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Abstract: Leaf Area Index (LAI) is an important parameter which can be used for crop growth
monitoring and yield estimation. Many studies have been carried out to estimate LAI with remote
sensing data obtained by sensors mounted on Unmanned Aerial Vehicles (UAVs) in major crops;
however, most of the studies used only a single type of sensor, and the comparative study of different
sensors and sensor combinations in the model construction of LAI was rarely reported, especially
in soybean. In this study, three types of sensors, i.e., hyperspectral, multispectral, and LiDAR,
were used to collect remote sensing data at three growth stages in soybean. Six typical machine
learning algorithms, including Unary Linear Regression (ULR), Multiple Linear Regression (MLR),
Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Support Vector Machine (SVM) and
Back Propagation (BP), were used to construct prediction models of LAI. The results indicated that
the hyperspectral and LiDAR data did not significantly improve the prediction accuracy of LAI.
Comparison of different sensors and sensor combinations showed that the fusion of the hyperspectral
and multispectral data could significantly improve the predictive ability of the models, and among
all the prediction models constructed by different algorithms, the prediction model built by XGBoost
based on multimodal data showed the best performance. Comparison of the models for different
growth stages showed that the XGBoost-LAI model for the flowering stage and the universal models
of the XGBoost-LAI and RF-LAI for three growth stages showed the best performances. The results
of this study might provide some ideas for the accurate estimation of LAI, and also provide novel
insights toward high-throughput phenotyping of soybean with multi-modal remote sensing data.

Keywords: soybean; leaf area index; multi-source remote sensing; machine learning; prediction models

1. Introduction

Soybean is one of the most important crops in China and around the world [1]. High-
throughput phenotyping enables efficient and accurate characterization of soybean plants
at different growing stages, and the quantitative information is of great value for the yield
estimation and assessment of varieties in soybean breeding. Leaf Area Index (LAI) is the
total one-sided area of leaf tissue per unit ground surface area [2], and it is considered as
an important indicator to reflect the change of vegetation leaf coverage and leaf area size,
and being used to monitor the change of canopy structure and assess its adaptive ability
to environment [3,4]. In crop breeding and production, LAI is also used for crop growth
monitoring and yield estimation [5]. Therefore, it is of great importance to estimate LAI
and obtain its dynamic changes during different growth stages.

Traditional methods for crop phenotype acquisition generally require on-site measure-
ments and destructive sampling, which are labor-intensive, time-consuming, and difficult
to apply to large-scale phenotyping due to their low efficiencies [6,7]. With the rapid
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development of remote sensing sensors and Unmanned Aerial Vehicle (UAV) technology,
UAV-based phenotyping is widely applied in crop nutrient diagnosis [8], plant density
estimation [9], pest and disease monitoring [10], and crop growth evaluation [11,12], etc.,
for the advantages of easy operation, low cost, fast acquisition, and high spatial and tempo-
ral resolution [13,14]. Specific traits such as Above-Ground Biomass (AGB) [15], LAI [16],
and chlorophyll contents [17] in plants have also been estimated using UAV-based remote
sensing data. In particular for LAI estimation, significant progresses have been achieved
in various crops by different types of sensors, such as digital cameras [18], multispectral
sensors [19], hyperspectral sensors [20], and LiDAR [21].

In addition to the choice of sensors, algorithms are also very important for the accurate
prediction of phenotypes. Unary Linear Regression (ULR) and Multiple Linear Regression
(MLR) are two traditional machine learning algorithms, which could perform efficiently
upon large amounts of data without long running calculations [22]. Random Forest (RF)
algorithm generates multiple decision trees by randomly selecting samples and features
and obtains prediction results in a parallel manner [23]. Previous studies showed that
RF performed better than linear regression in model construction [24,25]. Additionally,
eXtreme Gradient Boosting (XGBoost) has been widely used in model construction in recent
years [26]. XGBoost also adopts a sampling method that is similar to RF algorithm, which
improves the operation speed and the prediction accuracy of the models [27]. Support
Vector Machine (SVM) has excellent generalization capabilities and is robust to high-input
space dimension. In recent years, SVM has become increasingly popular for solving re-
gression and various classification problems with small samples, nonlinearity and high
dimensionality [28]. Back Propagation (BP) neural network is the most widely used Artifi-
cial Neural Network (ANN) which is applicable for solving complex nonlinear problems
with a higher accuracy and better generalization ability [29,30]. To data, different categories
of algorithms, from traditional machine learning to deep learning, have been applied to
construct phenotype estimation models in crops [31]. Siegmann and Jarmer [32] compared
different algorithms, i.e., Support Vector Regression (SVR), RF, and Partial Least Squares
Regression (PLSR), for the construction of estimation models of LAI in wheat, and found
that SVR showed the best results in the case of cross-validation. Yuan et al. [33] compared
the prediction models of LAI constructed by RF, ANN, SVM and PLSR in soybean. The
results showed that RF performed the best for LAI estimation if the sample plots had
large variances, while ANN performed the best if the sample plots had small variances.
Wang et al. [29] used BP algorithm to construct models for growth monitoring in maize,
and found that BP neural network algorithm could integrate multiple growth-related fac-
tors at each growth stage and the prediction models performed well in monitoring the
growth conditions.

Many studies have been carried out to construct prediction models of LAI by remote
sensing in crops with a simple or tall canopy structure, such as rice, maize, wheat and
cotton [21,34]; however, most of the studies used one single type of sensor and only a few
types of algorithms, while a systematic performance comparison of different sensors and
sensor combinations, as well as different types of machine learning algorithms, in the model
construction of LAI has been rarely reported, especially in soybean [35,36]. In this study,
three different types of UAV-equipped sensors, i.e., hyperspectral, multispectral and LiDAR,
and six typical machine learning algorithms, including ULR, MLR, RF, XGBoost, SVM and
BP, were used to construct prediction models of LAI at three important growth stages in
soybean. A systematical comparison of the models was performed. The objectives of this
study were: (1) to compare the capability of different sensors and sensor combinations
in characterizing soybean LAI, (2) to compare the ability of different machine learning
algorithms in the construction of prediction models for LAI estimation, and (3) to explore
the accurate prediction models for LAI at different development stages in soybean.
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2. Materials and Methods
2.1. Field Experiment

The field experiment was conducted in the summer of 2021 at the agriculture station of
Yunnan University in Chengjiang, Yunnan, China (24◦40N, 102◦56E). In order to increase the
variations of LAI and improve the universality of the prediction models, 20 soybean lines
including landraces and elite cultivars were planted with three replicates in a randomized
complete block design (Figure 1). The plots were planted in rows 6.0 m long and 0.6 m row
spacing, with a plot area of 30 m2.

