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Abstract: Due to the rapid development of the space–air–ground integrated network (SAGIN), a
satellite communication system has the advantages of wide coverage and low requirements for
a geographical environment and is gradually becoming the main competitive technology for 6G.
The low-earth-orbit (LEO) satellite network has the characteristics of low transmission delay, small
propagation loss, and global coverage, and its exploration has become the main research object of
contemporary satellite communications. However, traditional routing algorithms cannot adapt to the
characteristics of the high dynamics and load-balancing requirements of LEO satellite networks. In
this paper, a load-balancing routing algorithm for LEO satellites based on Deep Q-Network (DQN-
LLRA) is proposed by using deep reinforcement learning. Making use of the model obtained by the
DQN training, satellite nodes can select the best routing results according to the delay, bandwidth,
and queue utilization of the surrounding satellite nodes. The simulation and analysis show that
the path load obtained by the proposed algorithm is low. Compared with the Q-learning-based
algorithm, this algorithm reduces the maximum queue utilization rate of the routing path by 5%,
reduces the average queue utilization rate of the routing path by 13%, and effectively balances the
load in the network.

Keywords: low earth orbit; satellite routing algorithm; deep reinforcement learning; high dynamics;
load balancing

1. Introduction

In the last few years, the space–air–ground integrated network has developed rapidly.
Satellite communication is a key link in 6G space–air–ground integrated networks (SAGIN).
It can make up for the shortcomings of the 5G terrestrial network, improve network cover-
age, and ensure the fault tolerance of the system. It can also combine artificial intelligence,
big data, the Internet of Things, and other technologies to provide users with diverse
services. Satellite communication has a larger coverage area than traditional terrestrial net-
works, and its global adaptability is stronger. It is gradually becoming the main competitive
technology for the next-generation communications. The importance of Low Earth Orbit
(LEO) in the field of satellite communications cannot be overstated. When compared to the
constellations of Geosynchronous Orbit and Medium Earth Orbit, LEO stands out due to
its low transmission delay, low propagation loss, and its ability to cover the world. These
unique features make LEO an attractive option for various applications, including internet
services, global positioning systems, and remote sensing. The low transmission delay
and low propagation loss of LEO makes it an ideal choice for time-sensitive applications
such as real-time communication, while its global coverage ensures that it is suitable for
applications that require connectivity in remote or hard-to-reach locations. Therefore, it is
not surprising that LEO has gained significant attention and interest in recent years, leading
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to the development of new technologies and algorithms to enhance its performance and
efficiency. With the rapid development of SAGIN, the traditional ground communication
network can not adapt to future development. The development of satellite communication
in low earth orbit is already a promising development direction.

In LEO satellite networks, inter-satellite links (ISLs) ensure communication between
satellites. Compared with the terrestrial communication network, the LEO satellite network
changes its topology more frequently, has a longer inter-satellite link delay, and has a
link state in the multiuser area that changes more frequently. Due to the high-speed
dynamic changes, the cost of traditional path selection methods is significantly increased.
Therefore, the routing protocol for terrestrial applications is difficult to use directly in the
LEO satellite network. LEO satellite routing technology is also a supporting technology for
the integration of remote sensing, communication, and computing for 6G SAGIN; so, it is
necessary to study the routing algorithm in the low-orbit satellite network.

Most of the existing satellite routing algorithms have been developed based on
terrestrial-network routing algorithms. Most of these algorithms are based on the shortest
path. Due to the difference in the density of satellites at high and low latitudes and the
difference in the density of user distribution [1], the load differences among satellites
in the same constellation are large. In addition, with the high-speed movement of the
satellites, the high-load coverage area also changes rapidly among satellites. Therefore,
the traditional routing algorithm has faced difficulties in meeting the current development
of satellite networks.

The cognitive performance of the deep learning algorithm is better, the decision-
making ability of the reinforcement learning algorithm is stronger, and deep reinforcement
learning combines the two. In deep reinforcement learning, an agent makes decisions
through interaction with the environment and obtains feedback through trial and error,
learning to maximize the reward and minimize the punishment [2]. Due to the powerful
perception and decision-making ability of deep RL, more and more scholars have applied
this type of learning in many fields such as computer vision [3,4], speech recognition,
and automatic driving [4,5]. Deep reinforcement learning is also applicable in the field
of LEO satellite networks. It can sense the topology changes, load changes, and network
parameters, such as the delay and bandwidth in the satellite network. It can make the best
decision according to the network service requirements.

This paper proposes a load-balancing routing algorithm based on deep reinforcement
learning to address the challenges and opportunities of the LEO satellite network. It aims
to solve the issues of traditional algorithms that cannot adapt to the high dynamics and
load balancing of the network. The work focuses on the following:

(1) The satellite routing process is modeled as a Markov decision process (MDP) [6],
and its state space, decision space, and reward function are defined.

