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Abstract: Many heavy and lightweight convolutional neural networks (CNNs) require large datasets
and parameter tuning. Moreover, they consume time and computer resources. A new lightweight
model called FlexibleNet was created to overcome these obstacles. The new lightweight model is a
CNN scaling-based model (width, depth, and resolution). Unlike the conventional practice, which
arbitrarily scales these factors, FlexibleNet uniformly scales the network width, depth, and resolution
with a set of fixed scaling coefficients. The new model was tested by qualitatively estimating
sequestered carbon in the aboveground forest biomass from Sentinel-2 images. We also created three
different sizes of training datasets. The new training datasets consisted of six qualitative categories
(no carbon, very low, low, medium, high, and very high). The results showed that FlexibleNet was
better or comparable to the other lightweight or heavy CNN models concerning the number of
parameters and time requirements. Moreover, FlexibleNet had the highest accuracy compared to
these CNN models. Finally, the FlexibleNet model showed robustness and low parameter tuning
requirements when a small dataset was provided for training compared to other models.

Keywords: peri-urban forests; lightweight convolutional neural network; FlexibleNet; carbon
sequestration; remote sensing

1. Introduction

Since the advent of machine learning (ML) in the mid-twentieth century [1], it has
played an important role in solving many complex problems such as image processing [2,3].

In the last decade, convolutional neural networks (CNNs), a sub-discipline of ML, have
played an important role in advancing image processing such as segmentation, recognition,
and classification sciences [4–7]. However, many networks suffered from huge computa-
tional resource and time requirements, such as ResNet50 [8], VGG16 [9], AlexNet [10], and
GoogleNet [11]. Later, improvements to CNNs were introduced by reducing the number of
layers and in turn reducing the number of parameters. The new generation of CNNs are
called lightweight CNNs. The first lightweight model, SqueezeNet [12], showed classifica-
tion accuracy close to AlexNet, and the number of parameters was only 1/510 compared
to AlexNet. In addition to SqueezeNet, there are many lightweight models to mention,
such as Xception [13], MobileNet [14], MobileNetV3 [15], ShuffleNet [16], and recently
EfficientNet [17]. The last lightweight network has seven versions from B0 to B7.

However, some of these introduced lightweight CNN models still suffer from a
growing amount of parameter tuning or inefficiency when there are insufficient sam-
ples [18]. Many researchers tried to improve some of these network models such as VGG16,
ResNet50, and MobileNet by adding an auxiliary intermediate output structure named
ElasticNet [19,20] that was directly connected to the network after each convolutional unit.
Other researchers tried to improve the lightweight CNNs [21] by using MobileNet to extract
deep and abstract image features. Each feature was then transformed into two features with
two different convolutional layers. The transformed features were subjected to a Hadamard
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product operation to obtain an enhanced bilinear feature. Finally, an attempt was made to
improve lightweight CNNs by introducing a model called DFCANet [22] for corn disease
identification. The model consisted of dual feature fusion with coordinate attention (CA)
and downsampling (DS) modules. The CA module suppressed the background noise and
focused on the diseased area. In addition, the DS module was used for downsampling. The
above models enhanced the existing CNN models or solved specific problems.

Carbon is one of many greenhouse gases that exist naturally in the Earth’s system [23].
However, carbon dioxide emissions have increased abnormally because of using fossil
fuels for energy and due to land use/cover (LULC) changes. The fast increase in the
carbon dioxide concentration in the air is making a major contribution to possible climate
change and in turn to natural disasters as well as environmental and economic losses in
the future [24]. The world’s total forest area is about 4 billion hectares, corresponding
to about 31% of the total land area [25]. Forests that include one or mixed types of trees
with different plants absorb air pollution and provide the oxygen we breathe through
photosynthesis, which absorbs carbon dioxide and preserves it in the leaves and stems up
to the roots. Planted forests and woodlots were found to have the highest CO2 removal
rates, ranging from 4.5 to 40.7 t CO2 ha−1 year−1 during the first 20 years of growth [26,27].

Remote sensing data and methods are widely used to estimate carbon sequestration.
Liu et al. [28] used airborne radar data to identify single-tree parameters such as the di-
ameter at breast height (DBH) and tree height, and based on these measurements they
estimated the AGB of single trees. Lizuka and Tateishi [29] used Landsat 8 and lso/Palsar
to estimate forest tree volumes and tree ages. They used the extracted information to
estimate carbon sequestration, and the verification was based on the collected field samples.
Castro-Magnani et al. [30] used MODIS gross primary productivity (GPP) and net primary
productivity (NPP) [31] to estimate carbon sequestration in the AGB. Later, they calculated
the socio-economic benefit of sequestering carbon. Published research [32] has used air-
borne light detection and ranging (LiDAR) to acquire the vertical structure parameters
of coniferous forests to construct two prediction models of aboveground carbon density
(ACD). One is a plot-averaged height-based power model, and the other is a plot-averaged
daisy-chain model. The correlation coefficients were significantly higher than that of the
traditional percentile model. A paper published by Kanniah et al. [33] utilized different
vegetation indices (Vis) and very high resolution WorldView-2 images to estimate carbon
sequestration in an urban area. One of the Vis correlated strongly with the collected field
data. However, the forest consisted of single tree species, which made the authors’ research
work simple. Uniyal et al. [34] estimated carbon sequestration using Landsat 8 and support
vector machine (SVM) [35], random forest [36], k-nearest neighbor (kNN) [37], and the
eXtreme gradient boosting (XGBoost) [38]. The authors used a huge number of variables
extracted from Landsat image as inputs and field-collected data as training samples, and
based on the R squared (coefficient of determination) they concluded that machine-learning-
algorithm regressions are better than a linear regression. Zhang et al. [39] compared a
convolutional neural network (CNN) to SVM and RF for estimating carbon sequestration
in forests’ AGB from Sentinel-2, Sentinel-1, and lso/Palsar. The authors used more than
67 variables to train the algorithms. The results showed that the CNN was better than RF
and SVM at estimating carbon sequestered above the surface.

A literature review showed different attempts to estimate carbon sequestration using
LIDAR data, which is limited by the technology’s availability and cost and the size of
the covered area. Some researchers used only one type of remote sensing optical data to
extract vegetation indices (Vis) to compare some machine learning algorithms in estimating
carbon sequestration. Other researchers used only optical images to calculate Vis and to
estimate carbon sequestration in urban areas. Researchers deployed both optical and radar
data without using machine learning to estimate carbon sequestration. One successful
study combined multiple types of radar and optical data to compare machine learning
algorithms, including a CNN, in estimating carbon sequestration in forests’ AGB. However,
this led to the need to calculate a large number of variables, and it demanded huge
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computation resources. It is also known that a CNN alone is more effective in detecting
patterns than estimating specific information [40,41]. Moreover, all the above research
shared one objective, which was quantitatively estimating carbon sequestration by AGB.