Figure 1. Field location and experimental design. The field trial was conducted in Chengjiang,
Yunnan, China in 2021. The soybean lines were planted with three replicates in a randomized
complete block design. 1–20 represent the entry number of each soybean line, and the color boxes
indicate different replicates.

2.2. Data Collection

The hyperspectral data were acquired by a Gaiasky-mini2-VN mounted on the DJI
M600 six-axis spacecraft, which has a spectral range of 400–1000 nm, a spatial resolution of
0.04 m, and a spectral resolution of 3 nm. The multispectral data were acquired by a DJI
P4M multispectral sensor with a ground resolution of 5.3 cm at the flight height of 100 m.
The LiDAR data were acquired by a DJI L1 mounted on the M300RTK aircraft (Figure 2a,c).
The hyperspectral data were collected on August 4, August 21 and September 17, which
was during the flowering, podding and mature stages, respectively, of the majority of the
soybean plants. The multispectral and LiDAR data were only collected at the flowering
and mature stage.
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Figure 2. Remote sensing data and ground data collection. (a) Gaiasky mini2-VN mounted on a DJI
M600 was used for the hyperspectral data collection; (b) a DJI P4M was used for the multispectral data
collection; (c) a DJI L1 on a M300RTK was used for the LiDAR data collection; (d) LAI measurement
from the ground using a CI-110 plant canopy analyzer.

Ground LAI of each plot was determined by a CI-110 Plant Canopy Analyzer right after
remote sensing data were obtained on the same day (Figure 2d). A five-point sampling
method was adopted, and at each sampling point, LAI was measured six times. The
average of the 30 readings was used as the LAI value for each plot. At each growth stage,
60 LAI values (one for each of the 60 plots) were obtained and were used to construct the
prediction models.

2.3. Data Processing

PhotoScan and HiRegistrator were used to mosaic and correct the hyperspectral
images, and SpecView was used to preprocess the hyperspectral data. ENVI 5.3 was used
to establish the Region of Interest (ROI) and extract various reflectance metrics, including
the Raw Reflectance (RR), the First Derivative Reflectance (FDR), the Red Edge Position
(REP) [37], the maximum red-edge amplitude (Drmax) and minimum red-edge amplitude
(Drmin) [38]. The RR-sensitive band, FDR-sensitive band, Red Edge Amplitude (Dr) and Red
Edge Area (SDr) were obtained according to the Pearson correlation coefficient (Table 1).

DJI Terra was used to process the multispectral data, including the multispectral image
mosaicing, geometric correction, de-noising and other basic operations, then subsequently
to extract the different Vegetation Indices (VIs). A total of five VIs were analyzed, including
the Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vege-
tative Index (GNDVI), Optimized Soil Adjusted Vegetation Index (OSAVI), Normalized
Difference Red Edge Index (NDRE), and Land Cover Index (LCI) (Table 1).

The LiDAR point cloud data were preprocessed by DJI Terra to generate a LAS data
set. In cloud compare, the ground points and vegetation points were roughly distinguished
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by Cloth Simulation Filter (CSF), and then were manually re-discriminated (Figure 3).
Triangulated Irregular Network (TIN) algorithm was used to process the separated ground
points in ArcGIS 10.3, and new ground points were generated by continuous encryption
and iteration of the separated ground point cloud, so as to establish the TIN ground data.
A Digital Elevation Model (DEM) of 0.1 m × 0.1 m was generated from the TIN ground
data, and then a Digital Surface Model (DSM) was established. Finally, the DEM and
DSM were used to generate a Canopy Height Model (CHM) [39,40]. Five LiDAR indices,
including the Mean Plant Height (Hmean), 50 Percentile Plant Height (H50), 75 Percentile
Plant Height (H75), Laser Penetration Index (LPI), and Three-Dimensional Volumetric
Parameters (BIOVP) were extracted (Table 1).

Figure 3. Ground point separation using the CHF algorithm. (a) Before separation; (b) after separation.

In order to fully explore useful parameters, processing methods of extracting data
directly from the point cloud without destroying the original 3D structure were adopted,
and the point cloud data were extracted using the software Agisoft. The point cloud data
of the 60 plots were obtained and stratified separately. The overall point cloud was divided
into four parts according to the point cloud height, and each part accounted for a quarter of
the overall height from high to low. Six parameters, including P0–25, P25–50, P50–75, P25–100,
P50–100, and P75–100, were obtained. Meanwhile, the Pmax, PCHmean and PAPCH were also
calculated (Table 1).

Table 1. Description/formula of modeling parameters used in this study.

Type of Sensor Modeling Parameters Description/Formula References

Hyperspectral RR sensitive band The RR band with the highest
correlation with LAI [41]

FDR sensitive band The FDR band with the
highest correlation with LAI [42]

Dr
The value of the first

derivative corresponding to
the position of the red edge

[38]

SDr

Area enclosed by first
derivative spectra in the

red-edge range
(680nm~760nm)

[38]
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Table 1. Cont.

Type of Sensor Modeling Parameters Description/Formula References

Multispectral LCI (NIR − RE)/(NIR + R) 1 [43]
NDRE (NIR − RE)/(NIR + RE) 1 [44]
NDVI (NIR − R)/(NIR + R) 1 [45]

GNDVI (NIR − G)/(NIR + G) 1 [46]

OSAVI (1 + 0.16)(NIR − R)/(NIR + R
+ 0.16) 1 [47]

LiDAR Hmean 1
N

(
N
∑

i=1
hi

)
2 [48]

H50 1
N

(
N
∑

i=1
hi

)
+ Zσ 2 [48]

H75 1
N

(
N
∑

i=1
hi

)
+ Zσ 2 [48]

LPI Nground
Ntotal

3 [49]
BIOVP ∑N

i S ∗ PHi
4 [50]

PAPCH

The percentage of point
clouds above the average

point cloud height in the total
number of point clouds

-

Pmax

The height with the largest
number of point clouds was
extracted and the percentage
of the number of point clouds

at this height

-

P25–100
The percentage of 25%~100%

Height Point Cloud -

P50–100
The percentage of 50%~100%

Height Point Cloud -

P75–100
The percentage of 75%~100%

Height Point Cloud -

PCHmean
The percentage of the average

Point Cloud Height -

P0–25
The percentage of 0%~25%

Height Point Cloud -

P25–50
The percentage of 25%~50%

Height Point Cloud -

P50–75
The percentage of 50%~75%

Height Point Cloud -

Notes: 1: R, G, NIR, and RE represent the reflectance values of red, green, near-infrared, and red-edge bands,
respectively. 2: hi is the height of the ith height value, N is the total number of height values in the plot, Z is
the value from the standard normal distribution for the desired percentile and σ is the standard deviation of the
variable. 3: Nground is the total number of ground returns, and Ntotal is the total number of returns. 4: S represents
the area covered by plants after resampling and image segmentation, PHi indicates the plant height represented
by the ith pixel, and N is the number of pixels within S.

