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Abstract: Large volumes of atmospheric pollutants injected into the troposphere and stratosphere
from volcanic eruptions can exert significant influence on global climate. Through utilizing multi-
satellite observations, we present a large-scale insight into the long-range transport and trans-
formation of sulfur dioxide (SO2) emissions from the Hunga Tonga-Hunga Ha’apai eruption on
15 January 2022. We found that the transport of volcanic emissions, along with the transformation
from SO2 to sulfate aerosols, lasted for two months after the Tongan eruption. The emitted volume
of SO2 from the volcano eruption was approximately 183 kilotons (kt). Both satellite observation
and numerical simulation results show that the SO2 and volcanic ash plumes moved westward at
a rate of one thousand kilometers per day across the Pacific and Atlantic Ocean regions and that
SO2 transformation in the atmosphere lasted for half a month. The transport and enhancement of
aerosols is related to the conversion of SO2 to sulfate. CALIPSO lidar observations show that SO2

reached an altitude of 25–30 km and transformed into sulfate in the stratosphere after 29 January.
Sulfate aerosols in the stratosphere deceased gradually with transport and fell back to the background
level after two months. Our study shows that satellite observations give a good characterization of
volcanic emissions, transport, and SO2-sulfate conversion, which can provide an essential constraint
for climate modeling.

Keywords: Hunga Tonga-Hunga Ha’apai 2022 eruption; SO2; AOD; sulfate aerosol

1. Introduction

Eruptions of submarine volcanoes can affect atmospheric circulation and climate [1],
producing temperature and rainfall anomalies, atmospheric pollution, ozone layer deple-
tion, and acid rain. The rapid release of hot air, gases, and ash from volcanic eruptions into
the upper troposphere and stratosphere can trigger wide environmental changes [2]. On
15 January 2022, a volcanic eruption occurred at Hunga Tonga-Hunga Ha’apai volcano in
the Tonga-Kermadec subduction zone (Figure 1) [3]. The eruption lasted approximately
11 h, with an eruption column up to 58 km high [4,5]. This event generated a tsunami,
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and gravity waves circled the Earth [6–8]. Poli and Shapiro [9] estimated a VEI (Volcanic
Explosivity Index of 6 for this event, which represents the largest submarine eruption ever
recorded using geophysical instruments. Moreover, the Hunga volcano eruption injected a
large amount of atmospheric pollutants into the troposphere and stratosphere.
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Volcanic eruptions inject large amounts of sulfur-rich gases, mainly SO2 and sometimes
H2S, into the atmosphere, and the oxidation of these gases via OH and H2O is a major
pathway for the production of atmospheric sulfate aerosols, which take months or even
years to settle to the Earth’s surface. The lifetime of volcanic SO2 depends on its injection
height, SO2 adherence on ash, and the concentrations of oxidants, which vary in space
and time [10–12]. SO2 from volcanic eruptions has a longer lifetime if it is injected into the
stratosphere [13]. Sulfate aerosols play a crucial role in the climate through altering the
radiation budget and cloud properties of the Earth–atmosphere system [14]. In particular,
aerosols in the stratosphere strongly reflect solar radiation and reduce the solar radiation
reaching the Earth, which results in a net cooling of the troposphere [15]. The large spatial
and temporal variations of volcanic sulfate aerosols in the troposphere and stratosphere
exert a challenge in quantifying their impacts on climate. The atmospheric emissions from
the record-breaking Hunga volcano eruption and the transport of those emissions around
the globe have not been well defined to date.