The objectives and the contributions of this research are the following: (1) creating
a new lightweight CNN model (FlexibleNet); (2) testing the new model (FlexibleNet) for
qualitatively estimating carbon sequestration in peri-urban forests’ AGB; and (3) creating
new datasets that combine multispectral satellite images and multicriteria themes with
different sizes. These datasets and python programs are available on GitHub.

Many issues make the new model better than other lightweight CNN models. First,
the new model’s flexibility arises from its ability to adapt to changes in tuning many
parameters, such as the image dimension, dataset size, and layer depth and width. Second,
the model uses only three extracted features from Sentinel-2 as inputs compared to the
multi-input for other CNN models. Third, the new lightweight model can qualitatively
measure carbon sequestration in peri-urban forests. Fourth, it is more efficient in dealing
with small datasets.

After the introduction section, the second section describes the data, the third section
contains the methods, the fourth section presents the experimental results, and the final
section provides our conclusions.

2. Data
2.1. Area of Study and Field Survey

The border of the study area is specified by a red square in Figure 1. It is located in
the El-Bared river basin in the northeast of Lebanon. The selection was based on many
criteria that included the diversity of the forest types, forest densities, the existence of urban
economic activities, the pressure exerted by the residents on the forest cover (cutting and
burning), the ease of accessibility to the area (specific spots), and the existence of local
authority support for fieldwork.
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Figure 1. Study area.

The area of study occupies about 106.5 km2 of different land cover types such as fruit
trees, urban (including touristic facilities), forests, grasslands, etc. The highest elevation
in the area of study is 1500 m, and the landform is flat to moderately steep (a slope less
than 30%).
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One can notice in Figure 1 that the field samples that were collected in the northeastern
part of the study area. The selection of the field sampling area was based on having different
forest types such as pine “Pinus brutia”, cedar “Cedrus Libani”, fir “Abies cilicica”, juniper
“Juniperus excelsa”, and oak “Quercus Cerris” (Figure 2a–e).
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Figure 2. Forest types: (a) Quercus Cerris, (b) Abies cilicica, (c) Cedrus Libani, (d) Juniperus excelsa,
(e) Pinus brutia.

The sample collection was a random process, and it depended on the ease of acces-
sibility to the investigated area. Table 1 shows the species type, the number of collected
samples, the average height, and the average diameter at breast height (DBH). The cedars’
cover was very small compared to other forest covers, and the authorities prohibited access
to these trees because they were located in a reservation and they are national symbol.

Table 1. Information about the collected field samples.

Type Number of Samples Average DBH (cm) Average Height (Meters)

Quercus Cerris 17 119 15

Pinus brutia 19 125 12

Abies cilicica 46 237 17

Juniperus excelsa 32 225 8

2.2. Data Type and Source

In this research, we deployed Sentinel-2 data, which is considered to be important and
free optical remote sensing satellite data. Sentinel-2A and Sentinel-2B were launched in
June 2015 and March 2017, respectively [42]. Sentinel-2 is an optical remote sensing satellite.
It has a spatial resolution that varies between 10 m and 60 m depending on the wavelength.
Sentinel-2A has a temporal resolution of 10 days, which can become 5 days with the
combination of Sentinel-2B and another optical satellite with the same specifications as
Sentinel-2A. The clipped image has a size of 1115 × 955 pixels and consists of bands 3, 4,
and 8, which correspond to green, red, and near infrared. These bands were selected for
two reasons: they have the highest spatial resolution, and they are representative of the
crops’ photosynthesis process. To extract the required area, we used Google Earth Engine’s
(GEE) Sentinel-2 dataset and computation facilities. One Sentinel-2 image was selected in
May 2020 for two reasons: to reduce the cloud cover effect (less than 5% of the image size)
and to obtain the maximum vegetation cover (deciduous and coniferous trees, grasslands,
and agricultural lands).

Moreover, a vector layer representing the global canopy height for the year 2020 at a
10 m resolution [43] was used in the canopy density model (Figure 3).



Remote Sens. 2023, 15, 272 5 of 17Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 3. Canopy height map. 

3. Methods 
The following flowchart (Figure 4) shows the different tasks that were implemented 

in this research to qualitatively estimate carbon sequestration in ABG forests using the 
new lightweight CNN model (FlexibleNet) and the training and Sentinel-2 image datasets. 

 
Figure 4. The general process for qualitatively assessing forests’ AGB carbon sequestration capaci-
ties. 

3.1. Canopy Density Model (CDM) 
An adapted model created by Abdollahnejad et al. [44] incorporated different indices 

from Sentinel-2 images and the thermal band of Landsat to create a canopy density model. 
The adapted model combined different resolutions, which lowered the credibility and ef-
ficiency of the final product. Moreover, the model neglected the canopy heights, which 
can successfully differentiate between forests and other vegetation types. 

Both the Sentinel-2 image (level 2) and the canopy height layer were obtained using 
the Google Earth Engine (GEE) platform. Scripts were written in the Java language to re-
trieve the needed data. Normally, the acquired Sentinel-2 image is level 2, which is an 
image that is corrected geometrically and atmospherically. Three indices were created 
from the Sentinel-2 image using the following equations: 𝐴𝑉𝐼 = [(𝑁𝐼𝑅 + 1) × (1 − 𝑅𝑒𝑑) × (𝑁𝐼𝑅 − 𝑅𝑒𝑑)] /  (1)

𝐵𝐼 = (𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛) − 𝑅𝑒𝑑(𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛) + 𝑅𝑒𝑑 (2)

𝑆𝐼 = (1 − 𝐺𝑟𝑒𝑒𝑛) × (1 − 𝑅𝑒𝑑) (3)

where AVI is the advanced vegetation index, BI is the bare soil index, and SI is the canopy 
shadow index. Moreover, NIR, red, and green represent the three different spectrums and 

Figure 3. Canopy height map.

3. Methods

The following flowchart (Figure 4) shows the different tasks that were implemented in
this research to qualitatively estimate carbon sequestration in ABG forests using the new
lightweight CNN model (FlexibleNet) and the training and Sentinel-2 image datasets.
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3.1. Canopy Density Model (CDM)

An adapted model created by Abdollahnejad et al. [44] incorporated different indices
from Sentinel-2 images and the thermal band of Landsat to create a canopy density model.
The adapted model combined different resolutions, which lowered the credibility and
efficiency of the final product. Moreover, the model neglected the canopy heights, which
can successfully differentiate between forests and other vegetation types.