(2) A Deep Q-Network (DQN)- [7] based load-balancing routing algorithm for LEO
satellites (DQN-LLRA) is proposed. The algorithm relies only on the state information
of the surrounding nodes of the current satellite node, and the optimal decision model is
obtained through iterative training.

(3) Through numerical simulation, our algorithm reduces the maximum queue uti-
lization and the average queue utilization of the routing path, avoids the occurrence of
congestion, and realizes the path routing under load balance while ensuring that the delay
cost increases only slightly and in an acceptable fashion.

The paper is organized as follows. Section 2 provides an overview of the current
research on LEO satellite routing, including its load-balancing challenges and related intelli-
gent algorithms. Section 3 presents the system model and algorithm design of the proposed
DQN-based load-balancing routing algorithm for LEO satellites. Section 4 describes the
experimental simulations and resulting evaluations carried out to validate the proposed
algorithm. Finally, in Section 5, the paper concludes with a summary of the contributions
and directions for future research.
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2. Related Work

There are no agreed-upon values for the orbit altitude and orbit period of LEO satellites.
However, many sources claim that the orbit altitude of these satellites changes from 160 km
to 2000 km, while their orbit period, mainly depending on the orbit altitude, ranges between
90 min and 2 h [8]. The configuration of the inter-satellite links topology is closely related to
the constellation design. Therefore, in this section, we provide a comprehensive review of
the current state of research on LEO satellite routing technology, load-balancing technology,
and machine-learning-based satellite routing technology. Specifically, we discuss the latest
developments in these areas and present the relevant literature to help readers better
understand the challenges and opportunities facing LEO satellite networks. By doing
so, we aim to lay the foundation for the proposed DQN-based load-balancing routing
algorithm for LEO satellites in the following sections.

2.1. LEO Satellite Routing

The LEO satellite constellation can be divided into two categories, namely the inclined-
orbit-based Walker Delta constellation and the polar-orbit-based Walker Star constellation.
As shown in Figure 1, the Iridium constellation [9], a typical polar-orbit constellation, has
been studied by many scholars as a low-orbit constellation because of its representative
constellation configuration and easy mathematical model construction.

Figure 1. Illustration of the Iridium constellation.

The orbit and topology of the Iridium constellation are shown in Figure 2. The topol-
ogy changes rapidly due to the mobility of the satellites and the changing connections.
The satellites running in the reverse orbit cannot establish communication links. In addi-
tion, the communication links change when the satellites travel across the pole. Due to the



Remote Sens. 2023, 15, 2801 4 of 21

challenges introduced by the dynamic topology, the routing algorithm for satellite networks
has attracted a lot of research interest. This field of work mainly falls into the following
two kinds, the centralized routing algorithm and the distributed routing algorithm.

Figure 2. Iridium satellite trajectory diagram.

The distributed routing algorithm can adapt to the dynamic scenario of the satellite
network. This is because the algorithm determines the next hop based on the status of the
neighbor satellites, e.g., the remaining bandwidth and the queue utilization rate. Thus,
when the status of the neighbor satellites changes, the algorithm can become aware of
it rapidly and make a quick decision on the routing strategy according to the dynamic
environment. By taking the design idea of the existing ground-distributed routing algo-
rithm into account, the authors in [10] investigated the routing methods for the satellite
network. The onboard buffer space was improved by fully considering the features of the
LEO satellites. The data packets were classified, and the corresponding routing method
was designed in [11].

Different from the distributed routing algorithm, the centralized one needs to derive
the global information of the satellite network [12]. The master control nodes first collect
the global information and then perform the routing path computation. After obtaining the
routing results, they transmit the whole routing strategy to the other nodes. The authors
in [13] designed an improved Distributed Hierarchical Routing Protocol (DHRP) for the
satellite network. This protocol set up master and candidate nodes and therefore showed
superior routing performance compared with the traditional Discrete Relaxation Algorithm
(DRA). The authors in [14] proposed a Hybrid Global–Local Load Balancing Routing
(HGL) algorithm. However, it was ineffective when the large-scale traffic flows changed
suddenly. The authors in [15] proposed a probability ISL Routing (PIR) algorithm in which
the communication delay was leveraged to evaluate the path selection performance. This
algorithm also considered the cost of the inter-satellite links.

Although the aforementioned algorithms have made great progress in the adaptability
to the dynamics of the LEO satellites, their failure to consider the satellite load remains a
significant drawback.