Satellite observations have been an indispensable tool for characterizing the spatial
and temporal distribution of SO2 emissions from volcanoes worldwide [16]. Carn et al. [17]
present a long-term record of SO2 emissions from 1978–1993 based on the TOMS satel-
lite [17]. In the 2008 Kasatochi volcano eruption event, several infrared satellite sensors
were used to detect SO2 emissions, including the Moderate-Resolution Imaging Spectrora-
diometer (MODIS), the Advanced Very-High-Resolution Radiometer (AVHRR), and the
Atmospheric Infrared Sounder (AIRS) [18]. Understanding the dispersion of ash and SO2
produced by volcanic eruptions and their corresponding plumes is important, and Rix
et al. [19] used the GOME-2 satellite instrument for observations of SO2 and BrO columns
in the eruption plume and determination of SO2 plume heights. Because SO2 is a necessary
input parameter for atmospheric chemistry and climate models, as it influences the spatial
pattern of sulfate aerosols, the Ozone Monitoring Instrument (OMI) on NASA’s Aura
satellite gave an inventory of volcanic SO2 emissions [20,21]. The Tonga eruption in the
southwest Pacific on 15 January 2022 triggered a large atmospheric disturbance [22–25],
and the emissions of atmospheric pollutants from the eruption and the potential impact on
climate are yet to be analyzed in detail.
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In this study, we present a large-scale insight into the transport and transformation of
the atmospheric emissions from the Tonga volcanic eruption on 15 January 2022 based on
multi-satellite observations including TROPOMI (Tropospheric Monitoring Instrument),
MODIS, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)
measurements. The height and lifetime of SO2 injected into the atmosphere and the trans-
formation process of SO2 to sulfate aerosols in the stratosphere are analyzed. FLEXPART
(Flexible Particle Diffusion Model) is used to simulate the diffusion process of SO2 combined
with meteorological data. The main purpose of our work is to provide a comprehensive
perspective on how these volcanic emissions changed in the atmosphere along with their
potential influence on climate.

2. Data and Method
2.1. TROPOMI

The TROPOMI instrument is an atmospheric multispectral sensor mounted on the
Sentinel-5P satellite that records spectral reflectance. TROPOMI data report the atmo-
spheric composition and other physical parameters through measuring the solar radiation
reflected from the surface at the top of the atmosphere with the help of passive remote
sensing techniques, mainly monitoring O3, SO2, NO2, HCHO, CO, CH4, clouds, aerosols,
and other microphysical parameters [26]. TROPOMI operates in a push-and-sweep con-
figuration with a strip width of about 2600 km at the Earth’s surface and typical pixel
sizes of 7 × 3.5 km for all spectral bands except the UV1 band (7 × 28 km) and the SWIR
band (7 × 7 km) [27]. The operation of TROPOMI provides important information for the
monitoring of volcanic and anthropogenic SO2 emissions [28].

In particular, the SO2 conversion equation is specified as

m = c × M × S, (1)

where m is the total amount of SO2 emissions, c is the SO2 data from TROPOMI (mol/m2),
M is the molar mass, and S is the emission area with higher TROPOMI SO2 concentrations
than background regions.

2.2. MODIS

The Moderate Resolution Imaging Spectroradiometer (MODIS) is carried onboard the
Terra and Aqua satellites launched by NASA in 1999 and 2002, respectively. MODIS has a
spatial resolution of 250 m–1000 m and a swath width of ~2330 km, and orbits at an altitude
of 705 km. MODIS crosses the equator twice a day at about 10:30 a.m. and 1:30 p.m. local
time. It detects the reflected and emitted radiation of the Earth using 36 bands between 0.4
and 14.0 µm, and it is capable of quantitative retrieval of global atmospheric parameters
such as aerosols, clouds, and water vapor to monitor the process of natural hazards. The
multispectral-based satellite sensor MODIS has the unique ability to invert aerosol optical
thickness. MODIS aerosol inversion algorithms were developed over 20 years prior to the
launch of the Terra satellite [29]. These algorithms were designed to take full advantage of
the wide spectral range of the MODIS instrument. MODIS MOD/MYD04 550 nm AOD
with a spatial resolution of 10 km is the most widely used global satellite aerosol. The Aqua
MODIS C6 MYD08_D3 and Terra MOD08_D3 AOD products (tertiary aerosol products)
with a combination of land and ocean 0.55 µm dark target and dark blue AOD average of
daily averages were selected to analyze the transport of volcanic aerosol [30]. The dataset is
presented on a Gaussian grid over the Earth’s surface with a spatial resolution of 1◦ × 1◦.