Both the Sentinel-2 image (level 2) and the canopy height layer were obtained using
the Google Earth Engine (GEE) platform. Scripts were written in the Java language to
retrieve the needed data. Normally, the acquired Sentinel-2 image is level 2, which is an
image that is corrected geometrically and atmospherically. Three indices were created from
the Sentinel-2 image using the following equations:

AVI = [(NIR + 1)× (1− Red)× (NIR− Red)]1/3 (1)

BI =
(NIR + Green)− Red
(NIR + Green) + Red

(2)

SI =
√
(1− Green)× (1− Red) (3)

where AVI is the advanced vegetation index, BI is the bare soil index, and SI is the canopy
shadow index. Moreover, NIR, Red, and Green represent the three different spectrums and
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the bands B2, B3, and B8 in the Sentinel-2 image. AVI was modified to provide values
between −1 and 1. The modification included replacing 256 with 1 and normalizing the
bands. BI ranged between 0 and 1, where 0 meant complete bare soil or no vegetated
area and 1 meant completely covered by vegetation. Finally, SI was modified by replacing
256 with 1, and the bands were normalized. SI values ranged between 0 and 1, where the
maximum value indicated the highest canopy shadow.

These themes, including the canopy heights, were classified into six categories using
natural break classification (Jenks) [45]. The classes were based on natural groupings
inherent in the data. Normally, the classification process identifies breakpoints by picking
the class breaks that best group similar values and maximize the differences between
classes. Finally, a spatial analysis that included mathematical operations was deployed to
obtain the canopy density theme. The above processes were combined according to the
following flowchart (Figure 5).

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 18 
 

 

the bands B2, B3, and B8 in the Sentinel-2 image. AVI was modified to provide values 
between −1 and 1. The modification included replacing 256 with 1 and normalizing the 
bands. BI ranged between 0 and 1, where 0 meant complete bare soil or no vegetated area 
and 1 meant completely covered by vegetation. Finally, SI was modified by replacing 256 
with 1, and the bands were normalized. SI values ranged between 0 and 1, where the 
maximum value indicated the highest canopy shadow. 

These themes, including the canopy heights, were classified into six categories using 
natural break classification (Jenks) [45]. The classes were based on natural groupings in-
herent in the data. Normally, the classification process identifies breakpoints by picking 
the class breaks that best group similar values and maximize the differences between clas-
ses. Finally, a spatial analysis that included mathematical operations was deployed to ob-
tain the canopy density theme. The above processes were combined according to the fol-
lowing flowchart (Figure 5). 

 
Figure 5. Canopy density model. 

Further investigation in the future to improve the canopy density layer may include 
higher-spatial-resolution satellite images and time series of NDVI to separate deciduous 
forest trees from evergreens, which could further enhance research work. 

3.2. The New Lightweight Convolutional Neural Network Model (FlexibleNet) 
CNNs are collections of neurons that are ordered in inter-related layers, with convo-

lutional, pooling, and fully connected layers [46]. CNNs require less preprocessing, and 
they are the most effective learning algorithms for realizing image structures. Moreover, 
it was proven that CNNs excel in image classification, recognition, and retrieval [47]. 

Normally, a simple CNN model consists of one or many of the following layers: 1—
convolutional layer, 2—pooling layer, 3—activation layer, and a fully connected layer. 

In this research, we created a new lightweight CNN model (FlexibleNet) to reduce 
the resource and training dataset requirements (Figure 6). The performance of the new 
model was tested in the qualitative classification of carbon sequestration. Our new model 
is a CNN scaling-based model (width, depth, and resolution). The depth corresponds to 
the number of layers in a network. The width is associated with the number of neurons in 
a layer or, more pertinently, the number of filters in a convolutional layer. The resolution 
is simply the height and width of the input image. Unlike the conventional practice, which 
arbitrarily scales these factors, FlexibleNet uniformly scales the network width, depth, 
and resolution with a set of fixed scaling coefficients. 

We combined different strategies to improve the FlexibleNet performance. These 
strategies were spatial exploitation and varying the depth. Spatial exploitation includes 
parameters such as the number of processing units (neurons), filter size, and activation 
function. We assumed that varying the CNN’s depth can better approximate the target 
function with a number and can improve feature representations and network perfor-
mance. 

Figure 5. Canopy density model.

Further investigation in the future to improve the canopy density layer may include
higher-spatial-resolution satellite images and time series of NDVI to separate deciduous
forest trees from evergreens, which could further enhance research work.

3.2. The New Lightweight Convolutional Neural Network Model (FlexibleNet)

CNNs are collections of neurons that are ordered in inter-related layers, with convolu-
tional, pooling, and fully connected layers [46]. CNNs require less preprocessing, and they
are the most effective learning algorithms for realizing image structures. Moreover, it was
proven that CNNs excel in image classification, recognition, and retrieval [47].

Normally, a simple CNN model consists of one or many of the following layers:
1—convolutional layer, 2—pooling layer, 3—activation layer, and a fully connected layer.

In this research, we created a new lightweight CNN model (FlexibleNet) to reduce the
resource and training dataset requirements (Figure 6). The performance of the new model
was tested in the qualitative classification of carbon sequestration. Our new model is a
CNN scaling-based model (width, depth, and resolution). The depth corresponds to the
number of layers in a network. The width is associated with the number of neurons in a
layer or, more pertinently, the number of filters in a convolutional layer. The resolution is
simply the height and width of the input image. Unlike the conventional practice, which
arbitrarily scales these factors, FlexibleNet uniformly scales the network width, depth, and
resolution with a set of fixed scaling coefficients.

We combined different strategies to improve the FlexibleNet performance. These
strategies were spatial exploitation and varying the depth. Spatial exploitation includes
parameters such as the number of processing units (neurons), filter size, and activation
function. We assumed that varying the CNN’s depth can better approximate the target
function with a number and can improve feature representations and network performance.



Remote Sens. 2023, 15, 272 7 of 17Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 6. The inner structure of the FlexibleNet model. 

