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Abstract: The leaf area index (LAI) is a crucial parameter for analyzing terrestrial ecosystem carbon
cycles and global climate change. Obtaining high spatiotemporal resolution forest stand vegetation
LAI products over large areas is essential for an accurate understanding of forest ecosystems. This
study takes the northwestern part of the Inner Mongolia Autonomous Region (the northern section of
the Greater Khingan Mountains) in northern China as the research area. It also generates the LAI time
series product of the 8-day and 30 m forest stand vegetation growth period from 2013 to 2017 (from
the 121st to the 305th day of each year). The Simulated Annealing-Back Propagation Neural Network
(SA-BPNN) model was used to estimate LAI from Landsat8 OLI, and the multi-period GaoFen-1
WideField-View satellite images (GF-1 WFV) and the spatiotemporal adaptive reflectance fusion
mode (STARFM) was used to predict high spatiotemporal resolution LAI by combining inversion LAI
and Global LAnd Surface Satellite-derived vegetation LAI (GLASS LAI) products. The results showed
the following: (1) The SA-BPNN estimation model has relatively high accuracy, with R2 = 0.75 and
RMSE = 0.38 for the 2013 LAI estimation model, and R2 = 0.74 and RMSE = 0.17 for the 2016 LAI
estimation model. (2) The fused 30 m LAI product has a good correlation with the LAI verification of
the measured sample site (R2 = 0.8775) and a high similarity with the GLASS LAI product. (3) The
fused 30 m LAI product has a high similarity with the GLASS LAI product, and compared with the
GLASS LAI interannual trend line, it accords with the growth trend of plants in the seasons. This
study provides a theoretical and technical reference for forest stand vegetation growth period LAI
spatiotemporal fusion research based on high-score data, and has an important role in exploring
vegetation primary productivity and carbon cycle changes in the future.

Keywords: LAI; Landsat8 OLI; GF-1 WFV; STARFM; SA-BPNN

1. Introduction

The leaf area index (LAI) is defined as the area formed by vegetation growth and pho-
tosynthesis, accounting for half of the total leaf area of surface plants per unit area, which
controls physiological and biological processes, such as vegetation growth, respiration, and
transpiration [1–3]. Therefore, the LAI is very important in the study of how biological
and geochemical cycle models and terrestrial ecosystem carbon–water cycle models should
be constructed [4–6]. Thus, obtaining high-precision and high-quality LAI products will
help people improve their knowledge and understanding of the geochemical carbon–water
cycle of land and ecosystems, and their environmental responses to global climate change.

Obtaining large-scale forest LAIs with the help of remote sensing technology has
gradually become the main method and means for the study of vegetation ecological
environments. Currently, LAI estimation can be broadly categorized into three primary
approaches: physical models, empirical models, and hybrid models [7,8]. The majority of
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LAI estimation methods rely on a single remote sensing dataset, which can constrain the
ability to explore the temporal and spatial dynamics of LAI fully. Neural networks have
great advantages when used to deal with linear and complex nonlinear problems [9,10].
Many scholars have introduced artificial neural networks (ANN) into the model research
of LAI inversion [11,12], among which the backpropagation neural network (BPNN) has
a multi-layer nonlinear network structure and strong robustness of the model, and is widely
used [13,14]. Yang Min et al. used Landsat8 OLI and measured data to simulate the BPNN
model, and its inversion accuracy is higher than that of the traditional regression model [15].
Zhu, D.E. et al. demonstrated that the BPNN method, utilizing MODIS reflective time-series
data, is capable of accurately estimating LAI for the Lei bamboo forest [16]. However, some
scholars indicated that the BPNN model has shortcomings, such as its slow network model
training and the fact that it easily falls into a local minimum, which affects the training
accuracy [17]. The simulated annealing (SA) algorithm is a relatively novel random search
algorithm, and the original idea came from the annealing process of solid object space. Hong
Min Zhou et al. found that the SA algorithm is a heuristic algorithm for complex nonlinear
optimization problems, which can be used to extend the local range search algorithm to
find the optimal solution in a larger space [18]. In summary, the Simulated Annealing-Back
Propagation Neural Network model (SA-BPNN) uses a simulated annealing algorithm to
avoid local minimum, and improve convergence speed and accuracy. It can adaptively
adjust the learning rate and inertia factor, and reduce the complexity of parameter setting. It
also has stronger generalization ability and robustness. Additionally, SA-BPNN is suitable
for smaller-scale data sets; using SA-BPNN can effectively reduce the consumption of
computing resources while avoiding the risk of over-fitting. In this study, the global
search capability of the SA algorithm was utilized to optimize the initial weight value
and threshold of the BPNN. The error backpropagation method was then used to find the
optimal solution of the model.