2.3. CALIPSO

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)
satellite was launched in April 2006 with a revisit period of 16 days. CALIPSO provides
vertical detection of aerosols and clouds using 532 and 1064 nm lidar signals with a
polarization measurement at 532 nm [31]. Despite the finer resolution, the Level 2 CALIPSO
aerosol profile products are reported at a uniform horizontal resolution of 5 or 40 km



Remote Sens. 2023, 15, 2661 4 of 15

and a vertical resolution of 60–360 m to account for the weak backscattering signal from
aerosols. The CALIPSO AOD for columnar extinction can be calculated via specifying the
aerosol extinction-to-backscatter ratio (lidar ratio). Also, measurements of the attenuated
backscatter and depolarization ratio can be used to identify the type of aerosols and clouds
based on position, height, and surface types [32]. CALIPSO, in combination with other
satellites in A-Train, can effectively detect the vertical structure and characteristics of clouds
and aerosol layers [33]. Version V4.1 L2 CALIPSO aerosol products have been significantly
improved in terms of extinction, optical depth [34], and aerosol classification [35]. CALIPSO
provides an effective observational tool for monitoring stratospheric sulfate aerosols [36,37].

2.4. AIRS

AIRS is carried onboard the EOS-Aqua satellite and was launched in May 2002 in polar
orbit (1:30 pm ascent node). It is a hyperspectral instrument providing infrared coverage
(http://www-airs.jpl.nasa.gov, accessed on 13 January 2022) at high spectral resolution
(λ/∆λ = 1200; ~0.5 cm−1) from 649–1136, 1217–1613, and 2169–2674 cm−1. The scanning
angle is ±49◦ and the swath width is 1650 km. The spatial resolution is 13.5 × 13.5 km2

at the bottom of the sky and the NE∆T (noise equivalent change in temperature) is ~0.2 K
in the range 735–2674 cm−1. AIRS nominally observes the whole Earth (http://www.airs.
nasa.gov, accessed on 13 January 2022) once during a 24 h period [18,38]. We select AIRS
L2 surface air temperature and water vapor products to characterize the air changes during
volcanic eruptions with a spatial resolution of 0.5◦ × 0.5◦.

2.5. FLEXPART Model

FLEXPART (Flexible Particle Diffusion Model) is a Lagrangian particle diffusion
model [39] proved to be effective in simulating the transport of volcanic SO2 plumes [40].
This model has been widely used in a number of studies on long-range atmospheric trans-
port [41–43]. The FLEXPART simulation requires five three-dimensional fields: horizontal
wind U and V components, vertical wind W component, temperature, and humidity.
FLEXPART also requires two-dimensional fields for the following parameters: ground
pressure, total cloud cover, 10 m horizontal wind component, 2 m temperature and dew
point temperature, large-scale convective precipitation, sensible heat flux, terrain height,
land-sea identification, and sub-grid terrain standard deviation. The meteorological data
for this simulation are in the Global Atmospheric Reanalysis dataset ds083.2, GRIB2 format,
jointly developed by the National Centers for Environmental Prediction (NCEP) and the
National Center for Atmospheric Research (NCAR). This dataset has global coverage,
a spatial resolution of 1◦ × 1◦ grid, and vertical stratification of 26 standard pressure
layers at 10 mb to 1000 mb heights. Forward simulations were carried out using the
FLEXPART model, while grid concentration values and trajectory tracking results were out-
put. https://rda.ucar.edu/datasets/ds083.2/, accessed on 14 January 2022. The relevant
information of all satellite data used in the article is shown in Table 1.

Table 1. Details of the satellite products used.

Variables Satellites Instruments Transit Time (BJT) Resolution

AOD Terra/Aqua MODIS 10:30/13:30 10 km
SO2 Sentinel-5P TROPOMI 13:30 7 × 3.5 km

Total Attenuated
Backscatter CALIPSO CALIOP 13:30 5 or 40 km (horizontal)/

60–360 m (vertical)
Water Vapor/

Surface Air Temperature Aqua AIRS 13:30 50 km

3. Results
3.1. Satellite Multi-Parameter Spatio-Temporal Tracking of Tonga Volcanic Eruption Process

The monitoring results of SO2 vertical column concentration by the TROPOMI satellite
from 14 January to 27 January 2022 (Figure 2) show that the migration path of SO2 was