2.4. Machine Learning Methods

A total of 60 LAI readings from all plots were obtained at each sampling stage. Among
which, 2/3 of the data of each growth stage served as the training set, and the remaining
1/3 of the data as the validation set [11,51]. The ULR, MLR, RF, XGBoost, SVM and BP
were adopted to construct the prediction models at each growth stage. All the prediction
models were implemented in python.

In RF modeling, n estimators were set in the range of 1–200, and the max_depth was set
in the range of 1–10. In XGBoost modeling, the n_estimators, learning_rate and max_depth
were set in the ranges of 1–500, 0–1, and 1–10, respectively. In SVM modeling, the Radial
Basis Function (RBF) was selected as the kernel function, and the best regularization
parameter (C), parameter epsilon (epsilon) and model parameter gamma (gamma) were
selected using the grid search method with a five-fold cross-validation. In BP modeling,
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the hidden layer was set to 1 or 2, the number of nodes in the hidden layer ranged from 3
to 40, and the number of nodes in the output layer was set to 1. The implicit layer used the
Rectified Linear Unit (ReLU) activation function as the transfer function, while the output
layer used the linear transfer function.

2.5. Model Accuracy Assessment

The predictive abilities of the univariate and multivariate models were evaluated by
the R2 value, the accuracy of the model was evaluated by the RMSE, and the stabilities of
the models were evaluated by the difference of the R2 values between the training set and
the validation set.

An overview figure of the whole proposed framework is shown in Figure 4.
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3. Results
3.1. Prediction Models of LAI Based on Hyperspectral Data
3.1.1. Modeling Parameter Selection

The position and area of the red edge are two indicators which reflect the growth vigor
of the plant [52]. The first-order derivative of the raw reflectance bands was calculated to
extract the Dr and SDr at each growth stage. The results showed that the Dr values at the
flowering and podding stages were both located at 728 nm, indicating that the soybean
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plants in these two stages had high growth vigor (Figure 5). However, at the mature stage,
there was a “blue shift” of the REP to 718 nm, indicating that growth of soybean plants
receded at the mature stage. The SDr value at the flowering stage was 0.510, which was
the largest among the three growth stages, indicating that the flowering stage might be the
most vigorous growth stage. The SDr value at the podding stage was 0.475, indicating that
the growth of the soybean plants in this stage was still relatively vigorous. Similar to the
trend of the Dr values, the SDr value at the mature stage dropped dramatically to 0.377
(Figure 5).

Figure 5. First derivative reflectance of soybean at different growth stages: (680–760 nm).

Pearson correlation coefficient analysis was carried out between LAI and RR at the
three growth stages, and the band with the highest correlation coefficient to LAI was
selected as the raw reflectance-sensitive band to participate in the model construction
(Figure 6a). Similarly, Pearson correlation coefficient analysis was carried out between LAI
and the FDR, and the band with the highest correlation coefficient to LAI was selected as
the FDR-sensitive band (Figure 6b).

Figure 6. Pearson correlation coefficient between LAI and spectral reflectance at different growth
stages. (a) Raw reflectance and LAI; (b) first derivative reflectance and LAI.
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The highest Pearson correlation coefficient between LAI and RR was 0.791 and the
corresponding wavelength was 933 nm at the flowering stage (Table 2 and Figure 5a).
The highest Pearson correlation coefficients between LAI and FDR was −0.806 and the
corresponding wavelength was 955 nm also at the flowering stage (Table 2 and Figure 5b).
The Pearson correlation coefficient between LAI and extracted Dr values at the three stages
were 0.781, 0.487 and 0.672, respectively, and the Pearson correlation coefficients between
LAI and the extracted SDr values at the three stages were 0.788, 0.536 and 0.673, respectively
(Table 2).

Table 2. Correlation coefficient between spectral indices and LAI at different growth stages.

Stage
Raw Spectral
Reflectance

Sensitive Band

Optimal Bands
(nm)

First Derivative
Reflectance

Sensitive Band

Optimal Bands
(nm)

Red Edge
Amplitude Red Edge Area

Flowering 0.791 933 −0.806 955 0.781 0.788
Podding 0.529 774 0.565 753 0.487 0.536
Mature 0.717 1000 0.685 721 0.672 0.673

3.1.2. Prediction Models of LAI Constructed by Different Algorithms

Four hyperspectral indices, i.e., the best RR-sensitive band, the FDR-sensitive band,
the Dr and SDr, were used to construct univariate regression models.

At the flowering stage, the model built by the RR-sensitive band and LAI showed the
highest R2 in the training set, but a relatively low R2 in the validation set. The prediction
model constructed by the SDr and LAI showed the closest R2 in both the training and
validation sets, indicating the highest stability among all models. In terms of the predictive
ability and stability, the prediction model constructed by the FDR-sensitive band and LAI
performed well on both the training and the validation sets, indicating that this model
should be the optimal prediction model for the flowering stage.

At the podding stage, the prediction model constructed by the FDR-sensitive band and
LAI showed the highest R2 for both the training and validation sets, and the R2 difference
between the training and validation sets was the smallest, indicating that this prediction
model should be the best model for the podding stage.

At the mature stage, the prediction model constructed from the raw spectrally-sensitive
band and LAI showed the highest R2 and the lowest RMSE in both the training and
validation sets. In comparison, the SDr performed the worst in both the training and
validation sets; therefore, the model based on the raw spectral-sensitive band and LAI
should be the optimal model for the mature stage.