Most current LAI products cannot simultaneously satisfy the requirements of high
temporal resolution and high spatial resolution at the same time. In order to solve this
technical problem, scholars proposed the concept of “image fusion” [19–21]. Its principle is
to introduce the concept of adjacent pixels based on the spatiotemporal fusion model of
the image reconstruction type and use interpolation operations to generate fusion pixels
according to the careful consideration of pixel spectral similarity, temporal distance, and
spatial similarity [22–24]. Among them, the most representative is the spatiotemporal
adaptive reflectance fusion model (STARFM) [25] proposed by Gao et al. In essence, the
model is used to determine the pixels similar to the spectral characteristics of the central
pixel through unsupervised classification and threshold segmentation in the defined search
window, and sample filtering is performed on these pixels to obtain pixels that can provide
sufficient reflectance information. The effective pixel reflectance is integrated by combining
weighted methods to calculate the central pixel, which is used to predict the value of the
reflectance at a certain position at a certain time of day. At present, when scholars choose to
fuse images, most of them fuse MODIS and Landsat images, basically forming a standard
processing flow. Caroline M. Gevaert et al. successfully applied the STARFM model to
combine MODIS and Landsat8 reflectance data, producing high-temporal-resolution and
high-spatial-resolution surface reflectance data that demonstrated a strong correlation
with verified and real image data [26]. Yuan Zhoumiqi et al. evaluated the suitability
of the spatiotemporal remote sensing data fusion algorithm (DDSTDFA) for large-scale
high-spatiotemporal-resolution image data fusion using Landsat8 OLI and three high-
temporal-resolution datasets, confirming its potential for monitoring dynamic changes in
large-scale forest vegetation [27]. With the development of high-scoring Chinese satellites,
some scholars have also tried to use high-scoring Chinese data for fusion. Tao G et al. and
Wang S et al. explored the application characteristics of GF-1 WFV in image fusion by
fusing MODIS and GF-1 WFV or Sentinel-2 and GF-1 WFV data surface reflectance [28,29].

This study developed a method to generate a time series of forest stand vegetation
growth LAI over the northwestern region of Inner Mongolia, China. The method utilized
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data from Landsat8 OLI, GF-1 WFV, and GLASS LAI to obtain 8-day and 30 m resolution
LAI inversion during the growth period (121st to 305th day of each year). This study utilized
the SA-BPNN model to derive LAI maps from Landsat8 OLI and GF-1 WFV images. The
resultant fine-resolution LAI maps were further combined with the temporally continuous
GLASS LAI product using the STARFM algorithm, which enabled the incorporation of
spatiotemporal characteristics from multiple data sources. The accuracy and consistency
of the LAI time series data were evaluated by comparing and validating the results with
ground measurements, thus assessing the spatiotemporal performance of the LAI data.
The research results provide theoretical and technical references for LAI spatiotemporal
fusion research based on high-resolution data and then provide long-term LAI data with
high spatiotemporal resolutions for the study of carbon cycle changes.