http://www-airs.jpl.nasa.gov
http://www.airs.nasa.gov
http://www.airs.nasa.gov
https://rda.ucar.edu/datasets/ds083.2/
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straight westward from the eruption of Hunga Tonga-Hunga Ha’apai volcano and mainly
associated with a range of meteorological conditions that produced westerly winds trans-
porting volcanic ash westwards (Figure S1). Temporal and spatial evolution results of the
vertical column concentration of SO2 from the volcano eruption are shown in Figure S2. On
16 January, the SO2 plume migrated westward in the Pacific Ocean and gradually diffused.
SO2 reached Australia on 17 January while high SO2 concentrations were still over the
Pacific Ocean. The zone of high-concentration SO2 stayed over the northern area of Aus-
tralia on 18 and 19 January. The overall concentration of SO2 decreased during 20 January
and continued to move westward. On 21 January, SO2 continued to spread westward and
reached the Indian Ocean. On 22 January, the bulk SO2 was torn into two parts. Meanwhile,
the overall concentration of SO2 decreased. After 23 January, SO2 decreased significantly,
until 27 January, and it almost disappeared.
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Figure 2. The transport path of SO2 plumes from Tonga Volcano (black triangle) during 14–27 January
2022 with merged TROPOMI measurements.

The Hunga Tonga-Hunga Ha’apai undersea volcano erupted from 14 to 15 January
2022 [44], and the higher SO2 concentrations mainly occurred in the vicinity of the vent.
NASA estimated that the SO2 concentrations and the coverage of SO2 emissions associated
with the eruption reached 58.48 kt on 14 January, and this manuscript estimates it reached
183 kt on 15 January, with an extent of 390,000 km2 and 110,829 km2, respectively.

Figure 3 shows the results of the long-range spatial distribution of AOD for the period
14 January to 27 January 2022 from MODIS data. The high values of the spatial pattern
of AOD started mainly in northern Australia and then extended to western South Africa.
Some differences with the spatial pattern of SO2 are shown in Figure 2. However, some
similarity in the transport trajectories of SO2 and AOD could be captured (Figures 2 and 3),
which might also have an impact on the spatial pattern of AOD due to the frequent forest
fires producing biomass-burning aerosols in Australia [45–47] and the frequent dust events
in South Africa during the southern hemisphere summer [48–50]. We therefore could not
directly conclude that the direct atmospheric conversion of volcanic eruption SO2 formed
sulfate aerosol distributed on a similar transport trajectory.

However, we further identify the conversion process of SO2 to sulfate aerosols through
CALIPSO lidar data, which is described in detail in Section 3.2. AOD spatial distribution
results from MODIS data are shown in Figure S3. No obvious high AOD data were
observed from 14 January to 16 January. On 17 January, there were some high AOD to the
east of Australia. On the 18th, high AOD values were observed in northern Australia, and
from the 19 to 21 January, the AOD plume migrated westward over the Indian Ocean. On
22 January, the AOD continued to move westward in southern Africa. On 23 January, some
aerosols moved westward to the Atlantic Ocean, but the AOD high-value clusters remained
in the southern African continent depicting a striped distribution. On the January 24, some
aerosols continued to migrate westward and reached the southern part of the American
continent. Some high-value AODs remained in the Atlantic region, and the strip-shaped
area continued to expand. On 26 January, the AOD band-like area shrank and it mainly
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distributed over southern Africa and the Atlantic Ocean. On 27 January, the AOD increased
significantly in the southern region of the Americas and showed a slight upward trend in
the Pacific Ocean, where the AOD increased significantly and continued to move westward.
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The results of the spatial distribution of water vapor in the volcanic area of Tonga from
13–18 January 2022 (Figure 4) show a significant increase in water vapor concentrations
around Hunga Tonga-Hunga Ha’apai at the time of the eruption on 14 January. It was
also in an area of high values from 15–16 January, which began to decline on 17 January.
The results of the spatial distribution of surface air temperatures around the vent from
13 January to 18 January 2022 (Figure 5) show a distribution of high surface temperatures
across the area at the time of the eruption on 14 January. An abnormally high temperature
near the surface of the volcano was also observed on 15 January. Surface temperatures
returned to normal values on 17 January. Based on the AIRS satellite monitoring of water
vapor and temperature changes, consistent with the SO2 eruption results, the volcano also
produced changes in water vapor in addition to SO2 and CO2 [44,51,52].
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3.2. Sulfate Aerosol Plume Heights and Distribution

