouped
across six different hydro-climatic regions of the CONUS to evaluate the performance of
the FANO across the regions. The correlation coefficient (r), bias, MAE (mean absolute
error), and RMSE (root mean square error) were applied for statistical analysis.

2.3.2. Evaluation with Flux Tower Data

Following previous studies such as Senay et al. [35] and Senay et al. [16], the accu-
racy of the SSEBop ETa using the new FANO implementation was evaluated with eddy
covariance (EC) flux tower data from the Ameriflux network (https://ameriflux.lbl.gov/,
accessed on 15 March 2022). For this evaluation, 23 Ameriflux EC towers were selected in
a northeast-southwest swath across the central United States for three consecutive years
from each tower for the 2008–2019 period (Figure 1).

Unlike in Senay et al. [16], rather than using the FLUXNET2015 dataset, which ends
before the year 2015, we used the flux-data-qaqc Python package for Energy Balance
Closure and Post-Processing of the Ameriflux EC data [36]. This Python package quantifies
and standardizes the gap-filling and energy balance closure more efficiently and more
uniformly than previous methods using an Energy Balance Ratio approach. The flux-
data-qaqc package processes daily actual ET in mm/day, which was matched with the
corresponding overpass SSEBop Landsat ETa and the comparison was conducted at the
overpass level for a three-year period at each tower location.

The SSEBop ET Fraction (ETf ) was calculated for all overpass imagery with less than
60% cloud cover for a corresponding three-year period at each tower location. The ETf was
calculated twice: (1) for the previous, high NDVI-based c factor version (v0.1.7) described
in Senay et al. [16,18], and (2) for the newly developed FANO parameterization of c factor
(v0.2.6) described above. To calculate actual ET from the SSEBop ET fraction, two versions
of the alfalfa-reference ET (ETr) from the Gridmet dataset were used to calculate ETa:
(1) a climatology daily mean of 1981–2010 Gridmet ETr, and (2) using the corresponding
original annual (yearly) Gridmet ETr for each overpass date. This resulted in four versions
(two model versions by two reference ETr) of SSEBop ETa at the overpass level that were
compared to the ETa derived from the EC tower data.

The gridded Gridmet ETr was also compared to a pointed-based reference ETr from
EC towers weather stations to determine a potential bias of Gridmet against station data.
Key input variables from the EC tower weather station were fed into the Reference Evap-
otranspiration Calculator (Ref-ET) software program from the University of Idaho that
calculated alfalfa-reference ET using the ASCE Standardized Penman Monteith Refer-
ence Equation (https://www.uidaho.edu/cals/kimberly-research-and-extension-center/
research/water-resources/ref-et-software, accessed on 14 May 2022). Both the climatology
and annual daily values of Gridmet ETr at each tower location were compared to the ETr
derived from the Ref-ET software from the EC tower for the matching years of the EC tower
validation study. No scaling factors were used for the climatology or annual Gridmet ETr in
order to determine the bias and error in ETr from the model-assimilated gridded Gridmet
dataset against the station-based EC tower ETr.

Although the EC towers are not well-distributed across space or landcover, the overall
aggregate statistics, including r, RMSE, and percent bias, from all cropland and grassland
EC Towers (n ≥ 5 EC Towers) were calculated as well as the overall aggregate statistics
from all tower locations and overpass dates (n = 1115, representing station-overpass data
points). Monthly averages of cropland and grassland overpass ETa values were used to
construct and compare seasonal patterns of ETa from model and EC tower datasets.

https://ameriflux.lbl.gov/
https://www.uidaho.edu/cals/kimberly-research-and-extension-center/research/water-resources/ref-et-software
https://www.uidaho.edu/cals/kimberly-research-and-extension-center/research/water-resources/ref-et-software
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2.4. Computing Platforms
2.4.1. Google Earth Engine Implementation of SSEBop

Production of SSEBop ET data in this study was completed using the Google Earth En-
gine (GEE) platform [37] for the generation of ETf at the EC tower sites and ETa (annual wa-
ter year) used for the nationwide WBET analysis. We used the open-access SSEBop-FANO
v0.2.6 Python implementation available at https://github.com/Open-ET/openet-ssebop
(accessed on 21 April 2022) and featuring model configuration setup for the FANO parame-
ters as discussed in Section 2.2.3. To achieve time-integrated annual ETa, we performed
routine aggregation calculations, as followed in Senay et al. [16], for linear interpolation of
daily ETf from Landsat satellite overpass. Using daily ETr, we produced daily total ETa
and summed for our time periods of interest: 1 October–30 September water years for 2009,
2011, 2013, 2016, and 2018.

By using GEE developer tools during our model modernization efforts, our progress
and algorithms matured through iterative method refinements that led to research and
development insights for Landsat ET processing that were then directly realized within the
USGS Earth Resources Observation and Science (EROS) Center Science Processing Archi-
tecture ESPA programming phase of the latest USGS global Level-3 ETa science products.