2.2. Load Balancing of LEO Satellites

The inter-satellite link length of LEO satellites changes with the latitude of the satellites.
The conventional shortest-path algorithm design for the routing paths only relies on the
length of the path, which results in traffic aggregation when the latitude is high [1,16].
Figure 3 depicts a 3D schematic of the distribution of satellite traffic, created using NS3
network simulation software. The black dots represent LEO satellites, while the line seg-
ments denote inter-satellite links carrying traffic. The thickness and color of each segment
correspond to its bandwidth utilization and traffic, respectively. The thicker lines indicate
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higher traffic, while the darker colors show greater bandwidth utilization. Notably, the LEO
satellite network experiences congestion primarily in high-latitude and densely populated
regions. In addition, the uneven distribution of the gateway station on the ground gives
rise to the load imbalance of the satellite networks. User mobility and the global population
distribution are also key factors affecting the distribution of traffic flows [17]. The high
mobility of the satellites leads to rapid changes in the high-load coverage area between
satellites [18,19].

Figure 3. Traffic distribution diagram.

A path-based load-balancing satellite routing algorithm with the objective of min-
imizing the maximum network flow was proposed in [17,20]. This algorithm avoided
traffic-flow aggregation in high-latitude areas by setting all inter-satellite links with the
same path length and giving all paths the same priority. The authors in [21] divided the
transmission areas into the heavy-load ranges and the light-load ranges considering the
relationship between the reverse slots and the gateway stations. The congestion indica-
tor was utilized for the heavy-load range, and the path with the minimum weight was
exploited to deal with the uneven traffic-flow distribution. Nevertheless, this method
required the link status information of the whole network and could not make decisions
in real time [22]. The Elastic Load-Balancing (ELB) algorithm was proposed in [23,24],
which realized the exchange of congestion information between satellite nodes. Thus,
the ELB achieved the load-balancing goal and avoided traffic congestion. The occupancy
of the queue was leveraged to decide whether the satellite node was idle or busy. When a
node was marked as a busy one, it emitted a message to its neighbor nodes to decrease its
transmission rate. The TLR algorithm proposed in [25] took both the current status of the
congestion and the possible status of the next hop congestion into account. The authors
in [26] proposed an iterative Dijkstra mechanism to select the optimal transmission paths
for load-balancing routing. The authors in [27] considered the link delay to further promote
the routing performance. Cooperative game theory was exploited in [28] to bring to equi-
librium the tradeoff between the load and the transmission delay when exploring the LEO
routing algorithm. Fuzzy theory was utilized to achieve the requirements of various users
in [29]. The transmission overhead and the routing convergence were evaluated as the key
performance metrics in [30]. The on-demand dynamic routing algorithm was proposed
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with the track prediction. Energy consumption was also considered in [31] to promote the
service quality for the users.

The existing literature highlights the benefits of LEO routing in terms of load per-
formance [32,33]. However, challenges related to the insufficient local optimization and
weak dynamic adaptability still remain unsolved, which could potentially impede the
development of the LEO satellite network.

2.3. Machine-Learning-Based Satellite Routing

The complex satellite network environment and dynamic inter-satellite links make the
satellite routing algorithm difficult to calculate. Reinforcement learning has been widely
used in various new industries because of its unique ability to deal with sequential decision-
making problems [34]. The content caching problem was investigated in [35]. The Q-
learning algorithm was utilized in the cloud content distribution systems. In [36], congested
links in the Internet of Things (IoT) were identified using Q-learning to increase the fault
tolerance rate. Similarly, Q-learning was used in [37] to improve the throughput of wireless
sensor networks (WSNs) and solve the problem of the energy consumption of devices.
In [38], to solve the optimal allocation problem of cache, bandwidth, and other resources
in the Internet of Vehicles, they used deep reinforcement learning to solve the model. The
authors of [39] designed a centralized satellite routing algorithm for the space–ground
integrated network using the Deep Deterministic Policy Gradient (DDPG) [40] in machine
learning [41,42]. The decision center of the proposed strategy was set on the ground.
The decision center obtained the traffic information of the whole network in real time and
sent the routing information to the relevant satellites after making a decision. However,
the drawback of this strategy was that the delay of the satellite communication was very
large, and the transmission routing decision could not be made in time. The network
burden was increased; so, it was not suitable for large-scale use. A routing algorithm based
on Multiagent Deep Deterministic Policy Gradient (MADDPG) [43] was proposed in [44],
which was a routing strategy that was deployed on each satellite after centralized training
and solved part of the problems of the above centralized routing algorithm. The centralized
training method had limitations in acquiring sufficient data, which became increasingly
difficult as the network size and deep reinforcement learning algorithm training complexity
increased. To address the dynamic load-balancing challenges in the LEO satellite network,
this paper introduces a DQN-based load-balancing routing algorithm for LEO satellites.

3. System Model

This section explains the research scenario of the proposed DQN-LLRA algorithm,
the basic framework of the DQN algorithm, and the framework and mechanism of the
DQN-LLRA algorithm.