One focus of our study is the process of conversion of SO2 into sulfate aerosols during
the Hunga Tonga-Hunga Ha’apai eruption. Figure 6 further shows that an obvious aerosol
enhancement phenomenon appeared in the mid-latitude region of the Southern hemisphere
from February to April through the difference results of the MODIS monthly data. In the
stratosphere, volcanic sulfate aerosols may linger for months or even 1–3 years before
fully dissipating, depending on SO2 injection altitude, total mass loading, latitude, and
dispersion patterns [10,16,21].
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Further identification of sulfate aerosols caused by the volcanic eruption requires
the determination of the aerosol vertical height. CALIPSO provides vertical altitude
observations for model simulations [53]. CALIPSO aerosol profiles provide a vertical view
of the conversion of SO2 to sulfate after the ejection of SO2 aerosol into the atmosphere
due to the eruption (Figure 7). On 16 January 2022, a strong extinction layer was captured
at 25–30 km elevation near the vent. It appeared 25–30 km NE of Australia on 17 January
2022 and was transported to western Australia on 19 January 2022, with aerosol types
mainly consisting of volcanic ash, sulfate, and aloft soot. CALIPSO shows the presence of
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a strong extinction layer on 19 January 2022, yet the SO2 concentration values are seen to
be decreasing in Figure S2, while the AOD values are increasing in Figure S3. At the same
time, it could be ruled out that biomass-burning aerosols from grassland and forest fires
also formed transport strips (Figures 2 and 3). The conversion of SO2 from the volcanic
eruption into sulfate aerosols during transient transport is confirmed.
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The CALIPSO 532 nm attenuated backscatter for February 2022 and March 2022 is
reported in Figures 8 and 9, and the transport trajectory in the upper right corner reveals
that the eruption transported for at least two months in the Southern hemisphere, with a
gradual decrease in extinction at 25 km in March 2022, consistent with the monthly data
difference results between 2022 and 2021 of Figure 6.

3.3. Numerical Simulation of SO2 Migration and Diffusion Process

We selected the air pollution diffusion model FLEXPART to simulate the SO2 diffusion
process from the Tonga volcanic eruption. Based on the TROPOMI satellite remote sensing
data, the amount of SO2 released by the eruption was ~183 kt. Release time is from
2022-01-15:0500 UTC to 2022-01-16:0500 UTC. Based on the vertical observation results of
the CALIPSO satellite, the simulated SO2 altitude ranges between 20~30 km, the simulated
longitude range is from −180◦ to 180◦, and the simulated latitude range is from 0◦ to 50◦.
The output grid concentration values and trajectory tracking results of the simulation are
reported in Figure 10. These results show that the SO2 released from eruption migrated to
the west and the SO2 concentration decreased gradually, accompanied by the SO2 diffusion
range increasing during the westward movement. The results of the FLEXPART model
are consistent with the direction of dispersion of the volcanic plume simulated using
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the TROPOMI satellite, reaching a maximum during 15–17 January 2022. This phase of
maximum SO2 concentration was followed by a gradual decrease on 18 January 2022
(Figure 2) and a regular increase in AOD values (Figure 3). On the basis of these data, we
propose that the SO2 cloud partially converted to sulfate aerosol in northern Australia
(Figure S3). The comparison of the results from Figures S2 and S4 evidenced that the
decreasing trend of diffusion concentration of SO2 in the numerical simulation is not
obvious between 23 and 27 January 2022, while SO2 monitored via satellite remote sensing
rapidly decreased at this time. This feature might be associated to the Figure S5 dry and
wet deposition settings of SO2 transformation mode in the FLEXPART model. In addition,
numerical simulation results show that the migration path of SO2 is consistent with the
satellite observation, which is mainly related to the movement of the wind field in the
stratosphere. The variation of the wind field extracted at the stratosphere height of about
20 km is reported in Figure S5, and the results evidence that the stratospheric wind field
moved horizontally to the west within the range of −10◦~−30◦. The wind speed was about
10–20 m/s, a value consistent with the migration speed of SO2.
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4. Discussion