2.4.2. USGS On-Demand Overpass SSEBop ETa

The SSEBop FANO v0.2.6 ETa described in this paper and processed in GEE has also
been implemented as a Landsat Level-3 Provisional Science Product that was made pub-
licly available for on-demand processing through the USGS (EROS) ESPA environment
(https://espa.cr.usgs.gov/, accessed on 4 August 2022) in August 2022. This interface
provides the public with the ability to order SSEBop ETa identical to that described in this
paper for any Landsat Collection 2 (C2) image from Landsat 4–9 satellites for any location
on the globe dating back to 1982. ESPA also offers an Application Programming Interface
(API) for programmatic ordering and downloading of Landsat C2 ETa (https://www.usgs.
gov/media/files/eros-science-processing-architecture-demand-interface-user-guide, ac-
cessed on 4 August 2022).

In order to process a C2 ETa for Landsat thermal-infrared acquisitions (Landsat 4–9),
ESPA will require the Level-2 Science Product (L2SP) identifier for that scene, which in-
cludes both Surface Reflectance and Surface Temperature information. Once the L2SP scene
is retrieved from the Landsat archive, relevant surface reflectance and surface temperature
bands are extracted and then the SSEBop model is run using the auxiliary data described in
Section 2.1 (https://www.usgs.gov/media/files/landsat-4-9-collection-2-level-3-provisional-
actual-evapotranspiration-algorithm, accessed on 4 August 2022). Landsat Collection 2 archive
also includes Level-2 Surface Reflectance (L2SR) scenes that cannot be processed to ETa due to
lack of surface temperature information; these scenes can occur over certain areas such as the
Aleutian Islands, the Antarctic, or other small islands where the inputs needed for surface temper-
ature are unavailable. The characteristics of the on-demand Landsat C2 L3 ETa is documented
in the product guide (https://www.usgs.gov/media/files/landsat-4-9-collection-2-level-3-
provisional-actual-evapotranspiration-product-guide, accessed on 4 August 2022) as well as
the Landsat Mission Website (https://www.usgs.gov/landsat-missions/landsat-collection-2-
provisional-actual-evapotranspiration-science-product, accessed on 4 August 2022). The pro-
cessing runtime for any individual Landsat scene is typically around two minutes and many
scenes can be run in parallel using Python and Linux environments.

The SSEBop ETa generated from ESPA and that generated in GEE for this study share
more than 99% similarity on a per-scene basis as of v0.2.6 (FANO implementation). The
GEE-based SSEBop evaluation results described in this study can be extended to the ESPA
version of SSEBop as the two versions are nearly identical. The ESPA SSEBop ETa is
available at a global extent and four sample scenes are provided in Section 3 including a
summary of ETa by landcover type. Landcover types used to evaluate ESPA products were
downloaded from the MODIS (Moderate Resolution Imaging Spectroradiometer) Land
Cover Type L3 500 m Grid (MCD12Q1v006).

https://github.com/Open-ET/openet-ssebop
https://espa.cr.usgs.gov/
https://www.usgs.gov/media/files/eros-science-processing-architecture-demand-interface-user-guide
https://www.usgs.gov/media/files/eros-science-processing-architecture-demand-interface-user-guide
https://www.usgs.gov/media/files/landsat-4-9-collection-2-level-3-provisional-actual-evapotranspiration-algorithm
https://www.usgs.gov/media/files/landsat-4-9-collection-2-level-3-provisional-actual-evapotranspiration-algorithm
https://www.usgs.gov/media/files/landsat-4-9-collection-2-level-3-provisional-actual-evapotranspiration-product-guide
https://www.usgs.gov/media/files/landsat-4-9-collection-2-level-3-provisional-actual-evapotranspiration-product-guide
https://www.usgs.gov/landsat-missions/landsat-collection-2-provisional-actual-evapotranspiration-science-product
https://www.usgs.gov/landsat-missions/landsat-collection-2-provisional-actual-evapotranspiration-science-product
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3. Results
3.1. Water Balance Evaluation

Figure 6 demonstrates the map of annual ETa calculated from a 5-year median using
the SSEBop FANO model. The median was chosen for Figure 6 (small number of years)
while the average was used for the statistical comparison against WBET. The CONUS-
wide HUC8 annual ETa comparison for each water year and the 5-year (2009, 2011, 2013,
2016, and 2018) average is shown in Figure 7. The overall results indicate the improved
performance of SSEBop v0.2.6 (FANO) over the SSEBop v0.1.7. Bias is reduced from
48 mm/year (7%) with SSEBop v0.1.7 to −8 mm/year (−1%) with SSEBop v0.2.6 (FANO)
for 5-year average at CONUS scale (Table 3). Similarly, MAE reduced from 95 mm/yr
(13%) to 78 mm/yr (11%) and RMSE from 122 mm/yr (17%) to 104 mm/yr (14%). The r
values are above 0.93 for both versions of SSEBop at the CONUS scale. Overall, the SSEBop
v0.2.6 (FANO) tends to lower the ETa positive bias from SSEBop v0.1.7, resulting in a slight
negative bias at the 5-year average (Table 3).
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Figure 6. Annual SSEBop ETa using 5-water year median (2009, 2011, 2013, 2016, 2018) data from
Landsat 5/7/8. Data were resampled to 250 m resolution for display. The data are available at
https://doi.org/10.5066/P9NKWT3D (accessed on 27 December 2022) [38].