2. Materials and Methods
2.1. Study Area

The study area was located in the northwestern part of Hulunbeir City, Inner Mongolia
Autonomous Region of China, and the western part of the Greater Khingan Mountains
Key State Forest Area (119◦9′–122◦26′E, 49◦33′N–52◦24′N, Figure 1), with a total area
of about 45,000 km2. The average altitude of this area is 1000 m. It is a middle-high-
latitude area of Eurasia, with long winters and short summers. The annual precipitation
reaches 10~280 mm, mainly concentrated in July~September in summer. The forest is
mainly composed of Pinus sylvestris var. mongholica, Larix spp., and Betula platyphylla.
The LAI-2000 observation points (triangles) were located in the 20 plots (Standard plot
30 m × 30 m), and the LAINet observation points (five-pointed star) were located in the
No. 4 Ecological Station of the Genhe Experimental Area. The sample plot used in this
study is a standardized plot with dimensions of 30 m by 30 m. This aspect ratio was chosen
to ensure consistency in the size and shape of the plot across all measurements and to
facilitate accurate comparisons between different data sets.

2.2. Datasets and Processing
2.2.1. Satellite Data

The Global Land Surface Satellite of LAI (GLASS LAI) is a high-quality remote sensing
data product with independent intellectual property rights in China. The GLASS LAI is
a relational model from preprocessed data MOD09A1 to LAI value based on the artificial
neural network method, which is used to produce global land surface leaf area index
products. During production, it was processed by removing clouds and snow, filling
missing values, and filtering [30]. As a result, the GLASS LAI products offer global land
surface coverage with a spatial resolution of 1 km and 0.05◦ and a temporal resolution of
8 days. Compared to other products such as MODIS and CYCLOPES, GLASS LAI products
offer a higher spatial resolution, greater precision, global coverage, multi-temporal data,
and higher update frequency. These advantages enable GLASS LAI products to provide
more comprehensive and accurate vegetation coverage information, making it a powerful
tool for research and applications in related fields. In addition, it is the most complete and
time-continuous product in space, providing robust data support for various applications.

In practical applications, reductions may increase errors or have other advantages. It
was downloaded from the National Center for Earth System Science Data (http://www.
geodata.cn/thematicView/GLASS.html (accessed on 1 May 2022)); Landsat8 OLI can
be downloaded from the USGS website (https://earthexplorer.usgs.gov/ (accessed on
1 May 2022)). In this study, GF-1 WFV was used to obtain data for other years; GF-1 WFV
data was obtained from the China Resources Satellite Application Center (http://www.
cresda.com/CN/ (accessed on 1 May 2022)). GF-1 WFV data image spatial resolution is
16 m, and the temporal resolution is 4 days, including four blue, green, red, and near-
infrared bands. The image acquisition time is 27 September 2013, 22 August 2016, and
20 September 2017. The Finer Resolution Observation and Monitoring of Global Land
Cover (FROM-GLC-seg) product has been produced with high overall accuracy (the overall

http://www.geodata.cn/thematicView/GLASS.html
http://www.geodata.cn/thematicView/GLASS.html
https://earthexplorer.usgs.gov/
http://www.cresda.com/CN/
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accuracy is 72.76% [31]) from both Landsat TM and ETM+ data. It is a land product with
global coverage, obtained by being downloaded from the Tsinghua University website
(http://data.ess.tsinghua.edu.cn/index.html (accessed on 1 May 2022)). Details regarding
the data are shown in Table 1.
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Table 1. Information of each remote sensing and GLASS LAI dataset.