Volcanic eruptions release variable amounts of ash and SO2 into the atmosphere and
such SO2 may be converted to sulfate aerosols in a short period of time [54,55]. Strato-
spheric sulfate aerosols from volcanic eruptions can have lifetimes of 1–3 years and thus
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have a relatively pronounced but irregular (or sporadic) impact on the chemistry of the
atmospheric and effects on the Earth’s radiative energy balance [16,56–58]. The surface air
temperature well recorded high temperatures near the Hunga Tonga-Hunga Ha’apai vent
on 14 and 15 January 2022, which may be related to the eruption. Previous studies report
(a) a 5 km-wide ash column at 0530 UTC on 14 January (1830 local time; Global Volcanism
Program (2022a)); (b) a plume rising to ~15 km of altitude with intermittent subaerial
activity from 1143 to 1704 UTC on 14 January; (c) 10–15 min of eruption produced an ash
plume that rose to 14 km at 1820 UTC on 14 January [6]; and (d) a plume that reached a
maximum height of ~58 km, well within the mesosphere, at 0430 UTC on 15 January [59].
After the eruption, the ARIS satellite detected a significant increase in water vapor, which
might be related to the water–magma interaction.

Our results show the dynamic dispersion of SO2 moving westwards from the Pacific
Ocean to Australia, the Indian Ocean, Africa, and the Atlantic Ocean at a rate of one
thousand kilometers per day. With respect to the time period preceding 14 January 2022,
the concentration of SO2 increased by a factor of 30 during the eruption. The SO2 released
on 14 January was 58.48 kt, with the plume covering an area of ~390,000 km2 (Figure S6). We
estimate the SO2 emitted during the eruption was about 183 kt according to the TROPOMI
observation on 15 January 2022, (~0.2 Tg), consistent with Witze’s [6] estimated SO2 burden
of 0.4~0.5 Tg. The SO2 associated with the Hunga Tonga-Hunga Ha’apai eruption stayed
in the atmosphere for about 2 weeks. Although the SO2 removal mechanisms of wet and
dry plumes remain poorly constrained in volcanic contexts [60,61], the injection height of
SO2 associated with the Hunga Tonga-Hunga Ha’apai eruption reached the stratosphere.
In contrast to anthropogenic plumes, SO2 lifetime is poorly constrained for tropospheric
volcanic plumes, where the available loss rate estimates vary widely (from 1 to >99% per
hour) [8]. In any case, the Hunga Tonga-Hunga Ha’apai eruption emitted a large amount
of SO2 reaching the stratosphere, which can explain its relatively long residence time.

After the volcanic eruption, AOD responded later than SO2, but its migration path
was basically the same of SO2. The ejection height, migration, and diffusion of AOD and
SO2 occurred in the stratosphere (25~30 km), as confirmed using CALIPSO aerosol profiles
and the direction of the wind field (Figure S5). It was reported by Kloss [62] that the Light
Optical Aerosol Counter (LOAC) observations of a balloon flight on 23 January identified
two main plume layers at around 22.6 and 24.9 km altitudes, consistent with the satellite
monitoring results. The formation of AOD may be related to the SO2 activity, and there
might be some transformation correlation mechanism between AOD and SO2. Differently
from SO2, AOD increased significantly in the African region where SO2 gradually decreased
and ultimately disappeared. Therefore, the production and transport of AOD can be related
to the transformation of SO2 into sulfate aerosols. Significant grassland, forest, and hill fires
producing biomass-burning aerosols and dust aerosols from arid and semi-arid regions
for long-range and large-scale transport between land and sea in mid to late January 2022
were lacking in Southern hemisphere land. Therefore, the recorded loss rate of SO2 is
indicative of the growth rate of sulfate aerosols [63]. Figures 2 and 3 show that both AOD
and SO2 expanded gradually. After the eruption, SO2 gradually decreased in the westward
migration process, but, in the Atlantic region, AOD expansion was significantly higher
than SO2. After 27 January, the SO2 was almost removed, but AOD still remained in the
atmosphere and continued to propagate westward.