The individual water-year comparison also shows a negative bias from SSEBop v0.2.6
(FANO), compared to the positive bias from SSEBop v0.1.7 (except for water year 2009).
Both negative and positive biases from both versions of SSEBop are within ±5% for all
water years (Table 3). SSEBop v0.2.6 (FANO) showed negative bias for both dry (2011) and
wet (2016) water years, whereas SSEBop v0.1.7 showed positive and negative biases for the
wet and dry water years, respectively. The MAE and RMSE are lower for SSEBop v0.2.6
(FANO) compared to SSEBop v0.1.7 for all water years except water year 2018. The r values
are comparable on both versions of SSEBop at ≥0.89 for all water-years.

https://doi.org/10.5066/P9NKWT3D
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balance (WBET) across HUC8s in the conterminous United States (CONUS). Subfigures (a–f) show
the ET comparisons for water years 2009, 2011, 2013, 2016, 2018, and 5-year average, respectively.

Table 3. Summary of HUC8 ETa comparison between SSEBop v0.1.7 and SSEBop v0.2.6 (FANO) with
water balance (WBET) for 5-year average (5-y avg.) and individual years. The Pearson correlation
coefficient (r) shows the degree of association between the two versions of SSEBop and WBET for the
six regions and CONUS.

Region + Water
Year

WBET
mm/yr n 1

r (−) Bias, mm/yr (%) MAE, mm/yr (%) RMSE, mm/yr (%)

SSEBop
v0.1.7

SSEBop
v0.2.6

(FANO)
SSEBop v0.1.7

SSEBop
v0.2.6

(FANO)
SSEBop

v0.1.7
SSEBop

v0.2.6
(FANO)

SSEBop
v0.1.7

SSEBop
v0.2.6

(FANO)

NE 5-y avg. 883 44 0.54 0.51 104 (12) 40 (4) 141 (16) 97 (11) 154 (17) 123 (14)
SE 5-y avg. 1033 246 0.36 0.27 110 (11) 6 (1) 134 (13) 95 (9) 160 (16) 129 (12)

MW 5-y avg. 672 279 0.87 0.73 50 (7) −25 (−4) 59 (9) 73 (11) 76 (11) 87 (13)
GP 5-y avg. 626 242 0.96 0.95 44 (7) −6 (−1) 103 (16) 78 (13) 128 (20) 99 (16)
W 5-y avg. 383 136 0.93 0.95 −51 (−13) −19 (−5) 79 (21) 63 (17) 104 (27) 80 (21)

P NW 5-y avg. 398 53 0.88 0.91 −25 (−6) −2 (−1) 68 (17) 52 (13) 86 (22) 68 (17)

CONUS

2009 702 1000 0.92 0.92 14 (2) −28 (−4) 101 (14) 94 (13) 128 (18) 122 (17)
2011 640 751 0.89 0.91 −5 (−1) −34 (−5) 108 (17) 100 (16) 138 (22) 126 (20)
2013 684 946 0.95 0.93 27 (4) −27 (−4) 98 (14) 87 (13) 128 (19) 113 (16)
2016 780 1024 0.92 0.91 35 (4) −37 (−5) 120 (15) 106 (14) 150 (19) 134 (17)
2018 805 773 0.93 0.90 28 (3) −39 (−5) 105 (13) 109 (13) 133 (17) 139 (17)

5-y avg. 705 1000 0.95 0.94 48 (7) −8 (−1) 95 (13) 78 (11) 122 (17) 104 (14)

1: n = number of HUC8s for ETa comparison between SSEBop (identical HUCs on two versions) and WBET.
+: NE = Northeast; SE: Southeast; MW: Midwest; GP = Great Plains; W: West; P NW = Pacific Northwest.

The regional HUC8 ETa comparison of SSEBop v0.1.7 and SSEBop v0.2.6 (FANO) with
WBET is shown in Figure 8. Overall results indicate a better performance of SSEBop v0.2.6
(FANO) over SSEBop v0.1.7. Bias is reduced from SSEBop v0.2.6 (FANO) at all regions,
resulting in within ±5% (Table 3). MAE and RSME are also lower from SSEBop v0.2.6
(FANO) at all regions except the Midwest region. The SSEBop v0.1.7 shows positive bias at
the Northeast and Southeast regions (>10%), but these magnitudes are lowered by SSEBop
v0.2.6 (FANO) (<5%). Similarly, the high negative bias by SSEBop v0.1.7 at the West and
Pacific Northwest regions (≥6%) are lowered by SSEBop v0.2.6 (FANO) (≤5%). The overall
pattern of positive bias at the eastern regions (Northeast and Southeast) and negative bias
at the western regions (West and Pacific Northwest) remain similar from both versions of
SSEBop. However, the positive bias from SSEBop v0.1.7 at the Midwest and Great Plains
regions show with a smaller negative bias with SSEBop v0.2.6 (FANO).
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Figure 8. Comparison of annual ETa from SSEBop v0.1.7 and SSEBop v0.2.6 (FANO) with water
balance (WBET) across HUC8s at six different regions of the conterminous United States. Subfigures
(a–f) show the ET comparisons for Northeast, Southeast, Midwest, Great Plains, West, and Pacific
Northwest regions, respectively.