Sensor Band Spectral
Range (nm) Acquisition Time (DOY) Spatial

Resolution Revisit Period

Landsat8 OLI

1–AEROSOL 435–451

2014 (151)
2015 (186) 30 m 16-days

2–Blue 452–512
3–Green 533–590
4–Red 636–673
5–NIR 851–879

6–SWIR1 1560–1651
7–SWIR2 2107–2294

GF-1 WFV

1–Blue 450–520
2013 (270)
2016 (235)
2017 (263)

16 m 4-days2–Green 520–590
3–Red 630–690
4–NIR 770–890

GLASS LAI / /

2013–2017 (121–128, 129–136,
137–144, 145–152, 153–160,
161–168, 169–176, 177–184,
185–192, 193–200, 201–208,
209–216, 217–224, 225–232,
233–240, 241–248, 249–256,
257–264, 265–272, 273–280,
281–288, 289–296, 297–305)

1 km 8-days

Acquisition time: Day of year is abbreviated as DOY.

2.2.2. Field Measurements Using LAI Datasets

The verification data set mainly includes two main parts: (1) the LAI-2000 observation
data; (2) the LAINet, TRAC, and LAI-2200 observation system data. Data details are shown
in Table 2.

Table 2. Details of Field measurements LAI data.

LAI Collection Time (DOY) Number of Samples

LAI 2000
2013 (221, 223, 226, 227, 247) 53

2016 (147, 157, 169, 185, 199, 215, 230, 248,
260, 266) 140

LAINet 2013 (221, 223, 226, 227, 247) 50
TRAC 2013 (224, 232, 248) 13

LAI 2200 2013 (222, 225, 228) 9
Collection time: Day of year is abbreviated as DOY.

Regarding the LAI-2000 observation data set of 20 plots in the experimental area of
Genhe City [32], two LAI-2000s were used for synchronous observation. One instrument
was erected and fixed in the open space to measure the skylight, and the other instrument
was used to measure light changes under the forest canopy. The FV2000 program was used
to export the data of the two instruments and combine them to calculate the measurement
results of various places.

The LAINet observation system datasets were built from the No. 4 (L3) plot of the
Ecological Station of the Genhe Experimental Area. The LAINet data were measured
using the wireless sensor network LAI observer made by Beijing Normal University. The
observation system was divided into three parts: the observation upper node, the lower
observation node, and the convergence node. The source of the data was the LAINet
observation data set of the No. 4 (L3, 50◦54.318′N, 121◦29.9325′E) plot of the Genhe
Experimental Area Ecological Station (2013) by Qu Yonghua. Daily LAI data were recorded
(except for on the 233rd to 240th day due to device failure). Since the observation time
was short, we used TRAC LAI and LAI-2200 LAI as DOY validation data for a single day.
Data were collected using the TRAC (Tracing Radiation and Architecture of Canopies)
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instrument, and the mean value of each of the 13 standard plots was taken as one set of
data. Data were also collected using the LAI-2200 instrument, and the mean value of each
of the 9 standard plots was taken as one set of data.

2.2.3. Remote Sensing Image Dataset Preprocessing

The remote sensing image preprocessing method used in this experiment mainly
included Rational Polynomial Coefficient (RPC) orthorectification, radiometric calibration,
atmospheric correction, and resampling, among which GLASS LAI was also used to
perform reprojection, splicing, and cropping.

Radiation calibration was carried out in the ENVI module Radiometric calibration.
Gain and offset values needed to be added to the image before calibration. Landsat8 OLI
and GF-1 images were set according to the relevant parameters of the downloaded image
file; this research uses the RPC module [33,34] in orthorectification, the RPC parameters
included with GF-1 WFV data are used for correction, the DEM data required for correction
is from ASTER satellite’s 30 m spatial resolution GDEM product (https://www.gscloud.cn/
search?kw=GF-1 (accessed on 1 May 2022)), eliminating the geometric distortion caused
by the influence of the mountain, and the deformation caused by the camera orientation;
the atmospheric correction was performed on Landsat8 OLI and GF-1 WFV through the
FLASSH atmospheric correction module [35,36]. As a result, the influence of external
factors such as atmosphere and light on the image was eliminated, and a more accurate
surface reflectance was obtained.