The spatial exploitation included changes to the filter size and the activation function. 
Moreover, the depth of the FlexibleNet network or the number of convolutional layers 
varied when the dimensions of the features changed. The variations in the width and 
depth were based on the variation in the resolution of the image. The following equations 
depict the changes to filter size: 

𝐼𝑚 =  𝑑 × 𝑤 × 𝑐   → 𝑑 = 𝑤 = 2   → 𝑓 = 𝑅𝑛𝑑(𝑛2) ×  𝑅𝑛𝑑(𝑛2) (4)

where Im is the original image and m is the number of sub-images of size 𝑑 × 𝑤 × 𝑐, where 
d is the number of rows, w is the number of columns, and c is the number of channels. 
Moreover, n is the exponent, f is the filter size, and Rnd() is the round function (d, w, c, and 
n ∈ ℤ ). If the image (Im) has an uneven size, zeros are padded to the columns and/or 
rows to make them even. 

The number of filters for each convolution layer can be set up based on the following 
rules: 

⎩⎪⎨
⎪⎧𝑓 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 2  𝑤ℎ𝑒𝑟𝑒 𝑛 ≥ 5    𝑚 = 𝑅𝑛𝑑 𝑛2 + 2;       2   → 𝑚 = 𝑚 + 1𝐹𝑖𝑛𝑎𝑙    1024  (5)

where 𝑓  represents the filter sizes. These rules work as follows: Suppose I have a sub-
image of size 32 × 32. Then, n = 5. This means that the initial filter is 𝑓   = 16. Next, the 
filter size is obtained by calculating m 𝑓   = 32, 64, 128, 256, and 512, where m = 6, 7, 8, 
and 9 and the final filter size is 1024 (maximum) with m = 10. 

Then, the leaky rectified linear activation function (LReLU) is used [48], which is a 
modification of the ReLU activation function. It has the same form as the ReLU, but it will 
leak some positive values to 0 if they are close enough to zero (Equation (6)). It is a variant 
of the ReLU activation function. Normally, ReLU is half-rectified (from the bottom). 
ReLU(p) is zero when p is less than zero, and ReLU(p) is equal to p when p is above or 
equal to zero. 𝐿𝑅𝑒𝐿𝑈(𝑝) = max (0.01 × 𝑝, 𝑝) (6)

The number of layers or the depth of the network (𝐿𝑎𝑦 ) can be computed as 
indicated in Equation (7). It is noticeable that the depth reached unity when the dimen-
sions of the image were >18.  The creation of Equation (7) was based on the assumptions 

Figure 6. The inner structure of the FlexibleNet model.

The spatial exploitation included changes to the filter size and the activation function.
Moreover, the depth of the FlexibleNet network or the number of convolutional layers
varied when the dimensions of the features changed. The variations in the width and depth
were based on the variation in the resolution of the image. The following equations depict
the changes to filter size:

Im =
m

∑
i=1

di × wi × ci → d = w = 2n → f = Rnd
(n

2

)
× Rnd

(n
2

)
(4)

where Im is the original image and m is the number of sub-images of size d× w× c, where
d is the number of rows, w is the number of columns, and c is the number of channels.
Moreover, n is the exponent, f is the filter size, and Rnd() is the round function (d, w, c, and
n ∈ Z+). If the image (Im) has an uneven size, zeros are padded to the columns and/or
rows to make them even.

The number of filters for each convolution layer can be set up based on the follow-
ing rules:  fm =

Initial 2Rnd( n
2 )+1 where n ≥ 5

m = Rnd
( n

2
)
+ 2; 2m → m = m + 1
Final 1024

(5)

where fm represents the filter sizes. These rules work as follows: Suppose I have a sub-
image of size 32 × 32. Then, n = 5. This means that the initial filter is f0 = 16. Next, the
filter size is obtained by calculating m fm = 32, 64, 128, 256, and 512, where m = 6, 7, 8,
and 9 and the final filter size is 1024 (maximum) with m = 10.

Then, the leaky rectified linear activation function (LReLU) is used [48], which is a
modification of the ReLU activation function. It has the same form as the ReLU, but it
will leak some positive values to 0 if they are close enough to zero (Equation (6)). It is a
variant of the ReLU activation function. Normally, ReLU is half-rectified (from the bottom).
ReLU(p) is zero when p is less than zero, and ReLU(p) is equal to p when p is above or equal
to zero.

LReLU(p) = max(0.01× p, p) (6)

The number of layers or the depth of the network (Laydepth) can be computed as
indicated in Equation (7). It is noticeable that the depth reached unity when the dimensions
of the image were >18. The creation of Equation (7) was based on the assumptions that a
sub-image cannot be less than 16 × 16 and that the maximum sub-image size is the image
itself. Adapting to the increase in the sub-image size requires decreasing the network depth
by one level (the number of convolution layers) each time the sub-image increases. The
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depth starts from Rnd
( n

2
)
+ 7 convolution layers to one layer, where the size of the image

is the image itself, assuming it may reach infinity as a size.

Laydepth =



Rnd
( n

2
)
+ 7 4 ≤ n

Rnd
( n

2
)
+ 5 5 ≤ n ≤ 6

Rnd
( n

2
)
+ 3 7 ≤ n ≤ 8

Rnd
( n

2
)
+ 1 9 ≤ n ≤ 10

Rnd
( n

2
)
− 1 11 ≤ n ≤ 12

Rnd
( n

2
)
− 3 13 ≤ n ≤ 14

Rnd
( n

2
)
− 5 15 ≤ n ≤ 16

Rnd
( n

2
)
− 7 17 ≤ n ≤ 18

1 n > 18

(7)

In addition to the Laydepth size, there is a fixed number of three dense layers (DL).
According to [49], the dense layer is an often-used layer that contains a deeply connected
neural network layer. DL is a hidden layer associated with one node in the next layer.

Figure 7a–c show the FlexibleNet structure for three different scales based on the
above rules, where n = 32, 256, and 512. One can notice that as the scale increases, the depth
decreases. This strategy can help reduce the computation requirements (processing power
and memory size).

3.3. Estimating Carbon Sequestration for the Collected AGB Samples

The measured trees were used to compute the volume of the AGB using
Equations (8) and (9). Where Vm3 is the volume of wood in cubic meters, Hm is the height
of the tree, DBH is the diameter at breast height, and Bm2 is the base area in square meters.
Lee et al. [50] suggested Table 2 to help in the calculation process of carbon sequestration in
the ABG. The carbon content usually uses a value of 0.5, which means that wood is about
50% carbon. We used the model created by Lizuka and Tateishi [29] to estimate carbon
sequestration per hectare (CSha) (Equation (10)). Fc = 44/12 converts the carbon value to
the carbon dioxide sequestration value, where 12 and 44 represent the molecular masses of
carbon and carbon dioxide, respectively.