In this paper, the Iridium satellite, a typical polar LEO constellation, is taken as the
research scene. The Iridium constellation has six polar orbits, and 12 LEO satellites are
distributed on each orbit, including 11 communication satellites and one standby satellite.
In total, there are 6× (11 + 1) = 72 satellites in the whole constellation. The interorbit inter-
satellite links change periodically with the movement of satellites. The connectivity of the
inter-satellite link changes periodically with the motion of the satellite. The satellites in the
first orbit move in opposite directions to the satellites in the sixth orbit; so, there is no direct
communication between the satellites in the two orbits. As shown in Figure 4, in a typical
constellation, there are up to four inter-satellite links around a satellite, connecting it to four
satellites, two of which are in the same orbit and two in adjacent orbits. Communication
between satellites with an inter-satellite link is possible.
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Figure 4. Schematic diagram of the inter-satellite links.

In order to represent the relevant parameters of the satellite topology, we constructed
this topology as an undirected graph G = (V, E), where V = {v1, v2, · · · , vn} represents
the set of satellite nodes, and n is the total number of satellite nodes. We denoted the queue
utilization of each node vi by QUi, which represents the ratio of the number of packets
currently existing in the queue of satellite node vi to the queue capacity of the node vi,
and can be expressed mathematically as:

QUi =
Number of packets in queue of node i

Total queue size of node i
. (1)

As stated earlier E = {e(v1,v2)
, e(v2,v3)

, · · · , e(vi ,vj)
} represents the set of inter-satellite

links, and e(vi ,vj)
represents the inter-satellite link between satellite vi and satellite vj. We

denoted the time delay and bandwidth of each inter-satellite link by C(vi ,vj)
and B(vi ,vj)

,
respectively. Our DQN-LLRA algorithm was implemented on the basic model described in
the next section.

4. Dqn-Based Load-Balancing Routing Algorithm
4.1. DQN-LLRA Framework and Mechanisms

Our paper presents a load-balancing routing algorithm for LEO satellites that leverages
deep reinforcement learning. We modeled the satellite-routing decision-making process as
a Markov decision process. The Markov decision process is a mathematical framework used
to model decision-making processes, where only the immediate state affects the outcome
of a current decision, rather than previous states. In our approach, each decision-making
satellite was treated as an agent and interacted with the surrounding nodes to gather
information about the current state in order to make informed routing decisions.

The proposed algorithm used DQN to train the agents and make optimal routing
decisions. At each routing node, the agent made a decision and selected the next route
based on the information obtained from the surrounding nodes. The reward function was
used to evaluate the quality of the decision made by the agent, and the agent moved on to
the next routing node to continue making decisions.

The DQN-LLRA algorithm architecture is shown in Figure 5. The proposed algorithm
aims to optimize the routing decisions of LEO satellites by balancing the workload among
the satellites effectively. By modeling the satellite-routing decision-making process as a
Markov decision process and using deep reinforcement learning, the proposed algorithm
can continuously learn and adapt to changing network conditions, leading to more efficient
routing decisions.
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Figure 5. Architecture diagram of DQN-LLRA.

The following section provides details on the DQN-LLRA algorithm, including the
state space, action space, and the reward function settings.

(1) The state space: The state of satellite node i at time t is represented as Si
t, where

Si
t = {Dij, Bij, Ci, Cj, QUj, done}, with j = 1, 2, 3, 4. Dij denotes the delay of the inter-

satellite link between node i and neighboring node j, Bij represents the bandwidth of
the inter-satellite link between node i and neighboring node j, Ci represents the shortest
hop count from the current node i to the destination node, and Cj denotes the shortest
hop count from neighbor node j to the destination node. The pair of numbers Ci, Cj was
introduced to enhance the algorithm’s convergence rate and avoid undesired ping-pong
routing. Ci and Cj are calculated by the shortest path algorithm, i.e., the Dijkstra algorithm.
The agent leveraged the Dijkstra algorithm to calculate Ci and Cj when acquiring state
information. When Ci − Cj > 0, the reward function gave positive feedback. When
Ci − Cj ≤ 0, the reward function gave negative feedback. After multiple training rounds,
the agent chose a node as close as possible to the destination node when making a decision.
This avoided the occurrence of ping-pong routing and, at the same time, accelerated the
agent to find the optimal path, thus speeding up the convergence speed of the algorithm.
The symbol QUj denotes the queue utilization of neighboring node j, which indicates a
load of node j. The symbol Done denotes a two-valued Boolean number that indicates
whether the current node is the destination node or not. Done is true if the current node is
the target node and false otherwise.

(2) The action: The action of the current satellite node i is expressed as ai = {neighborj},
j = 1, 2, 3, 4, where neighborj represents that each decision agent selected a node j among
the neighboring nodes according to the decision function.

