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1. Introduction

Watersheds are critical natural systems that serve as the foundation for sustaining
life on Earth [1]. They play a vital role in the hydrological cycle, supporting water supply,
agriculture, ecosystems, and biodiversity [2–6]. However, Anthropocene has presented
challenges to watersheds, including deforestation, land-use changes, pollution, and cli-
mate change [7,8]. To maximize the resilience of watersheds, it is essential to implement
sustainable land-use practices and effective watershed management strategies [9]. Con-
sequently, understanding watersheds’ complex dynamics and their response to natural
and anthropogenic stressors is essential for sustainable development and the well-being of
human societies.

The advent of remote sensing has revolutionized watershed research, providing un-
precedented insights into watershed dynamics and spatiotemporal patterns [10,11]. These
techniques offer breakthrough advantages over traditional field-based methods, including
covering large areas with low cost and high efficiency, monitoring remote and inaccessible
regions, and obtaining data at different spatial, spectral, and temporal resolutions [12–14].
More specifically, remote sensing of watersheds encompasses a wide range of applications
that involve acquiring and utilizing hydrological, ecological, and environmental informa-
tion in watersheds [15–17], including watershed mapping [18], monitoring of underlying
surface elements in the watershed [19], inversion of water cycle parameters [20], water
resource assessment [21], acquisition of watershed ecological environment parameters [22],
monitoring natural disasters [23], analyzing upstream and downstream [24], supporting
water governance priorities [25], water resource development [26], and irrigation water
management [27]. Recent research trends show that the application of remote sensing
techniques has been transiting from mapping, monitoring, and assessment to governance
and management [28], calling for deeper and wider explorations on related research focus.

Based on these research contexts, several shortages in terms of current studies ap-
pear. First, the concept of the watershed is usually multiscale [29,30]. Studies vary at the
global scale, concentrating on large watersheds (for example, oceans) [31], global trends
(for example, global warming) [32], and international cooperation [33], to the local scale,
concentrating on a single watershed (for example, lake or wetland) [34], local specific
context (for example, pollution or urbanization) [35], and local governance [36]. There is
still a lack of multiscalar understanding of watersheds. Second, the watershed is a unique
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nature–human system that contains multiple interacting elements [37]. However, current
studies usually concentrate on a single element or process of watersheds. Hence, a compre-
hensive view of the “total” element of watersheds is needed. Third, while remote sensing
techniques are currently widely applied in environmental studies, the scope is largely
limited to natural sciences, and interdisciplinary research, especially from the scope of
social sciences, is urgently needed [38]. Fourth, concentrating on remote sensing techniques,
the methodology is most targeted on a single platform and imagery and may not meet the
multiscalar, multidimensional, and interdisciplinary research demands of the current and
prospective watershed studies.

Drawing upon these research contexts, this Special Issue is dedicated to scientific
reports on the remote sensing of watersheds. This issue focuses on applying remote
sensing techniques in watersheds in terms of hydrology, ecology, environment, and human
activities. It aims to contribute to the current understanding of integrating research scopes
and developing advanced methods.

2. Key Findings of the Special Issue

This Special Issue includes 14 articles that focus on various aspects of watershed
remote sensing and aim to address the gaps and challenges in the field. The articles cover
various topics, including hydrology, land use/land cover, vegetation, soil, and topography.
These articles present innovative research methods and techniques for utilizing remote
sensing data to enhance our understanding of watershed processes and support resource
management decision making.

In terms of research objective and scope, the majority of papers on this Special Issue
are focused on natural phenomena, hydrological processes [39], air [40,41], and land
use/vegetation [42–44]. Further related it to human activities, such as carbon emission [45],
agriculture [46,47], ecosystem service [48], and even culture diffusion [49]. Furthermore,
the research encompasses diverse geographical areas, including rivers [39], lakes [40,41],
drylands [50], countries [45], and regions [43,46].