In summary, the predictive abilities and stabilities of the tested models differed signif-
icantly with regards to the VIs and growth stages. Among the four spectral parameters,
the FDR-sensitive band performed the best at the flowering and podding stages, whereas
the raw spectral-sensitive band performed the best at the mature stages. In terms of the
overall performance at all growth stages, the prediction models constructed by the raw
spectral-sensitive band and the FDR-sensitive band were better than those constructed by
the Dr and SDr (Table 3).

Table 3. Univariate prediction models of LAI constructed by hyperspectral data at different develop-
ment stages in soybean.

1 Prediction Models
Flowering Stage Podding Stage Mature Stage

R2 RMSE R2 RMSE R2 RMSE

RR-LAI Training set 0.635 0.349 0.235 0.401 0.518 0.373
Validation set 0.596 0.296 0.381 0.324 0.540 0.263

FDR-LAI Training set 0.617 0.352 0.288 0.428 0.459 0.372
Validation set 0.737 0.266 0.392 0.342 0.513 0.320
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Table 3. Cont.

1 Prediction Models
Flowering Stage Podding Stage Mature Stage

R2 RMSE R2 RMSE R2 RMSE

Dr-LAI Training set 0.601 0.355 0.205 0.382 0.456 0.372
Validation set 0.645 0.253 0.320 0.290 0.494 0.277

SDr-LAI Training set 0.625 0.351 0.245 0.407 0.457 0.372
Validation set 0.626 0.248 0.387 0.322 0.479 0.297

Note: 1 The prediction model constructed by LAI and raw reflectance-sensitive band, first derivative reflectance-
sensitive band, red edge amplitude and red edge area were abbreviated as RR-LAI, FDR-LAI, Dr-LAI and
SDr-LAI, respectively.

To compare the different modeling strategies, five modeling methods, including MLR,
RF, XGBoost, SVM and BP, were also used to construct multivariate regression models of
LAI (Table 4).

Table 4. Multivariate prediction models of LAI constructed by hyperspectral data at different
development stages in soybean.

1 Prediction Models
Flowering Stage Podding Stage Mature Stage

R2 RMSE R2 RMSE R2 RMSE

MLR-LAI Training set 0.648 0.346 0.488 0.473 0.565 0.370
Validation set 0.649 0.253 0.499 0.470 0.591 0.302

RF-LAI Training set 0.737 0.288 0.508 0.339 0.614 0.345
Validation set 0.714 0.277 0.495 0.303 0.618 0.240

XGBoost-LAI Training set 0.767 0.235 0.527 0.321 0.606 0.375
Validation set 0.762 0.236 0.469 0.305 0.556 0.338

SVM-LAI Training set 0.640 0.340 0.484 0.433 0.530 0.363
Validation set 0.628 0.264 0.415 0.379 0.555 0.264

BP-LAI Training set 0.632 0.308 0.518 0.450 0.575 0.360
Validation set 0.642 0.223 0.469 0.467 0.600 0.288

Note: 1 The prediction models constructed by LAI and MLR, RF, XGBoost, SVM and BP were abbreviated as
MLR-LAI, RF-LAI, XGBoost-LAI, SVM-LAI and BP-LAI, respectively.

At the flowering stage, the BP-LAI model and SVM-LAI model showed the lowest R2

in both the training and validation sets, while the XGBoost-LAI model showed the best
accuracy and stability in both the training and validation sets, indicating this model should
be the best model for the flowering stage.

At the podding stage, the XGBoost-LAI prediction model showed the highest R2 in
the training set, while both the MLR-LAI and RF-LAI models showed the highest R2 in the
validation set. In terms of the predictive ability and stability, the model constructed by the
RF algorithm should be the optimal prediction model for this stage.

At the mature stage, the RF-LAI model showed the best accuracy and fitting degrees
in both the training and validation sets. Meanwhile, the model also showed the highest
stability; therefore, this model should be the best prediction model for the mature stage.

In summary, the prediction models constructed by the XGBoost and RF algorithms
generally showed better performances for soybean LAI prediction at the different growth
stages. Comparing the prediction models built at the different growth stages, the models
built at the flowering and mature stages were better than those at the podding stage.

3.1.3. Comparison of Prediction Models Constructed by Different Algorithms

In order to select the best prediction models of LAI for different development stages,
the predictive abilities and stabilities of the univariate and multivariate models were
compared. The results showed that the multivariate models showed better predictive
abilities and stabilities than the univariate models, and the best models for the flowering,
podding and mature stages were the XGBoost-LAI, RF-LAI and RF-LAI, with a R2 of 0.767,
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0.508 and 0.614 in the training set, respectively, and with a R2 of 0.762, 0.495 and 0.618 in
the validation set, respectively (Figure 7).

Figure 7. Comparison of predictive ability and stability of univariate and multivariate models at
different development stages. (a) Flowering stage; (b) podding stage; (c) mature stage. 1 Note:
the prediction model constructed by the LAI and raw reflectance-sensitive band, first derivative
reflectance-sensitive band, red edge amplitude, red edge area, MLR, RF, XGBoost, SVM and BP were
abbreviated as RR-LAI, FDR-LAI, Dr-LAI, SDr-LAI, MLR-LAI, RF-LAI, XGBoost-LAI, SVM-LAI, and
BP-LAI, respectively.

3.1.4. Universal Model of LAI for Multiple Growth Stages

To construct a universal model which can be applied to estimate soybean LAI at all
growth stages, multivariate models were built with five modeling methods using the LAI
and hyperspectral data from all plots at the three growth stages.

Among all the models, the RF-LAI and XGBoost-LAI models showed the highest R2

and the best accuracy in both the training and validation sets. Compared to the models for
the single growth stages, the model for multiple growth stages performed better than most
of the single stage models except for the model at the flowering stage (Table 5).
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Table 5. Universal models of LAI for multiple growth stages based on hyperspectral data.

Prediction Models R2 RMSE

MLR-LAI Training set 0.516 0.518
Validation set 0.486 0.431

RF-LAI Training set 0.738 0.391
Validation set 0.661 0.362

XGBoost-LAI Training set 0.737 0.391
Validation set 0.681 0.366

SVM-LAI Training set 0.581 0.509
Validation set 0.585 0.488

BP-LAI Training set 0.637 0.500
Validation set 0.691 0.423

3.2. Prediction Models of LAI Based on Multispectral Data

Five VIs, i.e., LCI, NDRE, NDVI, GNDVI and OSAVI, were extracted to develop
univariate regression models of LAI using multispectral remote sensing data collected at
the flowering and mature stages. Correlation analysis between the five VIs and LAI was
carried out, and the results showed that the correlation coefficient between the OSAVI and
LAI was the highest among all five VIs at both the flowering and mature stages (Table 6).