(3) The reward function: In order to meet the load balancing requirements in the LEO
satellite scenario, our reward function introduced the queue utilization on the satellite node
to represent the load situation of the node. The reward value was calculated by the reward
function when the current agent made a decision, and the state transition occurred. Our
reward function is as follows in Equation (5).

ri =



α1
Ci−Cj

p + β1(1−QUj) + γ1
Dij
q + ω1

Bij
o , Ci ≤ Cj, QUj ≤ 0.5

α2
Ci−Cj

p + β2(1−QUj) + γ2
Dij
q + ω2

Bij
o , Ci ≤ Cj, QUj > 0.5

α3
Ci−Cj

p + β3(1−QUj) + γ3
Dij
q + ω3

Bij
o , Ci > Cj, QUj ≤ 0.5

α4
Ci−Cj

p + β4(1−QUj) + γ4
Dij
q + ω4

Bij
o , Ci > Cj, QUj > 0.5

, (2)

where Dij, Bij, Ci, Cj, and QUj, respectively, represent the delay and bandwidth of the inter-
satellite link e(vi ,vj)

, the shortest hops from node i to the destination node, the shortest hops
from node j to the destination node, and the queue utilization rate of node j. The symbols
αi, βi, γi, ωi, i = 1, 2, 3, 4 denote the parameter weights where αi + βi + γi + ωi = 1. o, p,
and q are adjustment factors, which keep each state value at the same order of magni-
tude. Here, Ci, Cj, and QUi were used for segmental processing of the reward function,
and different parameter weights were set for each segment function, in order to increase
the penalty value of a poor decision and accelerate the convergence speed of the training
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and the accuracy of the decision. We used four parameter weights to adjust the final result
of the reward function. We can adjust the ratio of the parameter weights according to
different optimization goals. The ratio of the parameter weights directly affects the relative
performance of the final training model. The main optimization objectives of this paper are
the hop count and queue utilization of the path. Therefore, in the simulation part, we set
the parameter weights of the first two items to be larger and the parameter weights of the
latter two items to be smaller. In addition, we imposed the following constraints on the
reward function as follows in Formula (6).

rt =

{
1, done = True
rt, done = False

. (3)

When the current node was the destination node, the decision was ended, the reward
value was 1, and the cumulative reward was calculated as follows:

Rt =
∞

∑
t=0

γtrt+1, (4)

where, γt represents the decay value of the future reward at time t, while rt+1 denotes the
instantaneous reward at time t + 1.

In summary, the training flowchart of the DQN-LLRA algorithm is as follows in Figure 6.

Figure 6. The training flowchart of the DQN-LLRA algorithm.
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Initially, the experience replay pool, estimation network, and target network were
initialized for training. The Iridium satellite topology constellation randomly generated
source and destination node pairs, and the routing decision was made by the source node
acting as the agent with an initialized state. In the decision-making process, the agent made
decisions according to the following dynamic greedy strategy in Equation (8).

πi =

 random action with probability e−steps·0.4

arg max
at+1

Q′(st+1, at+1

∣∣∣θQ′ )with probability 1− e−steps·0.4 , (5)

where steps is the number of training steps. With the progress of training, the decision
tended to choose the next hop decision with the largest Q value. After each decision,
the reward value was calculated according to the reward function in (5). After the agent
made a decision, (st, at, st+1, done) was stored in the empirical replay pool for reserve.
The estimated network updated the network weights according to the gradient descent
method, and the target network updated the network weights from the estimated network
every C steps. Upon reaching the destination node, the route ended, and the cumulative
reward value was computed using the cumulative reward function. Repeated random
generation of source and destination node pairs was used for training.

The pseudo-code for the DQN-LLRA algorithm is as follows in Algorithm 1.

Algorithm 1 DQN-based load-balancing routing algorithm for LEO satellite networks

Input: Source node and destination node, satellite topology
Output: Route path
1: for episode = 1 to M do
2: Initialize state st;
3: Move the agent to the source node;
4: for step = 1 to k do
5: Select at based on dynamic greed strategy;
6: Add the current node to the path;
7: Execute at, observe reward rt and next state st+1;
8: Store transition (st, at, rt, st+1, done) into D;
9: if next node is destination then

10: yt = rt
11: else
12: yt = rt + γ max

at+1
Q′(st+1, at+1

∣∣∣θQ′ )

13: end if
14: if D. size > R then
15: Sample random minibatch of transition (st, at, rt, st+1, done) from D;
16: Perform gradient descent step about θQ on 1

Nb
∑t (yt −Q(st+1, at+1

∣∣θQ ))
2;

17: Update the target Q network every C steps, let θQ = θQ′

18: end if
19: end for
20: end for

In the decision stage of the DQN-LLRA algorithm, on the basis of the above-trained
decision model, firstly, the source node, destination node, and network topology were
input to initialize the routing path. The agent selected the next hop node according to
its surrounding environment. Then, the selected node was added to the routing path.
The agent moved to the next node. The algorithm checked whether the next node was the
destination node. If it was, the decision-making process was completed, and the path is
output. Otherwise, the routing decision continued.