3.2. EC Tower Evaluation

The evaluation results of SSEBop ETa against ETa from the EC flux towers show that
the FANO implementation brings a positive improvement in accuracy.

In relation to climatology Gridmet, the annual Gridmet shows a higher bias and RMSE,
but with a stronger correlation against the EC Tower ETr. Due to a potential smoothing effect
of the climatology, especially over the higher values during drier years, the climatology ETr
shows little bias (−0.2% versus 15.6%) (Table 4). Therefore, while a climatology Gridmet
may not require an adjustment, the annual ETr appears to require an adjustment of about
15%, which is comparable to the findings of Blankenau et al. [39] who reported a bias range
of 12% to 31% across CONUS. Bawa et al. [40] also used a correction coefficient of 0.85
to account for the higher bias in Gridmet during the generation of ETa over the Missouri
River Basin.

For comparison with the EC Tower ETa, SSEBop used both Gridmet ETr datasets:
climatology and annual, scaled and unscaled. The closest comparisons with the EC Tower
data came from the SSEBop ETa using the climatology without any scaling and the annual
ETr scaled down by 15%. However, SSEBop using either a climatology or annual ETr
showed measurable improvement in accuracy against EC tower ETa with v0.2.6 (FANO)
implementation as compared to the previous version of SSEBop ETa [16]. When using
climatology ETr, SSEBop ETa improved the overall bias from the EC Towers from 39.2%
in v0.1.7 down to only 3.0% above the tower in v0.2.6 (FANO) along with a reduction in
RMSE from 1.76 mm down to 1.36 mm (Table 5). It is important to note that part of the
SSEBop ETa RMSE could be attributed to the Gridmet-related RMSE, which showed an
RMSE of 1.86 mm when compared to station ETr (Table 4). This indicates the importance of
accounting for the effect of ETr when trying to improve model performance.
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Table 4. Flux Tower Alfalfa Reference Evapotranspiration (ETr) comparison with Gridmet Alfalfa
Reference Evapotranspiration for 23 Ameriflux eddy covariance (EC) Towers. ETr values in the first
two columns refer to the two Gridmet daily datasets used in the comparison: Climatology 1981–2010
average ETr and annual ETr (for the same years used in the ETa validation). Values are the average of
all overpass days from all towers (n = 925) with the standard deviation (STD) given in brackets.

Gridmet Version Tower ETr (mm) [STD] GMET ETr (mm) [STD] Bias
(mm) [%]

RMSE
(mm) [%] r (−)

Climatology * 5.84 [2.98] 5.83 [2.24] −0.01 [−0.2%] 1.86 [32%] 0.78

Annual 5.84 [2.98] 6.76 [3.06] 0.91 [15.6%] 1.98 [34%] 0.83

*: Flux ETr does not have climatology. The annual station ETr is compared to the climatology and annual (yearly)
Gridmet ETr.

Table 5. Comparison between SSEBop and flux tower ETa using two model versions (v0.1.7 and
v0.2.6) and two reference ET sources (annual and climatology Gridmet) over 23 Ameriflux eddy
covariance (EC) towers. Top section compares the Gridmet climatology 1981–2010 ETr and the bottom
section compares the Gridmet annual ETr (for the same years used in the ETa validation) on satellite
overpass days. ETa values for the towers and SSEBop ETa are the average of all overpass days from
all towers (n = 1115) with the standard deviation (STD) given in brackets.

SSEBop Version Gridmet Version Tower ETa (mm) [STD] SSEBop ETa (mm) [STD] Bias
(mm)

RMSE
(mm) r (−) Percent Bias (%)

v0.1.7 Climatology * 2.32 [2] 3.23 [1.78] 0.91 1.76 0.69 39.2%
v0.2.6 Climatology * 2.32 [2] 2.39 [1.94] 0.08 1.36 0.76 3.0%
v0.1.7 Annual ** 2.32 [2] 3.2 [1.96] 0.88 1.88 0.65 37.9%
v0.2.6 Annual ** 2.32 [2] 2.4 [2.06] 0.08 1.47 0.74 3.4%

*: Flux ETa does not have climatology. The annual station ETa is compared to the climatology and annual Gridmet
ETa. **: the annual Gridmet ETa was scaled down using a factor of 0.85 to account for known bias.