Vm3 = Bm2 × Hm (8)

Bm2 = π ×
(

DBH
2

)2
(9)

CSha = Vm3 × Be× Bd× Cc× Fc (10)

Table 2. Coefficients for calculating carbon sequestration by forest type.

Type of Forest Bulk Density (Bd)
(Tons/m3) Biomass Expansion (Be) Carbon Content (Cc)

Coniferous 0.47 1.651 0.5

Deciduous 0.80 1.720 0.5

Mixed 0.635 1.685 0.5
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4. Results

For this section, we created different datasets of Sentinel-2 sub-images to prove the
efficiency of the new lightweight CNN model (FlexibleNet) in qualitatively estimating
carbon dioxide sequestration. The collected samples of trees’ characteristics, as shown
in Table 1, were used to calculate CSha using Equations (8)–(10). Then, these values were
converted to qualitative values using Sturges’ rule [51]. Since the samples represent trees’
characteristics, the “no carbon” class was removed. Figure 8 represents the distribution of
the samples according to five classes (very low, low, moderate, high, and very high). These
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created qualitative samples were used to verify the credibility of the canopy density dataset
using a confusion matrix [52] before using it in the training of the new model (Table 3). The
accuracy computed from the matrix using estimated versus measured values was 92.1%.
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Table 3. Confusion matrix.

Measured/Estimated Very Low Low Moderate High Very High

Very low 23 2 1 2 0

Low 1 15 0 0 0

Moderate 0 1 21 0 0

High 1 1 0 27 0

Very high 0 0 0 0 19

We created different datasets that consisted of tiled sub-images with three different
sizes of 32 × 32 (1050 images), 64 × 64 (270 images), and 128 × 128 (72 images) and three
bands representing different spectrums (green, red, and near infrared). The other datasets
consisted of the same size and number of tiles but only represented canopy densities with
six classes (no carbon, very low, low, moderate, high, and very high). A script was written
in the Python language to classify the Sentinel-2 sub-images into six classes based on the
computed canopy density statistics (Algorithm 1). The script takes every computed sum
(arr) for each canopy density sub-image and compares it to the created criteria (criteria)
based on Sturges’ rule.

The sums of the pixel values of all canopy density sub-images were calculated. Next,
these sums’ maximum, minimum, and average were computed. Then, they were used with
Struges’ rule to classify the Sentinel-2 sub-images into six classes. After that, the datasets
were split into 80% training and 20% validation samples. Figure 9 shows examples of the
original Sentinel 2 sub-images (false color) and their counterpart canopy density classes.
The colors in the canopy density images signify that very low is dark brown, low is light
brown, moderate is light green, high is green, and very high is dark green.

These samples were used as part of the training and validation datasets to check the
efficiency of the FlexibleNet model.
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Algorithm 1 A python script to classify Sentinel-2 sub-images.

if( (arr[i] ≤ 0) and file_exists):
# it checks if the sum is less or equal to zero and if the image exists in the folder
before copying it to the no carbon folder
shutil.copy(filename,dest1)
# copy image to no carbon folder (dest1)
if((arr[i] >0 and arr[i] ≤ criteria *2) and file_exists):
shutil.copy(filename,dest2)
# copy to folder very low
if((arr[i] > criteria *2 and arr[i] ≤ criteria *3) and file_exists):
shutil.copy(filename,dest3)
# copy to folder low
if((arr[i] > criteria *3 and arr[i] ≤ criteria *4) and file_exists):
shutil.copy(filename,dest4)
# copy to folder moderate
if((arr[i] > criteria *4 and arr[i] ≤ criteria *5) and file_exists):
shutil.copy(filename,dest5)
# copy to folder high
if((arr[i] > criteria *5 and arr[i] ≤maxval) and file_exists):
shutil.copy(filename,dest6)
# copy to folder very high
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Figure 9. Different sub-images showing (a–g) the original Sentinel-2 images and (h–n) canopy density
(very low, low, medium, high, and very high).

The FlexibleNet was compared with four popular and well-known convolutional
neural networks: the large model ResNet50 [8], the lightweight models Xception [13] and
MobileNetV3-Large [15], and the EfficientNet [17]. These models were selected based on
their popularity, efficiency, and availability.

All the models, including FlexibleNet, were run using “Jupyter Notebook” on Amazon
SageMaker cloud computing facilities that had 16 GB of memory capacity and two Intel
Xeon Scalable processors with 3.3 GHz speed. Moreover, these models were run for a maxi-
mum of 100 epochs, and each epoch had several steps (number of steps per epoch = (total
number of training samples)/batch size). We deployed a stochastic gradient descent (SGD)
optimizer in FlexibleNet with an initial learning rate of 0.001. SGD is an iterative method
for optimizing an objective function with suitable smoothness properties. SGD replaces the
actual gradient (calculated from the entire dataset) with an estimate thereof (calculated from
a randomly selected subset of the data). Especially in the high-dimensional optimization
problem, this reduces the very high computational burden, achieving faster iterations in
return for a lower convergence rate [53]. The learning rate of 0.001 was selected based on
previous research conducted by Asif et al. [54].

In the first experiment, the datasets of 32 × 32 were used to compare these models.
The outcomes of these models are shown in Table 4, and the behaviors of these models
during the run process are shown in Figure 10a–j.
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Table 4. Summary of the outcomes of the experiments using an image resolution of 32 × 32.

Model Name Number of Parameters
(Millions)

Time Requirement
(Minutes)

Accuracy
% Lowest Loss Value

FlexibleNet 5.52 13.3 98.81 0.042

ResNet50 26.38 77 96.41 0.1074

EfficientNetB5 31.30 28.4 52 1.1

MobileNetV3-Large 6.23 13.3 68.69 0.7122

Xception 21.58 62 66.96 0.83
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The new model had total parameters equal to 5.52 million. The total time was 13.3 min,
with 8 s for each iteration. The accuracy of the final trained model was about 98.81%, and
the final loss was 0.042.

The ResNet50 model was run for 100 iterations (epochs), with a total number of
parameters equal to 26.38 million. ResNet50 took 77 min, with an accuracy of about 96.41%,
and the final loss was 0.1074. The accuracy of ResNet50 was lower than that of FlexibleNet.
This proved the reliability and efficiency of the new model.

EfficientNet was also tested using the same datasets. The number of iterations was
100, and the number of parameters was 31.3 million. It took the model 88.4 min to complete
the iterations (epochs). The lowest loss was 1.1, and the highest accuracy was 52%. This
proved that FlexibleNet is more efficient and accurate than the lightweight EfficientNet.