Figure 7 illustrates the decision-process flowchart of the DQN-based load-balancing
routing algorithm.
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Figure 7. The decision flowchart of the DQN-LLRA algorithm.

Algorithm 2 presents the pseudo-code for the decision process of the DQN-based
load-balancing routing algorithm.

Algorithm 2 The decision process of the DQN-based load-balancing routing algorithm

Input: Source node and destination node, satellite topology
Output: Route path
1: Initialize path
2: current node = source node
3: next node = None
4: while current node is not destination do
5: Agent obtains the state from the environment
6: Agent chooses the next node
7: Add the next node to the path
8: current node = next node

4.2. Basic Model of the DQN

In the abovementioned Iridium satellite model, each node needed to send the current
data packet to a suitable node among the four surrounding nodes according to the current
service requirement. In such a decision-making scenario, the current satellite could only



Remote Sens. 2023, 15, 2801 12 of 21

receive the status of the four surrounding nodes and links. In addition, this state was
a changing continuous state. The decision to be made was to choose one of the four
surrounding nodes, and the decision was a discrete decision. The model of the DQN
algorithm continuous state and the discrete decision have good adaptability. Therefore,
this work used the DQN algorithm to train the model.

On the basis of Q-learning, the DQN algorithm combines deep learning, which can
deal well with the problems of a continuous state and a discrete action space. In the
continuous state space, the algorithm does not need to maintain a large number of Q tables.
The DQN algorithm can adapt to the continuous state space. Due to the large state space,
a deep neural network can be used to perform nonlinear fitting of the action value function.
The input of the neural network was the current state s and the action a, and the output
was the action value function Q(s, a), as shown in Figure 8. The DQN algorithm reduced
the correlation between the training data through experience replay technology so as to
make the neural network training more stable. At the same time, the DQN also used the
target network to update the temporal difference (TD) bias, which further reduced the
temporal correlation between pieces of the training data. The experience replay technology
stored the state transition of the interaction with the environment in the experience replay
pool. The DQN algorithm used a target network with the same structure as the online
network. This target network was periodically updated by copying the parameters from
the online network. By using the target network to generate target Q-values, the temporal
correlation between the fragmented sample data was reduced, leading to a more stable
training process.

Figure 8. The DQN neural network.

When a satellite service request was received by a certain satellite, the state (input) of
the current satellite (agent) was determined by the status information of the surrounding
satellites, and the action (output) was to select one of these satellites as the next hop
in routing. At this time, in the DQN network, Q(s, a) was calculated by the estimation
Q network according to the current satellite state s and the current routing decision a.
After Q(s, a) was calculated, the agent took an action that maximized this value and
selected the satellite with the highest Q-value as the next hop for routing the service request.
The selected satellite then updated its status information and sent the service request to the
next hop in the route until it reached its destination.

During the process of selecting the next hop, the DQN network learned from the
experiences gained through each interaction with the environment. Specifically, the agent
stored these experiences in a replay memory buffer and used them for training the Q
network. The experiences included the current state s, the chosen action a, the reward r
received from the environment, and the resulting next state s′.

The Q network was trained by minimizing the difference between the predicted Q-
value and the target Q-value. The target Q-value was calculated based on the Bellman
equation, which considers the discounted future rewards of taking an action from the
current state.
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Through this reinforcement learning process, the DQN network could gradually
improve the quality of its routing decisions and adapt to the changing environment of the
satellite network.

The flow chart of the DQN algorithm is shown in Figure 9. During training, an experi-
ence replay pool was used to store information about each interaction with the environ-
ment, including the states, actions, and immediate rewards from environmental feedback.
For each decision, the generated samples (s, a, s′, r) were stored in the experience replay
pool, and a certain number of samples was taken out at intervals to train the network
so as to reduce the correlation of the training data and prevent overfitting. From the
data extracted from the experience pool, the value of (s, a) was input into the online Q
network for computing Q(s, a), and the state s′ was input into the target Q network for
computing the target Q value. The online Q network parameters were updated by the
gradient descent method based on the error function gradient every C steps. The target
Q network periodically updated its own parameters by replicating the parameters of the
online Q network.

Figure 9. The flowchart of the DQN algorithm.

In the DQN algorithm, the Q-network output the action-value function, which was
fitted using a neural network due to the continuous state space. The Q-network was
updated using the mean square error, which was calculated through the TD bias. The TD
deviation was computed using both the target Q-network and the online Q-network.
The TD deviation was calculated as follows.