Table 6. Correlation coefficient between vegetation indices and LAI at two growth stages.

Stages LCI NDRE NDVI GNDVI OSAVI

Flowering 0.654 0.637 0.670 0.669 0.754
Mature 0.540 0.501 0.659 0.627 0.688

At the flowering stage, the prediction model established by the vegetation index OSAVI
exhibited a relatively higher R2 and a lower RMSE in both the training and validation sets,
while the prediction model established by the vegetation index GNDVI exhibited a higher
R2 in the validation set, but a lower R2 in the training set. According to the R2 difference
between the two sets, the prediction model constructed by the vegetation index OSAVI
showed the best stability and should be the best prediction model for the flowering stage.
At the mature stage, the model established by the OSAVI showed the best R2 in both the
training and validation sets and the best stability, indicating that this model had the best
predictive ability and stability among all the models (Table 7).

Table 7. Univariate prediction models of LAI constructed by multispectral data at the flowering and
mature stages in soybean.

VIs
Flowering Stage Mature Stage

R2 RMSE R2 RMSE

LCI Training set 0.336 0.285 0.304 0.331
Validation set 0.601 0.309 0.260 0.253

NDRE Training set 0.304 0.277 0.263 0.317
Validation set 0.590 0.296 0.219 0.243

NDVI Training set 0.462 0.301 0.479 0.360
Validation set 0.559 0.464 0.389 0.291

GNDVI Training set 0.367 0.290 0.417 0.355
Validation set 0.623 0.346 0.370 0.267

OSAVI Training set 0.603 0.295 0.504 0.360
Validation set 0.596 0.455 0.462 0.299

The five VIs from the multispectral data were modeled together to construct multi-
variate prediction models of LAI (Table 8). At the flowering stage, the XGBoost-LAI model
showed the best R2 in both the training and validation sets, demonstrating the highest
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predictive ability; therefore, the XGBoost-LAI model should be the optimal prediction
model for the flowering stage. At the mature stage, the SVM-LAI model performed best
in the training set, whereas in the validation set, the BP-LAI model performed the best,
followed by the SVM-LAI model. Taking the predictive ability and stability together, the
SVM-LAI model should be the best prediction model for the mature stage.

Table 8. Multivariate prediction models of LAI constructed by multispectral data at the flowering
and mature stages in soybean.

Prediction Models
Flowering Stage Mature Stage

R2 RMSE R2 RMSE

MLR-LAI Training set 0.704 0.275 0.538 0.359
Validation set 0.649 0.337 0.539 0.297

RF-LAI Training set 0.739 0.241 0.564 0.249
Validation set 0.643 0.363 0.431 0.251

XGBoost-LAI Training set 0.749 0.206 0.582 0.301
Validation set 0.662 0.316 0.487 0.277

SVM-LAI Training set 0.678 0.335 0.608 0.339
Validation set 0.652 0.474 0.568 0.315

BP-LAI Training set 0.698 0.275 0.565 0.359
Validation set 0.656 0.389 0.623 0.253

Compared with the univariate prediction models, it was obvious that the multivariate
models showed a higher predictive ability and stability than the univariate models based
on the multispectral data (Tables 7 and 8).

3.3. Prediction Models of LAI Based on LiDAR Data

Correlation analysis was conducted among the point cloud data and LAI at the flow-
ering and mature stages (Figure 8). At the flowering stage, the correlations between LAI
and the point cloud parameters extracted by the direct method were significantly stronger
than those of the parameters extracted by the CHM method. Among all the point cloud
parameters, the P75–100 showed the highest correlation with LAI with a correlation coeffi-
cient of 0.68 (Figure 8a). At the mature stage, the parameters extracted by the two methods
showed relatively lower correlations with LAI (Figure 8b). To ensure the effectiveness of
the inverse model, the five parameters with the top correlation coefficients were selected
for the model construction at each of the growth stages.

At the flowering stage, the LiDAR parameters of P75–100, PAPCH, P25–50, P50–100 and
PCHmean showed the highest correlation coefficients with LAI and were chosen to construct
unary linear regression prediction models. All the models showed a low R2 and low
stability between the training and validation sets. The model constructed by the P75–100
performed relatively well in terms of its prediction ability and stability, and thus it should
be considered as the best prediction model for the flowering stage. At the mature stage,
the LiDAR parameters of H50, Hmean, H75, P50–100, and PCHmean were chosen to construct
prediction models. The results showed that the prediction model constructed by the H75
showed the highest R2 in the training set, while the prediction model constructed by the
P50–100 showed the highest R2 in the validation set. Taken together, the model constructed
by the H75 should be the best prediction model for the mature stage (Table 9).

At the flowering stage, the prediction model established by RF algorithm performed
the highest R2 in both the training and validation sets, while the prediction model estab-
lished by the BP algorithm performed the best stability. Considering both the predictive
ability and stability, the model constructed by the RF algorithm should be the best predic-
tion model for the flowering stage. At the mature stage, all models showed a relatively poor
performance compared with those of the flowering stage. Among them, the RF-LAI model
had a better performance in the training set, while the XGBoost-LAI model had a better
performance in the validation set. However, the stability of the XGBoost-LAI model was
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relatively better; therefore, the XGBoost-LAI model should be the best prediction model for
the mature stage (Table 10).

Figure 8. Correlation coefficients among all LiDAR parameters and LAI at different development
stages. (a) Flowering stage; (b) mature stage.

Table 9. Univariate prediction models of LAI constructed by LiDAR data at the flowering and mature
stages in soybean.

LiDAR Parameters
Flowering Stage

LiDAR Parameters
Mature Stage

R2 RMSE R2 RMSE

P75–100 Training set 0.414 0.320 H50 Training set 0.188 0.271
Validation set 0.656 0.215 Validation set 0.228 0.235

PAPCH Training set 0.319 0.302 P50–100 Training set 0.142 0.242
Validation set 0.721 0.175 Validation set 0.342 0.190

P50–100 Training set 0.400 0.318 H75 Training set 0.197 0.276
Validation set 0.519 0.236 Validation set 0.201 0.232

PCHmean Training set 0.256 0.283 Hmean Training set 0.186 0.270
Validation set 0.642 0.159 Validation set 0.227 0.218

P25–50 Training set 0.365 0.313 PCHmean Training set 0.155 0.251
Validation set 0.628 0.212 Validation set 0.289 0.180

Table 10. Multivariate prediction models of LAI constructed by LiDAR data at the flowering and
mature stages in soybean.