The lightweight network models MobileNetV3-Large and MobileNetV3-Small are
normally targeted for high- and low-resource use cases. These models are then adapted
and applied to object detection and semantic segmentation. MobileNetV3-Small is more
suitable for mobile phone operating systems. MobileNetV3-Large is 3.2% more accurate
in ImageNet classification while reducing latency by 15% compared to MobileNetV2 [55].
The implemented MobileNetV3-Large had 6.23 million total parameters, and it was run for
100 iterations. It took the model 13.3 min to complete the iterations (epochs). The lowest
loss was 0.7122, and the highest accuracy was 68.69%. This proved that FlexibleNet was
more efficient and accurate than the lightweight MobileNetV3-Large.

The second experiment was conducted in the same area of study, but the datasets had
an image resolution of 64 × 64 pixels. Figure 11 shows different 64 × 64 sub-images along-
side corresponding canopy sub-images. We placed constraints on running the FlexibleNet
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model and the other tested models to avoid falling into the overfitting problem because of
the lack of a large dataset of images [56].
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Figure 11. Sentinel-2 sub-images (64 × 64): (a–e) original and (f–j) canopy density (very low (dark
brown) to very high (dark green)).

During the fitting process of these models, the loss function was tested. The fitting
process was terminated when several iterations completed and the minimum loss value did
not change. Table 5 shows the outcomes of testing the different models on different image
resolutions. First, it is noticeable that the number of parameters increased for FlexibleNet,
ResNet50, and EfficientNetB5. Nevertheless, the time requirement decreased for all models
except EfficientNetB5. Finally, FlexibleNet was the only model with the highest accuracy
and the lowest loss function value, as shown in Figure 12a–j.

Table 5. Summary of the outcomes of the experiments using an image resolution of 64 × 64.

Model Name Number of
Parameters (Millions)

Time Requirement
(Minutes)

Accuracy
%

Lowest Loss
Value

Total
Iterations

FlexibleNet 8.4 5 98.25 0.0457 60

ResNet50 32.6 13 96.74 0.0877 51

EfficientNetB5 32.9 40 93.06 0.1936 100

MobileNetV3-Large 6.23 4 90.22 0.3422 74

Xception 21.58 22 31.52 1.718 100
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The final experiment was conducted in the same area of study, but the image resolu-
tion was 128 × 128 pixels, which resulted in smaller datasets. Figure 13 shows different
128 × 128 sub-images alongside corresponding canopy density sub-images.
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We placed constraints on running the FlexibleNet model and the other tested models to
avoid falling into the overfitting problem because of a lack of a large dataset of images [56].
The loss function was tested, and the fitting process was terminated when the minimum
loss value did not change after a specific number of iterations.

Table 6 lists the results of running different models. Again, FlexibleNet and MobileNetV3-
Large showed stable numbers of parameters, even when the dimensions of the image
increased from 64 × 64 to 128 × 128. However, FlexibleNet was the fastest, and it had the
highest accuracy and lowest loss value compared to the other models. In this experiment,
FlexibleNet showed robustness in dealing with very small datasets (72 images), whereas the
others failed to deal with the problem. Many adjustments were made (such as duplicating
the dataset) to overcome the limited size of the dataset and make the other models run
smoothly. The performances of these models (accuracy and loss) are shown in Figure 14a–j.
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Table 6. Summary of the outcomes of the experiments using an image resolution of 128 × 128.

Model Name Number of
Parameters (Millions)

Time Requirement
(Minutes)

Accuracy
%

Lowest Loss
Value

Total
Iterations

FlexibleNet 8.4 0.8 98.25 0.0657 24

ResNet50 57.8 7.7 86.87 0.2953 23

EfficientNet 62.7 6 70.09 0.9102 11

MobileNetV3-Large 6.23 8.1 96.97 0.0951 68

Xception 55.1 20.53 90.91 0.2523 56

5. Conclusions

There were many advantages of deploying the new lightweight convolutional neu-
ral network model, FlexibleNet. First, we obtained the highest accuracy in qualitatively
classifying Sentinel-2 images into different carbon sequestration classes. Second, the Flex-
ibleNet model had the lowest loss values compared to the other models. Third, except
for MobileNetV3-Large, the new model used the lowest number of parameters and re-
quired the lowest time. In the first experiment, the FlexibleNet model was the best one
because it had the lowest number of parameters compared to the other models, including
MobileNetV3-Large. In the second and third experiments, the MobileNetV3-Large model
was slightly better than the FlexibleNet model, but both were stable concerning the num-
ber of parameters when the problem size changed. One disadvantage of the FlexibleNet
model was its inability to overcome the MobileNetV3 model in reducing the number of
parameters in all experiments. The FlexibleNet model is the first version of a series that
will include enhancements to many existing features in the new model, including reducing
the parameter requirements. It is also expected to be used to conduct more experiments on
other complex problems, such as using tropical forest datasets.

Funding: This research received no external funding.

Data Availability Statement: All data and programs were placed on the website https://github.
com/users/ma850419/FlexibleNet (accessed on 30 December 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fradkov, A. Early History of Machine Learning. IFAC-Pap. OnLine 2020, 53, 1385–1390. [CrossRef]
2. Wang, P.; Wang, L.; Leung, H.; Zhang, G. Super-Resolution Mapping Based on Spatial–Spectral Correlation for Spectral Imagery.

IEEE Trans. Geosci. Remote Sens. 2021, 59, 2256–2268. [CrossRef]
3. Awad, M. Cooperative evolutionary classification algorithm for hyperspectral images. J. Appl. Remote Sens. 2020, 14, 016509.

[CrossRef]
4. Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G. Pansharpening by Convolutional Neural Networks. Remote Sens. 2016, 8, 594.