In terms of methods and data, a wide range of methods and data sources were employed
in the studies featured in this Special Issue. The methods vary from the comparison and
validation of different methods combining the research object and local context [40,48], spatial
simulation models based on the research object integrating remote sensing data [47,48], and
developing advanced methods or indices to understand research phenomena [39] precisely.
Some studies also discussed underlying data uncertainty issues [48].

In terms of data sources, data from platforms, including satellite-based and drone-
based, are applied [41,43]. Many studies applied multisource data. For example, Duan et al.
(2022) aim to solve the missing data issues by integrating multiple satellite sources [40],
and others rely on multisource data to gain a comprehensive understanding [51].

In general, this Special Issue has revealed the multiscalar, multidimensional, and
interdisciplinary nature of the application of remote sensing in watershed studies. The
studies propose a series of advanced data, models, and strategies to serve watershed
research better. However, there are still limitations and areas for improvement. Future
studies are encouraged to consider and address these shortcomings, further advancing the
field of remote sensing in watershed studies.

3. Future Perspectives: Towards a New Paradigm
3.1. Integration of Multisource Data

The integration of multisource data is a promising direction in remote sensing for
watersheds [52]. Combining data from various sensors, platforms, and resolutions can
provide a more comprehensive understanding of watershed dynamics. For example,
integrating optical, thermal, and radar imagery can offer complementary information
on land cover, water resources, and vegetation. Similarly, merging remote sensing data
with in situ measurements, socio-economic data, and other geospatial information can
enhance the accuracy and reliability of watershed analyses. Developing robust data fusion
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methodologies and interoperable platforms is crucial for maximizing the potential of
multisource data in watershed management.

3.2. Multiscale Modeling and Analysis

Watershed processes occur at various spatial and temporal scales, necessitating multi-
scale modeling and analysis approaches in remote sensing. By considering the interactions
between processes at different scales, researchers can develop more accurate and represen-
tative models of watershed dynamics. For instance, combining high-resolution imagery for
detailed local assessments with coarse-resolution imagery for regional analyses can offer
valuable insights into land use and hydrological processes. Developing scalable remote
sensing methods that can be applied across various spatial and temporal scales is essential
for addressing the complex challenges associated with watershed management.

3.3. Analysis of the “Total Environment”

A comprehensive understanding of watershed dynamics requires the consideration of
all elements of the “total environment,” including physical, biological, and socio-economic
components. Remote sensing techniques can contribute to this understanding by providing
information on land use, water resources, ecosystems, and human activities. Future
research should focus on developing integrated frameworks and methodologies that can
analyze the interactions between these components and assess their combined impacts on
watershed health. Such holistic approaches are crucial for developing sustainable watershed
management strategies that balance the competing demands of various stakeholders.

3.4. Data Barriers and Data Sharing

Addressing data barriers and promoting data sharing is a critical perspective in remote
sensing for watershed management. Ensuring that remote sensing data, derived products,
and analytical tools are accessible to researchers, decision makers, and stakeholders can
foster collaboration and facilitate informed decision making. This requires the development
of open data platforms, standardized data formats, and data-sharing policies that encourage
the exchange of information and knowledge. Overcoming data barriers can also help bridge
the gap between scientific research and practical applications in watershed management.

3.5. Targeting Industrial Demands and Serving Decision Making

Remote sensing for watershed management should be oriented toward addressing
the specific needs of the industry and decision makers. This includes developing tailored
products, tools, and methodologies that can support decision-making processes in various
sectors, such as water resource management, agriculture, urban planning, and environmen-
tal conservation. By focusing on practical applications and providing actionable insights,
remote sensing can contribute to the development of evidence-based policies and strategies
for sustainable watershed management.

In conclusion, the future of remote sensing for watershed management lies in the inte-
gration of multisource data, multiscale modeling and analysis, comprehensive assessments
of the total environment, overcoming data barriers and sharing, and targeting industrial
demands to serve decision-making processes. By embracing these perspectives, remote
sensing can continue to play a pivotal role in advancing our understanding of watershed
dynamics and informing sustainable management practices.
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