Prediction Models
Flowering Stage Mature Stage

R2 RMSE R2 RMSE

MLR-LAI Training set 0.504 0.325 0.227 0.290
Validation set 0.551 0.250 0.227 0.243

RF-LAI Training set 0.710 0.261 0.411 0.215
Validation set 0.679 0.192 0.251 0.156

XGBoost-LAI Training set 0.647 0.282 0.297 0.196
Validation set 0.602 0.281 0.291 0.154
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Table 10. Cont.

Prediction Models
Flowering Stage Mature Stage

R2 RMSE R2 RMSE

SVM-LAI Training set 0.568 0.323 0.275 0.301
Validation set 0.537 0.286 0.263 0.231

BP-LAI Training set 0.561 0.318 0.241 0.264
Validation set 0.579 0.226 0.270 0.201

Similarly, it was obvious that the multivariate models showed a higher predictive
ability and stability than those of the univariate models for both the flowering and mature
stages based on the LiDAR data (Tables 9 and 10).

3.4. Prediction Models of LAI Based on Multimodal Data
3.4.1. Prediction Models of LAI by Integrating Three Types of Remote Sensing Data

In order to improve the predictive ability and accuracy of the models, the three types
of remote sensing data, i.e., the hyperspectral, multispectral and LiDAR data, were used
to build multivariate prediction models for the flowering and mature stages. The results
showed that at the flowering stage, the RF-LAI and XGBoost-LAI models exhibited a
relatively high R2 in both the training and validation sets; therefore, these two models
demonstrating a high predictive ability could be used for LAI prediction for the flowering
stage. At the mature stage, the RF-LAI model performed better in both the training and
validation sets, indicating that this model could be used for LAI prediction for the mature
stage (Table 11).

Table 11. Multivariate prediction models established based on three types of remote sensing data for
the flowering and mature stages.

Prediction Models
Flowering Stage Mature Stage

R2 RMSE R2 RMSE

MLR-LAI Training set 0.689 0.302 0.558 0.339
Validation set 0.720 0.388 0.572 0.489

RF-LAI Training set 0.754 0.235 0.673 0.223
Validation set 0.739 0.287 0.666 0.268

XGBoost-LAI Training set 0.752 0.260 0.647 0.290
Validation set 0.725 0.292 0.621 0.334

SVM-LAI Training set 0.692 0.293 0.645 0.308
Validation set 0.650 0.307 0.636 0.406

BP-LAI Training set 0.718 0.279 0.607 0.325
Validation set 0.692 0.344 0.624 0.372

3.4.2. Prediction Models of LAI by Integrating Hyperspectral and Multispectral Data

As shown in Table 11, the multivariate prediction models integrating three types of
remote sensing data demonstrated no significant improvement over the models based on a
single remote sensing data. Correlation analysis between the parameters and LAI at the
flowering and mature stages revealed that the LiDAR parameters were poorly correlated
with LAI. To exclude the negative interference of the LiDAR data, the prediction models of
LAI based on the hyperspectral and multispectral parameters were established.

As shown in Figure 9, the XGBoost-LAI model showed the best overall performance
in the training and validation sets, indicating that the XGBoost-LAI model based on hyper-
spectral and multispectral data should be the best prediction model for the flowering stage.

At the mature stage, the XGBoost-LAI model performed the best in the training set
with the highest R2, and performed relatively well in the validation set. In addition, the
RF-LAI model also performed quite well in both the training and validation sets. Therefore,
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both the XGBoost-LAI and RF-LAI prediction models could be an option for evaluating
LAI for the mature stage (Figure 10).

Figure 9. Prediction models of LAI based on the fusion of hyperspectral and multispectral parameters
by different modeling methods at the flowering stage. (a) MLR-LAI; (b) RF-LAI; (c) XGBoost-LAI; (d)
SVM-LAI; (e) BP-LAI. Note: yt indicates the training set; yv indicates the validation set.

Figure 10. Prediction models of LAI based on the fusion of hyperspectral and multispectral parame-
ters by different modeling methods at the mature stage. (a) MLR-LAI; (b) RF-LAI; (c) XGBoost-LAI;
(d) SVM-LAI; (e) BP-LAI. Note: yt indicates the training set; yv indicates the validation set.
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4. Discussion
4.1. Parameter Selection for Model Construction of LAI with Different Types of Remote
Sensing Data

Spectral VIs from remote sensing data are regarded as effective parameters for moni-
toring plant phenology [53]. Different types of remote sensing data have different charac-
teristics, from which the most suitable parameters can be extracted to construct prediction
models. For hyperspectral remote sensing data, band features, spectral location features,
and VIs were used as the effective parameters for the prediction model construction of
LAI [54]. In order to select the suitable spectral features for LAI estimation, Li et al. [55]
evaluated different features such as the spectral band, spectral position and VIs, and found
that the first derivative spectral band at a wavelength of 750 nm exhibited the highest corre-
lation with LAI among all the features. Gong et al. [56] studied the LAI of ponderosa pine
forests using three spectral parameters, i.e., individual spectral band, first-order derivative
spectrum and second-order derivative spectrum, and found that the accuracy of LAI estima-
tion using first- and second-order derivatives was significantly higher than that using the
individual spectral band. In this study, four spectral parameters were extracted and were
used to construct prediction models of LAI. The results showed that the models constructed
with different spectral parameters exhibited different predictive abilities, and the model
constructed with the RR-sensitive band and the FDR-sensitive band performed better than
the models constructed with other spectral parameters, which was in accordance with the
results of previous studies [57,58]. Therefore, we speculated that the RR-sensitive band and
the FDR-sensitive band might be the optimal parameters for the construction of prediction
models of LAI with hyperspectral data in soybean.