[CrossRef]
5. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587. [CrossRef]

6. Awad, M.M.; Lauteri, M. Self-Organizing Deep Learning (SO-UNet)—A Novel Framework to Classify Urban and Peri-Urban
Forests. Sustainability 2021, 13, 5548. [CrossRef]

7. Sylvain, J.; Drolet, G.; Brown, N. Mapping dead forest cover using a deep convolutional neural network and digital aerial
photography. ISPRS J. Photogramm. Remote Sens. 2019, 156, 14–26. [CrossRef]

8. Sarwinda, D.; Paradisa, R.; Bustamam, A.; Anggia, P. Deep Learning in Image Classification using Residual Network (ResNet)
Variants for Detection of Colorectal Cancer. Procedia Comput. Sci. 2021, 179, 423–431. [CrossRef]

9. Tao, J.; Gu, Y.; Sun, J.; Bie, Y.; Wang, H. Research on VGG16 convolutional neural network feature classification algorithm based on
Transfer Learning. In Proceedings of the 2nd China International SAR Symposium (CISS), Shanghai, China, 3–5 November 2021;
pp. 1–3. [CrossRef]

10. Singh, I.; Goyal, G.; Chandel, A. AlexNet architecture based convolutional neural network for toxic comments classification.
J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 7547–7558. [CrossRef]

https://github.com/users/ma850419/FlexibleNet
https://github.com/users/ma850419/FlexibleNet
http://doi.org/10.1016/j.ifacol.2020.12.1888
http://doi.org/10.1109/TGRS.2020.3004353
http://doi.org/10.1117/1.JRS.14.016509
http://doi.org/10.3390/rs8070594
http://doi.org/10.1109/CVPR.2014.81
http://doi.org/10.3390/su13105548
http://doi.org/10.1016/j.isprsjprs.2019.07.010
http://doi.org/10.1016/j.procs.2021.01.025
http://doi.org/10.23919/CISS51089.2021.9652277
http://doi.org/10.1016/j.jksuci.2022.06.007


Remote Sens. 2023, 15, 272 16 of 17

11. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9. [CrossRef]

12. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [CrossRef]

13. Chollet, F. Xception: Deep Learning with Depth wise Separable Convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21—26 July 2017; pp. 1800–1807. [CrossRef]

14. Yuan, H.; Cheng, J.; Wu, Y.; Zeng, Z. Low-res MobileNet: An efficient lightweight network for low-resolution image classification
in resource-constrained scenarios. Multimed. Tools Appl. 2022, 81, 38513–38530. [CrossRef]

15. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V. Search-
ing for MobileNetV3. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea,
27–28 October 2019; pp. 1314–1324. [CrossRef]

16. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient CNN architecture design. In Proceedings of
the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [CrossRef]

17. Tan, M.; Le, Q.V. (2019) EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, CA, USA, 10–19 June 2019; pp. 6105–6114.

18. Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions.
SN Comput. Sci. 2021, 2, 420. [CrossRef] [PubMed]

19. Zhou, Y.; Bai, Y.; Bhattacharyya, S.; Huttunen, H. Elastic Neural Networks for Classification. In Proceedings of the 2 IEEE
International Conference on Artificial Intelligence Circuits and Systems (AICAS), Taiwan, China, 18–20 March 2019; pp. 251–255.
[CrossRef]

20. Bai, Y.; Bhattacharyya, S.; Happonen, A.; Huttunen, H. Elastic Neural Networks: A Scalable Framework for Embedded Computer
Vision. In Proceedings of the 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018;
pp. 1472–1476. [CrossRef]

21. Yu, D.; Xu, Q.; Guo, H.; Zhao, C.; Lin, Y.; Li, D. An Efficient and Lightweight Convolutional Neural Network for Remote Sensing
Image Scene Classification. Sensors 2020, 20, 1999. [CrossRef] [PubMed]

22. Chen, Y.; Chen, X.; Lin, J.; Pan, R.; Cao, T.; Cai, J.; Yu, D.; Cernava, T.; Zhang, X. DFCANet: A Novel Lightweight Convolutional
Neural Network Model for Corn Disease Identification. Agriculture 2022, 12, 2047. [CrossRef]

23. Kawamiya, M.; Hajima, T.; Tachiiri, K.; Watanabe, S.; Yokohata, T. Two decades of Earth system modeling with an emphasis on
Model for Interdisciplinary Research on Climate (MIROC). Prog. Earth Planet. Sci. 2020, 7, 64. [CrossRef]

24. Deng, L.; Zhu, G.Y.; Tang, Z.S.; Shangguan, Z.P. Global patterns of the effects of land-use changes on soil carbon stocks. Glob. Ecol.
Conserv. 2016, 5, 127–138. [CrossRef]

25. Food And Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2015—How Are the World’s
Forests Changing? 2nd ed.; FAO: Rome, Italy, 2016; p. 54.

26. Bernal, B.; Murray, L.T.; Pearson, T.R.H. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon
Balance Manag. 2018, 13, 22. [CrossRef]

27. Kim, H.; Kim, Y.H.; Kim, R.; Park, H. Reviews of forest carbon dynamics models that use empirical yield curves: CBM-CFS3,
CO2FIX, CASMOFOR, EFISCEN. For. Sci. Technol. 2015, 11, 212–222. [CrossRef]

28. Liu, F.; Tan, C.; Zhang, G.; Liu, J.X. Single-wood parameters and biomass airborne LiDAR estimation of Larix olgensis. Trans.
Chin. Soc. Agric. 2013, 44, 219–224.

29. Lizuka, K.; Tateishi, R. Estimation of CO2 Sequestration by the Forests in Japan by Discriminating Precise Tree Age Category
using Remote Sensing Techniques. Remote Sens. 2015, 7, 15082–15113. [CrossRef]

30. Castro-Magnani, M.; Sanchez-Azofeifa, A.; Metternicht, G.; Laakso, K. Integration of remote-sensing based metrics and economet-
ric models to assess the socio-economic contributions of carbon sequestration in unmanaged tropical dry forests. Environ. Sustain.
Indic. 2021, 9, 100100. [CrossRef]

31. Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem
services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [CrossRef]

32. Hao, H.; Li, W.; Zhao, X.; Chang, Q.; Zhao, P. Estimating the Aboveground Carbon Density of Coniferous Forests by Combining
Airborne LiDAR and Allometry Models at Plot Level. Front. Plant Sci. 2019, 10, 917. [CrossRef] [PubMed]

33. Kanniah, K.; Muhamad, N.; Kang, C. Remote sensing assessment of carbon storage by urban forest, IOP Conference Series: Earth
and Environmental Science. In Proceedings of the 8th International Symposium of the Digital Earth (ISDE8), Kuching, Malaysia,
26–29 August 2013; Volume 18.