SSEBop also showed an improvement in correlation with the EC Tower ETa from
r = 0.69 in v0.1.7 up to r = 0.76 with v0.2.6 (FANO) when pooling all stations across land-
cover types (Table 5). Similarly, when using the annual Gridmet ETr scaled by a factor of
0.85 (equivalent to a 15% reduction in magnitude), SSEBop ETa improved in performance
from v0.1.7 [16] to v0.2.6 (FANO). The reduction in overall bias was almost identical, drop-
ping from >37.0% with v0.1.7 to <4% above the EC towers with v0.2.6 regardless of the
type of ETr (Table 5). Similarly, the RMSE reduces from 1.88 mm in v0.1.7 down to 1.47 mm
in v0.2.6 (FANO) using the annual ETr. The correlation between the EC Tower ETa and
SSEBop ETa also improves from r = 0.69 and r = 0.65 for v0.1.7 using the climatology and
annual ETr, respectively, to r = 0.76 and r = 0.74 with v0.2.6 (FANO), which corresponds to
approximately a 10% increase in correlation using the new FANO implementation (Table 5).

The number of EC towers was insufficient to summarize the results by different
landcover as some landcover types only included a single tower, but cropland and grassland
sites had at least five tower sites and at least 295 or more data points for comparison. Table 6
shows the summary accuracy statistics of these two landcover types. For the cropland sites
(n = 8), the improvement in SSEBop accuracy from v0.1.7 to v0.2.6 (FANO) was measurable
although less than the overall averages (23 sites) shown above in Table 5. For cropland sites,
SSEBop improved from v0.1.7 to v0.2.6 (FANO) in correlation where the r improved from
0.77 to 0.86; the RMSE improved from 1.48 mm to 1.21 mm, and in bias, where the percent
bias dropped from 11% to −7%, although the bias for both v0.1.7 and v0.2.6 (FANO) stayed
within 15% of the tower. The grassland sites (n = 6) also showed a clear improvement in
accuracy of SSEBop ETa between v0.1.7 and v0.2.6 (FANO) where the percent bias dropped
from 47% in v0.1.7 down to only −2% in v0.2.6. The correlation improved from r = 0.61
in v0.1.7 up to r = 0.73 in v0.2.6 (FANO) and the RMSE error reduced from 1.88 mm to
1.35 mm. Although both cropland and grassland had improvements in correlation, error,
and magnitude from v0.1.7 SSEBop ETa to v0.2.6 (FANO), the improvements on grassland
are more substantial, which strengthens the FANO implementation on a wider scale. It
is important to note that these are daily scale comparisons and the RMSE and correlation
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are expected to improve with larger aggregation periods such as monthly and seasonal
times scales.

Table 6. Overpass actual ET (ETa) comparison between SSEBop and flux tower categorized by
landcover (as reported by Ameriflux). SSEBop was forced with the climatology Gridmet 1981–2010
ETr without any scaling factor.

Landcover SSEBop Version Count Average Tower ETa (mm) [STD] Average SSEBop ETa (mm) [STD] Bias
(mm)

RMSE
(mm) r (−) Percent Bias (%)

Cropland v0.1.7 295 3.13 [2.26] 3.47 [1.92] 0.34 1.48 0.77 11%
Cropland v0.2.6 295 3.13 [2.26] 2.91 [2.22] −0.22 1.21 0.86 −7%
Grassland v0.1.7 400 2.1 [1.97] 3.08 [1.63] 0.98 1.88 0.61 47%
Grassland v0.2.6 400 2.1 [1.97] 2.06 [1.64] −0.04 1.35 0.73 −2%

Figure 9 displays the seasonality of monthly averages of SSEBop ETa (two model
versions) and EC Tower ETa for both cropland and grassland sites. The blue line in
Figure 9a (flux) shows the average ETa from the eight cropland sites for each month from
the EC towers. The red line (SSEBop v0.1.7) shows the SSEBop ETa from v0.1.7, which
generally matches the EC towers during the summer months, with some underestimation,
but greatly exceeds the EC Towers during the winter and early spring months and again
after the harvest in the fall months (Figure 9a). The green line (SSEBop FANO v0.2.6), on
the other hand, does not show the same overestimation in the winter or shoulder months
(actually shows underestimation) and also shows much higher correlation with the seasonal
pattern of ETa from the EC towers (Figure 9a). The improvement in seasonal pattern of ETa
for SSEBop v0.2.6 (FANO) as opposed to SSEBop v0.1.7 is well illustrated. However, the
spring season underestimation by v0.2.6 over cropland sites requires further investigation.