For multispectral remote sensing data, OSAVI has been widely used to construct
prediction models for LAI. Das et al. [59] concluded that the OSAVI was the best VI from
multispectral data. Liang et al. [60] found that OSVAI and MTVI2 were the most sensitive
indices to LAI among 43 VIs. In this study, the prediction models constructed with OSAVI
also outperformed the other models at both the flowering and mature stages, which was
highly consistent with previous studies [61,62]. The possible reason for this may be that
OSAVI can exclude soil effects better than other VIs at the development stages during
which the soil is more exposed due to less soybean leaf coverage [47,53].

For LiDAR remote sensing data, height percentile metrics have been widely used
to study LAI in plants [63]. Qu et al. [64] used height percentile metrics derived from
LiDAR data to estimate LAI of dense forests, and their results showed that the prediction
ability of LAI based on LiDAR data was better than that based on MODIS. Pearse et al. [65]
estimated LAI of a forest using LiDAR data and found that height proportional-based
correlation metrics were more suitable for LAI prediction. In this study, 14 parameters
were extracted from LiDAR remote sending data, and were correlated with LAI. The results
showed that the height proportional-related correlation parameters had higher correlation
coefficients with LAI than the other parameters, which was similar to the results of previous
studies [66,67]. The results also indicated that the height proportional-related parameters
extracted from the LiDAR remote sensing data could be used for the prediction of LAI
in soybean.

A previous study also found that the height metrics extracted from the upper part
of plants were more suitable for the prediction of LAI than those extracted from the low
parts [68]. Qu et al. [64] estimated the LAI of a tropical forest using LiDAR data, and found
that the point cloud data from the middle and upper parts of trees contributed more to LAI
prediction than those from the middle and lower parts. Similar results were also found
in the study of LAI in maize [69]. In this study, the height parameters from the upper to
middle parts of the plants, such as H75 and Hmean, showed high correlations with LAI
(Figure 7), which was also consistent with the results in previous studies.
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4.2. Performance Comparison of Three Types of Remote Sensing Data on LAI Prediction

Hyperspectral and multispectral remote sensing data have been widely used to study
LAI [70]. Compared with multispectral sensor, hyperspectral sensor has the advantage
of acquiring more bands, but the difficulties or inconveniences in its data processing are
also well-known. Currently, it is still controversial which one is better for LAI study [71].
Mananze et al. [72] used hyperspectral and multispectral sensors to study LAI in maize, and
found that there was no significant improvement in the accuracy between the prediction
models constructed with hyperspectral data and multispectral data. De Castro et al. [73]
found that hyperspectral dataset showed almost no advantage over multispectral dataset in
weed identification, and that multispectral sensor might be a better choice for its low price
and fast data processing. In this study, the R2 values of the best models constructed with
hyperspectral data in the training and validation sets were 0.767 and 0.762, respectively,
while the R2 values of the best models constructed with multispectral data in the training
and validation sets were 0.749 and 0.662, respectively. The results indicated that the
hyperspectral remote sensing data showed no significant advantage over the multispectral
remote sensing data for LAI prediction in soybean, which was similar to the results of the
previous studies in trees and in maize [71,72]. Based on the above-mentioned results, we
would suggest using multispectral data instead of hyperspectral data for the study of LAI
in crops considering the economy and data processing efficiency.

LiDAR remote sensing has been widely used to study LAI in tall forest trees, while
few studies have been carried out in crops with a small architecture such as soybean [74].
Sheng et al. [21] used LiDAR remote sensing data to predict LAI in corn, and constructed a
prediction model with a R2 value of 0.724, which was similar to the prediction effect of our
LiDAR-based model at the flowering stage (i.e., R2 = 0.710, Table 10). The complexity of a
plant’s morphological structure directly affects the accuracy of LAI prediction, which has
been proved in many studies in trees [75,76]. A previous study indicated that the prediction
of LAI in tropical forests with dense foliage and high tree density was significantly more
difficult than in temperate forests and plantation forests [64]. In crops, Lei et al. [69] found
that the correlation between LiDAR data and LAI was affected by the plant density, flight
angle, and point cloud height division. Similar results were also found at the mature stage in
this study. The possible reason for this might be that the complexity of the soybean canopy
structure at maturity increased the difficulty of the branch and leaf structure identification
from the point cloud data and decreased the predictive ability of the models. Therefore, we
conclude that the density of the canopy structure and the complexity of branch and leaf
may significantly affect the prediction abilities of models constructed with LiDAR data.

LiDAR remote sensing data have been proved to be suitable for the prediction of
plant height in trees [77], and also in crops such as wheat [78], triticale [79], maize [80]
and rice [81]. In this study, plant height data were also collected at the flowering stage
in soybean. Two height-related parameters, i.e., the Hmean and PCHmean, were calculated
and used to construct multivariate prediction models of the plant height. The results
showed that all the models displayed an acceptable performance in both the training and
validation sets, with a R2 > 0.82 in the training set and R2 > 0.75 in the validation set,
respectively (Figure 11). Compared with the LAI models, the prediction models of plant
height performed much better; therefore, we speculate that LiDAR sensor might be more
suitable for the study of 3D-related traits, such as plant height.
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Figure 11. Prediction models of plant height constructed with LiDAR data by different modeling
methods at the flowering stage. (a) MLR-LAI; (b) RF-LAI; (c) XGBoost-LAI; (d) SVM-LAI; (e) BP-LAI.
Note: yt indicates the training set; yv indicates the validation set.

4.3. Models of LAI Constructed with Multimodal Data

At present, most of the prediction models of LAI in crops have been constructed with
a single type of remote sensing data, and only a few models have been built using multi-
source remote sensing data [36,82]. Some researchers have tried to improve the prediction
ability of the models of LAI by fusing LiDAR data with spectral data [83]. In addition,
Bahrami et al. [84] constructed prediction models of LAI and biomass by combining LiDAR
and optical earth observations. Luo et al. [85] estimated the biomass of short, wetland
reed using a combination of LiDAR and hyperspectral data, and found that combining the
LiDAR with hyperspectral data could improve the estimation accuracy of reed biomass.
Lou et al. [86] also found that the fusion of hyperspectral and LiDAR data could improve
the accuracy of the prediction model of LAI in maize. In this study, we aimed to construct a
high-performance prediction model of LAI by combining three types of remote sensing
data; however, the performance of the prediction model was not improved as expected.
The possible reason for this might be due to the short plant height and complicated plant
structure of soybean, which caused the point cloud data to fail to reflect the real shape of
soybean, limiting the full utilization of the point cloud data. Nevertheless, the prediction
ability of the prediction model based on multispectral and hyperspectral data was indeed
improved in this study, which was similar to the results of a previous study [82].