In this study, the spatial resolution of GF-1 WFV is 16 m. To ensure that the image
resolution is the same during the fusion process, we resampled the GF-1 WFV image
data to match the spatial resolution of Landsat 8 OLI, which is 30 m. Additionally, the
spatial resolution of GLASS LAI is 1 km. Firstly, we used the MODIS Reprojection Tool
(MRT) [37,38] to reproject the data to the UTM-WGS84 coordinate system. Then, we
performed data mosaicking. Finally, we resampled the image to 30 m × 30 m in ENVI and
cropped it to the range of the study area.

2.3. LAI Data Fusion Based on the STARFM Model

In this study, an SA-BPNN model was established to estimate the LAI using image
datasets of the 4-band reflectance of GF-1 WFV or the 7-band reflectance of Landsat8 OLI,
and actual measurements obtained from LAI-2000. Then, the estimated LAI was then fused
with GLASS LAI. Finally, the fused LAI was compared to the actual measurement data
from the LAINet, TRAC LAI, and LAI-2200 datasets with the same resolution for inspection.
The main steps of the research included:

(1) The acquisition and preprocessing: acquisition and preprocessing of remote sensing
image data and verification data;

(2) GF-1 WFV and Landsat8 OLI images, along with ground-measured LAI-2000 data,
were preprocessed and used to train the SA-BPNN model. The model was then
utilized to estimate LAI for GF-1 WFV (2013, 2016, and 2017) and Landsat8 OLI
(2014 and 2015) images;

(3) The estimated GF-1 WFV LAI and Landsat8 OLI LAI were fused with GLASS LAI
(2013~2017) using the STARFM model to obtain an LAI with high temporal and spatial
resolution in the study area;

(4) The fused high-temporal and high-spatial-resolution LAI was verified using LAINet,
TRAC LAI, and LAI-2200 data from the plot survey. The technology roadmap is
shown in Figure 2.

https://www.gscloud.cn/search?kw=GF-1
https://www.gscloud.cn/search?kw=GF-1
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2.3.1. LAI Estimation Model

The structure of a back propagation neural network (BPNN) model is multi-layered,
which involves highly nonlinear mapping from input to output and is learned and trained
through a neural network with a certain capacity of samples [39–41]. During the training
process, the network has feedback signals to modify the weights of the connected nodes in
the neural network and further determine the parameters related to each structure of the
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network [42–45]. The calculation process between the input and output layers in the BPNN
model, excluding the input layer, can be described in the following:

Ŷ = foutpot

n

∑
i=1

Wki

(
fhidden

(
m

∑
j=1

WijXj − bi

)
+ bk

)
, (1)

where the parameters m and n are the numbers of neurons in the input layer and the
hidden layer; bi and bk are the deviations in the network hidden layer and the output layer,
respectively; foutpot and fhidden are the transfer functions of the network’s hidden neurons
and output neurons, respectively; Wij connects the weights between the input layer and
the hidden layer of the network; and Wki is the weight between the hidden layer and the
output layer.

The simulated annealing algorithm (SA) is a powerful random search algorithm that
can find optimal solutions in large solution spaces [46–48]. In this study, we utilized SA
to optimize the initial weight and threshold values of the BPNN model, allowing for
faster convergence. We then used the error backpropagation method to fine-tune the
model and achieve the optimal solution. The main steps of the simulated annealing-based
backpropagation neural network (SA-BPNN) algorithm are as follows:

(1) Initialization: Initialize the weights and thresholds of the BPNN and set the initial
temperature, cooling rate, and termination temperature;

(2) Input samples: Input the samples into the BPNN and calculate the output;
(3) Calculate the error: Calculate the error between the output and the expected output;
(4) Update weights and thresholds: Update the weights and thresholds of the BPNN

based on the error to reduce it;
(5) Determine whether to accept: According to the principle of simulated annealing,

calculate the difference between the new error and the old error, as well as the current
temperature, to determine whether to accept the new solution;

(6) Cooling: Reduce the temperature according to the set cooling rate;
(7) Determine whether to stop: When the temperature reaches the set termination tem-

perature or other stopping conditions are met, the algorithm stops and outputs the
final BPNN model.