The seasonal pattern of SSEBop ETa is similarly improved for grassland sites (n = 6)
with even higher agreement between EC tower ETa and SSEBop ETa with FANO (Figure 9b).
SSEBop v0.1.7 shows higher biases on a monthly level compared to the EC tower ETa
for most of the year with biases lessened in the peak summer months. SSEBop v0.2.6
(FANO), on the other hand, shows higher agreement with the flux tower ETa, only slightly
underestimating the towers in the spring months and overestimating in the peak summer
and fall months. The accuracy metrics shown in Figure 9 at monthly time scale are much
improved compared to that presented in Table 6 (daily) due to the spatiotemporal aver-
aging effect on random errors except the bias, which remains more comparable to daily
statistics as expected. The bias differences between the monthly (Figure 9) and the daily
(Table 6) can be attributed to different sample size across the months, with fewer stations
in the winter compared to summer season. For example, using SSEBop FANO accuracy
improvements from daily to monthly for cropland show with r (0.86 versus 0.95) and RMSE
(1.21 versus 0.60 mm/day) and for grassland with r (0.73 versus 0.95) and RMSE (1.35
versus 0.39 mm/day). The accuracy metrics for daily (Table 6) and monthly (Figure 9) are
comparable to metrics for remote sensing ET models reported by OpenET [41].
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Figure 9. Monthly averages of ETa observations from tower sites for the EC ETa (Flux, blue), SSEBop
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averages for all cropland sites (n = 8); (b) monthly averages for all grassland sites (n = 6).

3.3. On-Demand SSEBop Evapotranspiration

The GEE Python-based SSEBop v0.2.6 (FANO) code is available for download at
https://github.com/Open-ET/openet-ssebop (accessed on 21 April 2022). The global
SSEBop ETa product from the same version is available on-demand for each Landsat
scene from the USGS EROS ESPA environment (https://espa.cr.usgs.gov/, accessed on
4 August 2022).

Figure 10 displays a sample of four Landsat SSEBop ETa images downloaded from
ESPA for locations in (Figure 10a) the Central Valley of California, (Figure 10b) near the
Nile River Delta in Egypt, (Figure 10c) in the state of Bahia, Brazil, and (Figure 10d) near
Nanjing, China, in the Yangtze River Delta. This represents the ETa expressed over the
landscape for an individual day when there is a Landsat observation, with arbitrary dates
chosen for each scene. Landcover-based spatially averaged SSEBop ETa shows the relative
amounts of ETa by landcover type with croplands using around 3.8 mm for a mid-season

https://github.com/Open-ET/openet-ssebop
https://espa.cr.usgs.gov/
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date in California; 1.5 mm of ETa for a late-season date in Bahia, Brazil; 2.6 mm of ETa for
a late-season date in Egypt; and 4.3 mm of ETa for a mid-season date in Nanjing, China
(Figure 11). ESPA SSEBop ETa provides a prediction of SSEBop ETa (with the new FANO
implementation) for every Landsat observation for any given area. Users can download
overpass-level SSEBop ETa from ESPA and using simple linear interpolation tools can
interpolate and aggregate to a monthly ETa with an algorithm of their choice.
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Figure 10. Sample of four Landsat SSEBop ETa images downloaded from ESPA for locations in
(a) the Central Valley of California for 9 August 2019; Landsat Path/Row (L P/R) 42/35; centroid
latitude/longitude (C Lat/Lon) 36.050, −119.447 in decimal degrees, (b) near the Nile River Delta in
Egypt for February 19, 2017; L P/R 176/40; C Lat/Lon 28.825, 31.577, (c) in the state of Bahia, Brazil
for 28 April 2017; L P/R 220/69; C Lat/Lon −12.976, −45.766, and (d) near Nanjing, China, in the
Yangtze River Delta for 21 July 2017; L P/R 120/38; C Lat/Lon 31.757, 118.841.
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4. Discussion
4.1. WBET Evaluation

Comparisons of annual ETa for the 5-year average, each water year, and across six
different regions show a good agreement between both versions of SSEBop and WBET. The
performance of SSEBop varied with a distinct regional difference with positive bias at the
eastern regions (Northeast and Southeast) with higher ETa rates and negative bias at the
western regions (West and Pacific Northwest) with lower ETa rates. The larger positive
biases at the eastern regions and larger negative bias at the western regions by SSEBop
v0.1.7 are lowered by SSEBop v0.2.6 (FANO), reflecting the improved performance. The
percent bias from SSEBop v0.2.6 (FANO) is within ±5% for each water year and 5-year
average, compared to ± 13% from the SSEBop v0.1.7 (Table 7). These biases are similar to
the range of errors reported in the previous studies [16,33,34] and within the expected bias
range of 10–20% from remote sensing-based energy balance algorithms [42].

Table 7. Summary of non-matching (different n values) HUC8 ETa comparison between SSEBop
v0.1.7 and SSEBop v0.2.6 (FANO) with water balance (WBET) for CONUS and the six regions. Bias,
MAE, and RMSE are yearly magnitudes (mm/year) with percent of the 5-year average shown in
brackets (%).