L =
1

Nb
∑t (yt −Q(st, at

∣∣∣θQ ))
2
. (6)

Here, Nb is the random sampling capacity, θQ is the parameter of the estimated Q
network, and yt is the target Q value, which represents the Q value obtained by calculating
the action at+1 at the next state st+1 in the target network, and the action that produces
the maximum target Q value at the next state st+1 is taken as the next action at+1. yt is
computed as follows:

yt = rt + γ max
at+1

Q′(st+1, at+1

∣∣∣θQ′ ), (7)

where rt represents the reward value obtained by the agent for taking action at under
status st. The parameter of the target Q network was θQ′ , while γ ∈ [0, 1] denoted the
discount factor.

Thus, the update mode of the Q network parameters was obtained as follows in
Equation (4).

θQ
t+1 = θQ + α[ri + γ max

ai+1
Q′(si+1, ai+1

∣∣∣θQ′ )−Q(si, ai
∣∣θQ )]∇Q(si, ai

∣∣θQ ) . (8)
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5. Simulation and Performance Analysis

In this work, we employed the Win11 64-bit system, used the Python torch deep
learning framework, and utilized the programming language Python3.9 to carry out the
simulation experiments and analyze the results. The experiment was carried out under the
constructed Iridium satellite model, and the Iridium satellite topology was generated by
using the official satellite data files of the Iridium constellation and Python networkX. As
shown in Figure 10, the generated Iridium constellation contained six orbits, and each orbit
contained 12 satellites. At the same time, the delay and bandwidth were randomly gener-
ated for each inter-satellite link. In order to simulate the dynamic network environment in
the topology below, 70 streams of data flow were generated in a loop at the same time to
propagate in the topology, so that the agent could obtain dynamic queue utilization and
link bandwidth.

Figure 10. Iridium satellite topology.

The DQN algorithm in this paper was configured with a neural network that consisted
of an input layer, an output layer, and two hidden layers. The discount factor was set to
0.99, and the experience replay pool size was 4000. The DQN-LLRA algorithm trained the
network with 10,000 randomly generated data streams and produced a routing decision
model after convergence.

The relevant simulation parameters are shown in Table 1.

Table 1. Parameter settings for evaluation.

Parameter Symbol Value

link delay Dij random value (10–20 ms)
link bandwidth Bij 10 Mbps
discount factor γ 0.99
learning rate α 0.005

reward parameter weights
αi, βi, γi, ωi,
i = 1, 2, 3, 4

0.45, 0.35, 0.1, 0.1
0.50, 0.30, 0.1, 0.1
0.40, 0.40, 0.1, 0.1
0.50, 0.30, 0.1, 0.1

reward adjustment factors o, p, q 10, 20, 20
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Figure 11 shows the variation trend of the reward with the training data stream.

Figure 11. Reward as a function of the number of training streams.

The Dijkstra-QU algorithm was used to find the shortest path after transforming the
queue utilization into the link weight. The algorithm aimed at the lowest queue utilization
but did not consider the path hop count and path delay. We compared our proposed
scheme with the routing scheme based on reinforcement learning in [45]. In this benchmark
scheme, Q-learning was used as the solution method for the satellite-routing decision
process. At the same time, the packets in the routing process were used as agents. Each
packet made a routing decision for the next hop based on the surrounding environment of
the current satellite and destination node. The following performance evaluation compared
the traditional Dijkstra algorithm, the Dijkstra-QU algorithm, the Q-learning-based scheme,
and the proposed DQN-LLRA algorithm.

To simulate the overhead resulting from the agent–environment interaction in the
machine learning algorithms, we decreased the bandwidth around the decision node in
both the Q-Learning-based intelligent routing scheme and the proposed routing scheme.
This promoted the fairness of the comparison with other benchmark algorithms.

In this work, 100 pairs of the source and destination nodes were generated to evaluate
the performance of the four different routing algorithms. For each algorithm, 100 routing
paths were calculated, resulting in a total of 400 paths. A mathematical analysis was
conducted to evaluate the delay performance of the algorithms.

From Figure 12, it can be seen that in the test with 100 pairs of source–destination
nodes, the Dijkstra algorithm had the lowest latency among the four algorithms. In contrast,
the Dijkstra-QU algorithm with queue utilization as the optimization objective had the high-
est latency. The DQN-LLRA algorithm proposed in this paper and the Q-learning-based
routing algorithm both considered the impact of queue utilization, and their latency perfor-
mance was between the Dijkstra algorithm and the Dijkstra-QU scheme. Obviously, the pro-
posed algorithms had better latency performance than the Q-learning-based algorithm.

Figures 13 and 14 present an analysis of the load-balancing parameters for the three
routing algorithms.
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Figure 12. Path delay of different algorithms under various test flows.

Figure 13. Path maximum queue utilization rates of different algorithms under various test flows.

From Figure 13, it can be seen that in the test with 100 pairs of source–destination
nodes, the maximum queue utilization rate of the Dijkstra-QU algorithm was the lowest
among the four algorithms, while the maximum queue utilization rate of the Dijkstra
algorithm was the highest. The maximum queue utilization rate of the proposed DQN-
LLRA algorithm and the Q-learning-based routing algorithm was between the Dijkstra
algorithm and the Dijkstra-QU scheme.
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Figure 14. Path average queue utilization rates of different algorithms under various test flows.