The experimental setting input variables were Landsat8 OLI images from 2014 to
2015 and GF-1 WFV images from 2013, 2016, and 2017, and the output variable was the
LAI-2000 value measured on the ground to establish the SA-BPNN algorithm. A total of
70% of the LAI-2000 observation data set was used for modeling, and 30% was used as
a validation set for model verification. According to the summary of previous research [49]
and a large number of experimental results. The relevant parameters of the SA-BPNN
model are consistent with the BPNN model, and there are 6 trainable parameters. We use
mean squared error (MSE) as the loss function of the BPNN, and a sigmoid function as the
output layer of the BPNN. The SA algorithm has 5 trainable parameters; the parameters of
the model are shown in Table 3:

Table 3. List of the SA-BPNN algorithm parameter settings.

Models Parameter Name Parameter Value

BPNN

input layer node number 7 (Landsat8), 4 (GF-1 WFV)
number of neural network layers 3

number of hidden layer nodes 1
output layer node number 1

epoch times 3000
learning rate µ 0.001
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Table 3. Cont.

Models Parameter Name Parameter Value

BPNN

input layer node number 7 (Landsat8), 4 (GF-1 WFV)
number of neural network layers 3

number of hidden layer nodes 1
output layer node number 1

epoch times 3000
learning rate µ 0.001

2.3.2. Spatiotemporal Adaptive Reflectance Fusion Model (STARFM)

The spatiotemporal adaptive reflectance fusion model (STARFM) is a powerful tool
for fusing satellite data from different sources with varying spatial and temporal resolu-
tions. Specifically, it can combine high-spatial-resolution Landsat data with high-temporal-
resolution MODIS surface reflection data by taking advantage of their unique spatiotem-
poral characteristics [29,50,51]. In recent years, researchers have expanded the application
of the STARFM to estimate biophysical parameters beyond surface reflectance, such as
the normalized difference vegetation index (NDVI), evapotranspiration, and land surface
temperature. This algorithm has also demonstrated the ability to fuse higher-order satel-
lite products with similar instruments [52,53]. In this study, we innovatively applied the
STARFM method to fuse the registered and scale-consistent data stream GLASS LAI with
the estimated LAI based on Landsat8 OLI and GF-1 WFV image data. The value of the
pixel to be fused can be expressed as:

LAI
(

x ω
2

, y ω
2

, t0

)
=

ω

∑
i=1

ω

∑
j=1

n

∑
k=1

Wijk
(
GLASS

(
xi, yj, t0,

)
+ Landsat, GF

(
xi, yj, tk,

)
− GLASS

(
xi, yj, tk,

))
(2)

where
(

xi, yj
)

is the spatial position of the image pixel; tk is the acquisition time of the
image; GLASS

(
xi, yj, t0,

)
is the GLASS LAI; Landsat, GF

(
xi, yj, tk,

)
is the Landsat8 OLI LAI

and GF-1 WFV LAI, ω is the size of the model search window; (xω/2, yω/2 ) is the center
cell of the search window; and Wijk is the weight of the adjacent pixels searched when
calculating the center pixel of the LAI during the prediction period, Wijk = Sijk ∗ Tijk ∗ Dijk.