Statistics
CONUS Northeast Southeast Midwest Great Plains West Pacific Northwest

v0.2.6 v0.1.7 v0.2.6 v0.1.7 v0.2.6) v0.1.7 v0.2.6 v0.1.7 v0.2.6 v0.1.7 v0.2.6 v0.1.7 v0.2.6 v0.1.7

n 1222 1079 44 44 261 247 285 281 415 264 161 184 56 59
r 0.94 0.96 0.51 0.54 0.24 0.34 0.74 0.87 0.95 0.96 0.94 0.92 0.90 0.84

Bias, mm (%) −7
(−1)

43
(6)

40
(4)

104
(12)

14
(1)

112
(11)

−24
(−4)

50
(8)

−12
(−2)

39
(6)

−15
(−4)

−52
(−14)

4
(1)

−10
(−3)

MAE, mm (%) 74
(11)

94
(14)

97
(11)

141
(16)

98
(9)

135
(13) 72 (11) 60

(9) 66 (11) 99
(16)

60
(16)

77
(20)

55
(14)

74
(19)

RMSE, mm (%) 97
(14)

121
(18)

123
(14)

154
(17)

130
(13)

163
(16) 86 (13) 77

(11) 87 (14) 124
(20)

78
(21)

100
(27)

72
(18)

91
(23)

For the individual water-year comparison, there are a few HUC8s where SSEBop v0.2.6
(FANO) showed a substantial negative bias in comparison to WBET (e.g., Figure 7b). Such
negative biases are consistent for all water years except the wet water year 2016 (Figure 7d).
These HUC8s are in the West region (California) and had runoff (Q) value of zero (0.0),
resulting in higher WBET, which in turn creates a substantial negative bias by SSEBop
v0.2.6 (FANO).

The filters applied to HUC8s where the water balance is not expected to close resulted
in the exclusion of about 50% of the total 2,121 HUC8s in the CONUS (Table 3). Upon
applying the filters (Section 2.3.1) for the 5-year average comparison individually, SSEBop
v0.1.7 resulted in 1079 comparable HUC8s, whereas SSEBop v0.2.6 (FANO) resulted a
larger (13% more) number of comparable HUC8s at 1222 (Figure 1). The increase in WBET-
qualified HUC8s is mostly in the Great Plains region, with an increase of 415 HUC8s
with SSEBop v0.2.6 (FANO) compared to 264 HUC8s with SSEBop v0.1.7. However, on a
one-to-one comparison of the two versions of SSEBop for the CONUS-scale comparison,
there are only 1000 identical HUC8s that are comparable between both versions of SSEBop
and WBET (Table 3).

The independent (non-matching HUCs between v0.1.7 and v0.2.6) evaluation (1222 HUC8s)
of SSEBop v0.2.6 (FANO) showed comparable performance to the one-to-one comparison
(1000 HUC8s) both at the CONUS and regional scales. The bias, MAE, and RMSE are
−7 mm/year (−1%), 74 mm/year (11%), and 97 mm/year (14%), respectively for the 5-year
average at CONUS scale (Table 7). For the regional scale, the percent bias, percent MAE, and
percent RMSE are within±4%, 16%, and 21%, respectively. In the Great Plains region, where
the number of comparable HUC8s increased (Figure 1), SSEBop v0.2.6 (FANO) decreased the
percent bias, percent MAE, and percent RMSE from 6% to−2%, 16% to 11%, and 20% to 14%,
respectively, compared to SSEBop v0.1.7 (Table 7). The r values are ≥0.90 for CONUS scale
and≥0.73 for regional scale comparisons, except the Northeast and Southeast regions (Table 7).
The ETa values for the Northeast and Southeast regions are clustered and lack a dynamic range
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(Figure 8a,b) compared to other regions (Figure 8c–f), resulting in relatively lower r values.
However, the model captures the average values accurately as demonstrated by the bias, MAE,
and RMSE.

4.2. FANO Constant

The linear relation between crop coefficient (Kc) (comparable to ETf, when water is
non-limiting) and NDVI has been reported by several researchers [43–45]. Allen et al. [46]
summarized the degree of the linear relation with a 1.25 proportionality constant when
Kc is expressed as the fraction of the alfalfa-based reference ET, i.e., Kc = 1.25 * NDVI. It
important to note the independent formulation of Kc and ETf in that Kc is estimated as the
ratio of actual ET to reference ET whereas ETf is estimated using Equation (2) from land
surface temperature using the principle of satellite psychrometry.

In related studies, Ruimy and Saugier [47] also established a similar coefficient of
1.25 in relating the fraction of incoming photosynthetically active radiation (fPAR) and
NDVI in their parametric equation for the estimation of terrestrial net primary production.
Palmer and Yunusa [48] used a linear formulation to estimate actual evapotranspiration
and biomass from fPAR, which can be derived from NDVI using a linear assumption [49].

Thus, the Senay Approximation in Equation (3) and the FANO constant of 1.25 can be
related to empirically established foundations in the use of NDVI for estimating related
properties such as primary production or ET. In this study, the FANO formulation uses
different sets of parameters (dT, NDVI, and Ts) to determine a theoretical wet-bulb reference
temperature using an identical constant of 1.25, which is labeled as a FANO constant.
Although the FANO constant of 1.25 appears to be a reasonable magnitude for large
applications, more localized uses could benefit from a calibrated value specific to the
study region.