Based on the aerosol vertical profile from CALIPSO, a strong extinction layer was
captured at 25–30 km of altitude (the aerosol type is mainly volcanic ash). It could be ruled
out that biomass-burning aerosols from grassland and forest fires also formed transport
belts. In fact, volcanic eruptions should reach much higher altitudes [59,64]. As a result,
the conversion of SO2 from the volcanic eruption into sulfate aerosols during transient
transport is confirmed. At the same time, particles with radii between 0.5 and 1.0 µm
show optically transparent features pointing to predominant sulfate aerosols [62], which
further proves the fact that SO2 was converted to sulfate aerosols during the migration.
Figure 9 shows the CALIPSO 532 nm backscattered extinction coefficient for February
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2022–March 2022. Sulfate-type aerosols were mainly distributed in the stratospheric region
at the height of 25–30 km, and the thickness of sulfate-type aerosols gradually thinned over
time: the thickness of stratospheric aerosols is slightly visible in the vertical observation on
31 March 2022. Compared with SO2, AOD has a longer survival time in the atmosphere
and a longer potential impact on the environment. It was reported that effective lifetimes of
volcanic SO2 plumes could last for 43–61 h between 1.10–2.73 km of altitude. These values
are consistent with those predicted by Beirle et al. [65] and GEOS-Chem [63]. Although
volcanoes may directly release aerosols, however, large amounts of SO2 could also generate
sulfate aerosols, as in the case of the of the Hunga Tonga-Hunga Ha’apai eruption, which
was also accompanied by large amounts of vapor. On the basis of our numerical simulations,
the volcanic SO2 released during the 15 January 2022 eruption reached the stratosphere
and its diffusion trend and path were mainly controlled by the wind field. The comparison
between the results of the numerical simulations and the satellite observations indicated
that, after the eruption, the stratospheric environment allowed the removal of SO2.

5. Conclusions

We provide a comprehensive insight into the long-range transport and transformation
process of the atmospheric emissions from the 2022 Hunga Tonga-Hunga Ha’apai volcano
eruption through combining satellite data and numeral simulation results. TROPOMI,
MODIS, AIRS, and CALIPSO satellite data recorded substantial spatial variations of SO2,
AOD, water vapor, and surface temperature caused by the volcano’s eruption. Our results
show an increase of the surface temperature on 14 January 2022. The released amount of
SO2 is ~183 kt and a rough estimate of the dynamic dispersion of SO2 is in the order of
tens of thousands of miles with a rate of one thousand kilometers per day. SO2 crossed the
Pacific Ocean, Australia, the Indian Ocean, Africa, and the Atlantic Ocean and remained
in the atmosphere for half a month before dissipating in the Atlantic Ocean. Interestingly,
the aerosol loading increased significantly in the Atlantic Ocean with the decrease of SO2,
which is due to the formation of sulfate aerosols. CALIPSO detected that the SO2 released
by the eruption reached altitudes of 25–30 km and was converted to sulfate aerosols.
Sulfate aerosols stayed in the stratosphere for more than two months after the eruption, and
were mainly concentrated in the middle and lower latitudes of the Southern hemisphere.
Compared to the residence time of SO2, the sulfate aerosols have a longer residence time in
the atmosphere and spread over a wider area. According to the SO2 injection height and
amount observed using TROPOMI and CALIPSO satellites, FLEXPART model simulations
show that the transport and diffusion process of volcanic SO2 is dependent on the westward
wind field from the stratosphere.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15102661/s1, Figure S1: 72-h forward and backward trajectory
maps for the Tonga volcanic event during 22 January and 27 January 2022, at 10 km, 20 km and
25 km; Figure S2: Temporal and spatial evolution results of vertical column concentration of SO2
in Tonga volcano. The black triangle represents the location of the Hunga Tonga-Hunga Ha’apai
volcano; Figure S3: AOD spatial distribution results from 14 January to 27 January 2022. The black
triangle represents the location of the Hunga Tonga-Hunga Ha’apai volcano. The data source is
MODIS, which is the same as Figure 3; Figure S4: Spatio-temporal evolution results of SO2 numerical
simulation from 15 January to 27 January 2022; Figure S5: Stratospheric wind field at about 20 km
(Unit, m/s); Figure S6: SO2 concentration values on January 14 around the satellite around the
outburst from NASA website. (https://SO2.gsfc.nasa.gov, accessed on 14 January 2022.).
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