From Figure 14, it can be seen that in the test with 100 source–destination node pairs,
the average queue utilization rate of the Dijkstra-QU algorithm was the lowest among the
four algorithms, while the average queue utilization rate of the Dijkstra algorithm was
the highest. The average queue utilization rates of the proposed DQN-LLRA algorithm
and the Q-learning-based routing algorithm were between the Dijkstra algorithm and
the Dijkstra-QU scheme. Moreover, the proposed DQN-LLRA algorithm showed a lower
queue utilization rate than the Q-learning-based algorithm.

Thus, the DQN-LLRA algorithm proposed in this paper can be considered superior
to the traditional shortest-path algorithm and the Q-learning-based algorithm in terms of
load-balancing performance.

According to the experimental results, the Dijkstra algorithm calculated the shortest
path in the experiment, but the maximum average queue utilization and the link utilization
rate for it were the highest, and as a load-balancing algorithm for satellite node processing,
the power was poorer. By contrast, the Dijkstra-QU algorithm that set queue utilization
as the optimization goal did better in determining the path to load, but its path delay
was larger, and it also could not meet the requirements of the low delay of the satellite
network. The path obtained by the DQN-LLRA algorithm in this paper not only ensured a
low delay but also responded effectively to the load situation in the network, reducing the
maximum and average queue utilization of the link. Compared with the Dijkstra algorithm,
the proposed algorithm reduced the maximum link queue utilization by 8%, reduced the
average queue utilization by 15%, and had a robust load-balancing ability. Compared
with the Q-learning-based algorithm, the proposed algorithm reduced the maximum link
queue utilization by 5%, reduced the average queue utilization by 13%, and had a robust
load-balancing ability.

6. Conclusions

We proposed a Markov decision-process model for route generation and introduced a
deep-reinforcement-learning-based LEO satellite-routing algorithm called DQN-LLRA in
this paper. In the DQN-LLRA scheme, each routing node is controlled by a DQN agent,
which can quickly select the best next hop for the current satellite node. The algorithm
only relies on the state information of the surrounding nodes of the current satellite node
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and obtains the optimal decision model through iterative training. Compared with the
traditional routing algorithm through numerical simulation, our algorithm can reduce the
maximum queue utilization and the average queue utilization of the routing path, reduce
the occurrence of congestion to a certain extent, and realize the satellite network routing
under load balancing subject to the condition of ensuring that the delay cost increases
only a little. This paper also found that when the number of satellite nodes increased to
thousands, the routing path exceeded 20 hops, and then the convergence speed of the
DQN-LLRA algorithm decreased, and the accuracy of the decision model also decreased.
Therefore, using more effective neural network structures such as Graph Neural Networks
(GNN) for network feature extraction is an important direction for future research.

Although the proposed load-balancing routing algorithm for LEO satellites based on
Deep Q-Network shows promising performance improvements compared to traditional
routing algorithms, there are still some limitations and areas for further research. Firstly,
the proposed algorithm is evaluated through simulations, and it remains unclear how well
it would perform in real-world scenarios. Further experiments and measurements in actual
LEO satellite networks are necessary to validate its effectiveness. Secondly, the proposed
algorithm considers delay, bandwidth, and queue utilization of the surrounding satellite
nodes as factors for selecting the best routing results. Other factors, such as link reliability,
congestion level, and energy efficiency, may also be considered in future work. Lastly,
while deep reinforcement learning has shown great potential in improving network routing,
it is a computationally expensive approach that requires significant training time and
resources. Hence, developing more efficient and scalable algorithms that can maintain
good performance with a lower computational overhead is also an important direction
for future research. The proposed DQN-LLRA algorithm is a novel approach for load-
balancing routing in LEO satellite networks. However, further research is needed to address
the abovementioned limitations and achieve more robust and efficient routing.
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The following abbreviations are used in this manuscript:

SAGIN Space–Air–Ground Integrated Network
GEO Geosynchronous Earth Orbit
MEO Medium Earth Orbit
LEO Low Earth Orbit
DQN Deep Q-Network
ISLs inter-satellite links
DQN-LLRA DQN-based load-balancing routing algorithm for LEO satellites
DRA Discrete Relaxation Algorithm
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DHRP Distributed Hierarchical Routing Protocol
HGL Hybrid Global–Local Load Balancing Routing
PIR Probability ISL Routing
ELB Elastic Load Balancing
IoT Internet of Things
WSNs Wireless Sensor Networks
DDPG Deep Deterministic Policy Gradient
MADDPG Multiagent Deep Deterministic Policy Gradient
MDP Markov Decision Process
TD Temporal Difference
GNN Graph Neural Networks
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