The neighboring spectral-similar pixels are a key factor affecting the quality of the
STARFM algorithm for fusing LAI products and are directly related to LAI standard
deviation, classification number, and window size. They determine whether the spectral
information of the neighboring pixels used for pixel calculation is correct. There are two
methods for determining neighboring spectral-similar pixels: unsupervised classification
and thresholding. Compared to unsupervised classification, the thresholding method can
be integrated into the fusion model operation based on the moving or searching window
and does not produce uncertain classes in the classification process. The STARFM algorithm
adopts the thresholding method to determine the neighboring spectral-similar pixels. The
weight Wijk plays a crucial role in determining the contribution of neighboring pixels
towards the estimated reflectance of the central pixel. Its significance can be attributed to
the fact that it is determined by three key measures, which are as follows:

1. At time t0, the smaller the 0-spectrum difference between the data, the greater the
weight of the corresponding position, and the formula is:

Sijk =
∣∣∣Landsat, GF

(
xi, yj, tk,

)
−GLASS

(
xi, yj, tk,

)∣∣∣, (3)

2. The smaller the time difference between the input GLASS LAI at time t0 and the
predicted LAI at time tk, the greater the weight of its corresponding position. The
formula is:

Tijk =
∣∣∣Landsat, GF

(
xi, yj, tk,

)
− GLASS

(
xi, yj, t0,

)∣∣∣, (4)
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3. The closer the distance between the central pixel (x ω
2

, y ω
2

) in the moving window and
the central pixel in the tk period, the greater the weight. The formula is:

Dijk =

√(
x ω

2
− xi

)2
+
(

y ω
2
− yi

)2
, (5)

The time series used in this study covered the growing season from 2013 to 2017,
spanning May to October. The forest types in the study area are coniferous forests and
broad-leaved forests, and the structure is relatively simple. During this period, we utilized
the SA-BPNN model to invert a high-spatial-resolution LAI product and combined it with
the high-temporal-resolution GLASS LAI product, which was available for one scene each
year. Next, we inputted the GLASS LAI of the predicted time for one scene and generated
forecasts for 22 scenes of high spatiotemporal resolution LAI products at other times. We
obtained long-term LAI data with a temporal resolution of 8 days and a spatial resolution
of 30 m, covering the growing season from 2013 to 2017.

The algorithm was implemented using the GCC editor under the Linux system. For
this model, a moving window of 750 m × 750 m was used to search for adjacent spatial
similar pixels, and the number of adjacent spectral similar pixels was set to 40. The output
spatial resolution was 30 m. At time t0: Input one scene of Landsat8 OLI LAI or GF-1 WFV
LAI; one scene corresponds to GLASS LAI at time t0. At time tk: one scene of GLASS LAI
was used to predict the other 22 scenes of Landsat8 OLI LAI or GF-1 WFV LAI at time tk.
The specific input and output data are shown in Table 4.

Table 4. Input and output LAI data.

Highs Spatial Resolution
LAI at t0

High Time Resolution
LAI at t0

High Time Resolution
LAI at tk

High Temporal and Spatial
Resolution LAI at Time tk

GF-1 WFV LAI 2013(270) GLASS LAI 273-280

The Other GLASS LAI
datasets (22 scenes)

GF-1 WFV LAI 2013(22scenes)

Landsat8 OLI LAI 2014(151) GLASS LAI 145-152 Landsat8 OLI LAI 2014
(22 scenes)

Landsat8 OLI LAI 2015(186) GLASS LAI 184-192 Landsat8 OLI LAI 2015
(22 scenes)

GF-1 WFV LAI 2016(235) GLASS LAI 241-248 GF-1 WFV LAI 2016 (22 scenes)
GF-1 WFV LAI 2017(263) GLASS LAI 265-272 GF-1 WFV LAI 2017 (22 scenes)