4.3. Climatology vs. Annual Gridmet Reference ET

One of the findings in this study is that the use of a climatology ETr produces a
comparable ETa as using an annual (yearly) ETr, particularly at longer time scales. Using
station-based annual ETr as the truth, while the correlation coefficient was slightly higher
with the annual (r = 0.83) as compared to the climatology (r = 0.78), the bias (−0.2% versus
15.6%) and RMSE (32% versus 34%) were better with the climatology ETr compared to
the annual ETr (Table 4). However, the differences were dampened at the actual ETa
level (Table 5), highlighting the importance of the land surface temperature in controlling
the spatiotemporal variability of ETa. This reinforces the reliability of climatology ETr,
especially for operational applications as used by the global ESPA-based SSEBop ETa.
Additionally, it validates the use of a bias correction factor for the annual Gridmet ETr.

4.4. Challenges and Limitations

Although the FANO formulation for Tc determination improves the operational es-
timation of ETa in sparsely vegetated surfaces such as grasslands where high NDVI are
difficult to find on the earlier v0.1.7 parameterization, challenges remain on the potential
effect of using a constant dT (climatology) in Equation (3) with v0.2.6. However, because
dT and NDVI are linked in the FANO parameterization (Equation (8)), the role of high or
low dT on ETf or ETa is different depending on whether the Ts of a pixel is higher or lower
than Ts*. Future research could look into the sensitivity of the dT parameter and its effect
on the final ETa product.

There is a unique challenge with low NDVI landscapes in that the Tc is extrapolated too
far using the linear equation. The low NDVI challenge is similar to one reported by Ruimy
and Saugier [47] where they expected the greatest errors in using a constant linear NDVI
relationship to occur over areas with low NDVI (i.e., areas with small vegetation cover).
According to Huete [50], errors caused by soil effects amount to about 10%. In addition
to NDVI from sparse vegetation, water bodies are also modeled with maximum ET rates
(Table 2) without taking into account seasonal heat storage changes [51]. Thus, modeled



Remote Sens. 2023, 15, 260 22 of 25

ETa from deep waterbodies may not be reliable at a monthly rate but could provide a
reasonable estimate at annual time scales due to a seasonal shift in heat storage and release.

The assumption of homogeneous hydroclimatic region with the 5 km grid for the
FANO implementation may not be realistic over highly complex terrain where large eleva-
tion changes could exist within short distances. This becomes more challenging when the
high resolution (1 km) air temperature is not well represented to disaggregate the c factor
from 5 km to 1 km (Equation (10)). Such problems tend to be exaggerated in arid areas
with isolated mountains with poor quality air temperature datasets with an overall effect
of overestimating ET over high elevation outcrops in an otherwise flat terrain.

5. Conclusions

The study outlined the formulation of a new FANO parameterization scheme for
the determination of the wet-bulb reference temperature in the SSEBop model and eval-
uated the performance of the updated model using EC tower and water balance-based
ET estimates.

The FANO parameterization proved superior in model performance and operational
implementation. FANO allowed the establishment of the cold boundary condition (wet-
bulb) regardless of vegetation cover density, improving the performance and operational
implementation of the model in sparsely vegetated landscapes and outside of the main
growing season.

Accuracy metrics improved substantially for grassland landcover, reducing obvious
over-estimation bias (47% versus −2%) while maintaining a comparable level of accuracy
over croplands (11% versus −7%), which was already performing reasonably well in the
previous version. CONUS-wide basin-scale comparison with annual water balance ET
shows an improvement (reduced under-estimation) on the low end (<400 mm/year) and
high end (>800 mm/year, reduced over-estimation) while maintaining a comparable result
in the mid-ranges with an overall accuracy within 5%. Furthermore, visual inspection of
annual ET maps shows an improved spatial pattern by eliminating artifacts observed in
the earlier version.

A comparison of climatology versus annual ETr with station-based ETr showed that
while the correlation of the annual ETr was slightly better than the climatology ETr, bias and
RMSE errors are better with climatology ETr. More importantly, the actual ETa using the
SSEBop model produced comparable results using either climatology or annual gridded
ETr. This indicates the use of climatology gridded ETr is valid for large scale applications.

Continued evaluation and bias corrections are necessary to improve the absolute
magnitude of ET estimation for localized water budget applications. The SSEBop FANO
parameterization has demonstrated the capability to capture the spatiotemporal dynamics
of global landscape ETa.

Overpass daily ETa can be ordered at https://espa.cr.usgs.gov/ (accessed on 4 August 2022).
Users can evaluate historical Landsat-based ETa globally using imagery since 1982 (Landsat 4, 5,
7, 8, 9). The data can be used for crop water use monitoring and base-scale water budget studies.

Next steps include the implementation of the FANO parameterization using data
from MODIS and VIIRS (Visible Infrared Imaging Radiometer Suite) sensors. SSEBop
v0.2.6 (FANO) is available for download at https://github.com/Open-ET/openet-ssebop
(accessed on 21 April 2022).
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