4.4. Comparison of Prediction Models of LAI Based on Different Algorithms

Algorithm is also very critical for the construction of prediction models. In most
cases, multivariate prediction models of LAI outperformed univariate models in terms
of their accuracy and stability [87]. Yu et al. [88] used both multivariate and univariate
algorithms to construct prediction models of LAI, and found that the multivariate models
outperformed the univariate models in estimating LAI in a forest. Similar results were
also found in the studies of LAI in wheat [75,76], kiwifruit orchard [89] and soybean in this
study. The possible reason for this might be that multivariate algorithms can include more
variables with explanatory power and can reduce the possibility of omitting variable bias.
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Afrasiabian et al. [90] used simple linear regression, SVM and RF algorithms to
construct prediction models for LAI, and found that RF was the best algorithm for the
model construction of LAI. Zhang et al. [27] used PLSR, SVR, and XGBoost algorithms to
construct estimation models of LAI in winter wheat, and found that the XGBoost algorithm
showed the best performance. In this study, six machine learning algorithms were used
to construct prediction models of LAI in soybean. The results showed that the XGBoost
and RF algorithms performed the best among all the machine learning algorithms, which
was quite similar to previous results [25]. The possible reason for this might be that both
the XGBoost and RF algorithms belong to integrated learning, which aims to improve a
single learner’s generalization ability and robustness by combining the prediction results
of multiple base learners [26,91]. The model constructed by the RF algorithm had a better
generalization ability and could solve the problem of multiple collinearities for unbalanced
data sets and reduce the data errors [33]. In comparison, the XGBoost algorithm added a
regularization term that prevented data overfitting and defined a loss function that made
the loss more accurate [92]. Therefore, the RF and XGBoost algorithms should be the
optimal algorithms for the construction of prediction models of LAI in soybean.

4.5. Prediction Models of LAI at Different Growth Stages Based on Hyperspectral Data

In this study, the prediction models of LAI at three growth stages, i.e., the flowering,
podding and mature stages, were established based on hyperspectral remote sensing data
in soybean. The results showed that the preferable models for the flowering, podding and
mature stages was the XGBoost-LAI, RF-LAI and RF-LAI, respectively (Table 4). Further-
more, the prediction model of LAI at the flowering stage performed the best, followed by
the ones at the mature and podding stages. This result was similar to that of a previous
study in wheat, in which the flowering stage was the best growth stage for the estimation
of LAI and AGB [11,93].

To construct a universal model that can be applied for multiple growth stages, the
multivariate models were built with the data collected from all three growth stages (Table 5).
The results showed that the XGBoost-LAI and RF-LAI models were the best universal mod-
els among all the models for the multiple growth stages in soybean. Kamenova et al. [94]
constructed a universal prediction model of LAI based on the whole growth stage data in
winter wheat, and found that the performance of the universal model was worse than those
of the models constructed with a single growth stage, i.e., the tillering or the stem elonga-
tion stages. The morphology of a plant varies in the different growth stages and, therefore,
the best-fit predictors might change with different developmental stages. This might lead
to difficulties in constructing a universal model suitable for multiple growth stages.

5. Conclusions

In this study, three types of UAV-mounted sensors and six machine learning algo-
rithms were used to construct prediction models of LAI at three growth stages in soybean.
Performance comparison of different remote sensing sensors showed that multispectral
sensor might be better than hyperspectral sensor for LAI prediction in soybean for its
considerable low cost yet comparable accuracy, and that LiDAR sensor could be suitable
for the study of 3D-related traits such as plant height. The fusion of three types of remote
sensing data failed to significantly improve the prediction abilities of the models; however,
the fusion of hyperspectral and multispectral remote sensing data could significantly im-
prove the prediction ability of the models. Among all the prediction models, the model
built by the XGBoost algorithm at the flowering stage showed the best performance, with
a R2 value of 0.856 and 0.783 in the training and validation sets, respectively. Among the
models constructed with a single type of sensor data for the different growth stages, the
XGBoost-LAI model at the flowering stage showed the best performance. Among the uni-
versal models based on the multiple growth stages, the XGBoost-LAI and RF-LAI models
showed the best performances. This study not only offers useful models for the prediction
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of LAI at multiple growth stages in soybean, but also provides some new insights towards
the high-throughput phenotyping of soybean with multi-modal UAV remote sensing data.
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Abbreviations

UAV Unmanned Aerial Vehicle
LAI Leaf Area Index
AGB Above-Ground Biomass
RR Raw Reflectance
FDR First Derivative Reflectance
REP Red Edge Position
Dr Red Edge Amplitude
SDr Red Edge Area
Drmax Maximum Red-edge Amplitude
Drmin Minimum Red-edge Amplitude
LCI Land Cover Index
OSAVI Optimized Soil Adjusted Vegetation Index
NDVI Normalized Difference Vegetation Index
GNDVI Green Normalized Difference Vegetative Index
NDRE Normalized Difference Red Edge
ROI Region of Interest
CSF Cloth Simulation Filter
TIN Triangulated Irregular Network
DEM Digital Elevation Model
DSM Digital Surface Model
CHM Canopy Height Model
Hmean Mean Plant Height
H50 50 Percentile Plant Height
H75 75 Percentile Plant Height
LPI Laser Penetration Index
BIOVP Three-Dimensional Volumetric Parameters
P0–25 The percentage of 0%~25% height point cloud
P25–50 The percentage of 25%~50% height point cloud
P50–75 The percentage of 50%~75% height point cloud
P25–100 The percentage of 25%~100% height point cloud
P50–100 The percentage of 50%~100% height point cloud
P75–100 The percentage of 75%~100% height point cloud.
Pmax The percentage of the number of point clouds at the height with the largest number of

point clouds
PCHmean The percentage of the average point cloud height
PAPCH The percentage of point clouds above the average point cloud height in the total

number of point clouds
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ULR Unary Linear Regression
PLSR Partial Least Squares Regression
MLR Multivariable Linear Regression
RF Random Forest
XGBoost eXtreme Gradient Boosting
SVR Support Vector Regression
SVM Support Vector Machine
ANN Artificial Neural Network
BP Back Propagation
RBF Radial Basis Function
ReLU Rectified Linear Unit
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