34. Uniyal, S.; Purohit, S.; Chaurasia, K.; Rao, S.; Amminedu, E. Quantification of carbon sequestration by urban forest using Landsat
8 OLI and machine learning algorithms in Jodhpur, India. Sci. Direct Urban For. Urban Green. 2022, 67, 127445. [CrossRef]

35. Foody, G.; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci.
Remote Sens. 2004, 42, 1335–1343. [CrossRef]

36. Gwal, S.; Singh, S.; Gupta, S.; Anand, S. Understanding forest biomass and net primary productivity in Himalayan ecosystem
using geospatial approach. Model. Earth Syst. Environ. 2020, 6, 10. [CrossRef]

http://doi.org/10.1109/CVPR.2015.7298594
http://doi.org/10.48550/arXiv.1602.07360.409
http://doi.org/10.1109/CVPR.2017.195.411
http://doi.org/10.1007/s11042-022-13157-8
http://doi.org/10.1109/ICCV.2019.00140
http://doi.org/10.1007/978-3-030-41601264-9_8
http://doi.org/10.1007/s42979-021-00815-1
http://www.ncbi.nlm.nih.gov/pubmed/34426802
http://doi.org/10.1109/AICAS.2019.8771475
http://doi.org/10.23919/EUSIPCO.2018.8553186
http://doi.org/10.3390/s20071999
http://www.ncbi.nlm.nih.gov/pubmed/32252483
http://doi.org/10.3390/agriculture12122047
http://doi.org/10.1186/s40645-020-00369-5
http://doi.org/10.1016/j.gecco.2015.12.004
http://doi.org/10.1186/s13021-018-0110-8
http://doi.org/10.1080/21580103.2014.987325
http://doi.org/10.3390/rs71115082
http://doi.org/10.1016/j.indic.2021.100100
http://doi.org/10.1016/j.ecoser.2017.09.008
http://doi.org/10.3389/fpls.2019.00917
http://www.ncbi.nlm.nih.gov/pubmed/31354780
http://doi.org/10.1016/j.ufug.2021.127445
http://doi.org/10.1109/TGRS.2004.827257
http://doi.org/10.1007/s40808-020-00844-4


Remote Sens. 2023, 15, 272 17 of 17

37. Kimes, D.; Nelson, R.; Manry, M.; Fung, A. Review article: Attributes of neural networks for extracting continuous vegetation
variables from optical and radar measurements. Int. J. Remote Sens. 1998, 19, 2639–2663. [CrossRef]

38. Sagi, O.; Rokach, L. Approximating XGBoost with an interpretable decision tree. Inf. Sci. 2021, 572, 522–542. [CrossRef]
39. Zhang, F.; Tian, X.; Zhang, H.; Jiang, M. Estimation of Aboveground Carbon Density of Forests Using Deep Learning and

Multisource Remote Sensing. Remote Sens. 2022, 14, 3022. [CrossRef]
40. Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications.

Neurocomputing 2017, 234, 11–26. [CrossRef]
41. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
42. Li, J.; Roy, D.A. global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial

monitoring. Remote Sens. 2017, 9, 902. [CrossRef]
43. Lang, N.; Jetz, W.; Schindler, K.; Wegner, A. High-resolution canopy height model of the Earth. arXiv 2022, arXiv:2204.08322.
44. Abdollahnejad, A.; Panagiotidis, D.; Surový, P. Forest canopy density assessment using different approaches—Review. J. For. Sci.

2017, 63, 107–116.
45. Chen, J.; Yang, S.; Li, H.; Zhang, B.; Lv, J. Research on Geographical Environment Unit Division Based on The Method of

Natural Breaks (Jenks), The International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2013, 3, 47–50, 2013
ISPRS/IGU/ICA Joint Workshop on Borderlands Modelling and Understanding for Global Sustainability 2013, Beijing, China.

46. Mamoshina, P.; Vieira, A.; Putin, E.; Zhavoronkov, A. Applications of Deep Learning in Biomedicine. Mol. Pharm. 2016, 13,
1445–1454. [CrossRef]

47. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A Survey of the Recent Architectures of Deep Convolutional Neural Networks.
Artif. Intell. Rev. 2020, 53, 5455–5516. [CrossRef]

48. Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical Evaluation of Rectified Activations in Convolutional Network. arXiv 2015,
arXiv:1505.00853.

49. Josephine, V.L.; Nirmala, A.P.; Allur, V. Impact of Hidden Dense Layers in Convolutional Neural Network to enhance Performance
of Classification Model, IOP Conference Series: Materials Science and Engineering. In Proceedings of the 4th International
Conference on Emerging Technologies in Computer Engineering: Data Science and Blockchain Technology (ICETCE 2021), Jaipur,
India, 3–4 February 2021; Volume 1131.

50. Lee, D.; Park, C.; Tomlin, D. Effects of land-use-change scenarios on terrestrial carbon stocks in South Korea. Landsc. Ecol. Eng.
2015, 11, 47–59. [CrossRef]

51. Scott, D. Sturges’ rule. WIREs Comput. Stat. 2009, 1, 303–306. [CrossRef]
52. Belavkin, R.; Pardalos, P.; Principe, J. Value of Information in the Binary Case and Confusion Matrix. Phys. Sci. Forum 2022,

5, 5008. [CrossRef]
53. Bottou, L.; Bousquet, O. The Tradeoffs of Large Scale Learning. In Optimization for Machine Learning; Sra, S., Nowozin, S.,

Stephen, J.W., Eds.; MIT Press: Cambridge, UK, 2012; pp. 351–368. ISBN 978-0-262-01646-9.
54. Asif, A.; Waris, A.; Gilani, S.; Jamil, M.; Ashraf, H.; Shafique, M.; Niazi, I.K. Performance Evaluation of Convolutional Neural

Network for Hand Gesture Recognition Using EMG. Sensors 2020, 20, 1642. [CrossRef] [PubMed]
55. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520. [CrossRef]

56. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning (Adaptive Computation and Machine Learning Series); The MIT Press:
Cambridge, MA, USA, 2016; p. 800.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/014311698214433
http://doi.org/10.1016/j.ins.2021.05.055
http://doi.org/10.3390/rs14133022
http://doi.org/10.1016/j.neucom.2016.12.038
http://doi.org/10.1038/nature14539
http://doi.org/10.3390/rs9090902
http://doi.org/10.1021/acs.molpharmaceut.5b00982
http://doi.org/10.1007/s10462-020-09825-6
http://doi.org/10.1007/s11355-013-0235-6
http://doi.org/10.1002/wics.35
http://doi.org/10.3390/psf2022005008
http://doi.org/10.3390/s20061642
http://www.ncbi.nlm.nih.gov/pubmed/32183473
http://doi.org/10.1109/CVPR.2018.00474.414

	Introduction 
	Data 
	Area of Study and Field Survey 
	Data Type and Source 

	Methods 
	Canopy Density Model (CDM) 
	The New Lightweight Convolutional Neural Network Model (FlexibleNet) 
	Estimating Carbon Sequestration for the Collected AGB Samples 

	Results 
	Conclusions 
	References