2.4. Accuracy Assessment

The indicators for evaluating the accuracy of each model are mainly the coefficient
of determination, R2, and the root mean square error, RMSE. R2 represents the coefficient
of determination of the model fitted by the predicted value and the measured value. The
closer the R2 of the fitted model is to 1, the higher the fitting accuracy of the model. RMSE is
the root mean square error, which indicates the degree of dispersion between the predicted
value of the model and the actual value. The smaller the value of RMSE, the smaller the
degree of dispersion between the predicted value of the model and the actual value; that is,
the more reliable the model is. In this study, the accuracy of the evaluation results using
R2 and RMSE was divided into two parts: the preliminary evaluation of the SA-BPNN
model established by the modeling data (taking 30% of the LAI-2000 observation data set in
2013 and 2016 as the validation set, and the comparison with the 2013 and 2016 correlation
analysis of LAI data retrieved in 2016); and the accuracy assessment of the STARFM fusion
model (the LAINet observation data set was aggregated every 8 days, and the average
value was taken to form time-series LAI data, and correlation analysis was carried out with
the fusion LAI data of the corresponding time in 2013). The specific formula is as follows:

R2 = 1− ∑n
i=1(yi

∗ − yi)
2

∑n
i=1(yi − y)2 , (6)
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RMSE =

√
1
n

n

∑
i=1

[yi
∗ − yi]

2, (7)

where n represents the number of samples, yi represents the measured value of the i-th
sample LAI, yi

∗ represents the estimated value of the i-th sample LAI, and y represents the
average value of the measured values of LAI.

3. Results and Analysis
3.1. Inversion LAI Based on SA-BPNN Model

LAI maps retrieved from Landsat8 OLI and GF-1 WFV images were generated us-
ing an inversion method based on the SA-BPNN model, and their accuracy was vali-
dated through comparison with LAI-2000 ground measurements obtained in situ at the
Genhe Ecological Station. Figure 3 shows scatterplots of the LAI measured on the ground
in 2013 and 2016 and predicted using the SA-BPNN model. The findings demonstrate
a strong positive correlation between the LAI estimated using the SA-BPNN model and the
ground-based LAI measurements obtained from the Genhe Ecological Station, indicating
the effectiveness of the method in predicting LAI in the study area.
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Figure 3. Based on SA-BPNN LAI measured value and inversion value correlation: (a) observations
of LAI-2000 plots in 2013; (b) observations of LAI-2000 plots in 2016.

The LAI map predicted from 2013 images (Figure 3a) performed slightly better than
the LAI map predicted from 2016 images (Figure 3b), with smaller RMSE and higher R2

values (the R2 and RMSE of 2013 predicted LAI and observed LAI were 0.7537 and 0.3758,
respectively, and 2016 was 0.7365 and 0.1746).

Both Landsat8 OLI and GF-1 WFV images showed good performances in generating
LAIs. We compared GF-1 WFV (2013, 2016 and 2017) and Landsat8 OLI (2014 and 2015)
images. As described in Section 2.2.3, four bands of the GF-1 WFV image and seven bands
of the Landsat8 OLI image were used in the SA-BPNN-based inversion method. The LAI
maps were derived by applying an inversion method based on the SA-BPNN model to two
satellite datasets, Landsat8 OLI and GF-1 WFV, which were first resampled to the same
pixel size (30 m). The consistency of the resulting LAI maps was then evaluated through
a comparative analysis. The LAI maps and their difference maps generated using the two
sensors during 2013–2017 are shown in Figure 4.
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Figure 4. Estimated LAI results of the SA-BPNN model from 2013 to 2017.

Overall, the LAI prediction surfaces generated using the SA-BPNN model from the
Landsat8 OLI and GF-1 WFV images were consistent with the LAI data derived from the
GLASS LAI product. In terms of spatial distribution, the retrieved forest vegetation LAI
spatiotemporal data show that the southwest region is low, the northeast region is high, and
the distribution is scattered from southwest to northeast, which is similar to the distribution
of forest vegetation in the study area. However, further analysis of Figure 4 reveals that
images from different periods have a significant impact on stitching. Specifically, images
from 2013, 2014, and 2016, as well as their corresponding LAI estimations, all contribute to
this impact. Additionally, cloud layer inversion for high-resolution vegetation LAI remote
sensing may be affected by data pollution in the form of undetected residual thin clouds
and cloud shadows on the landscape, which can introduce uncertainty in LAI inversion.

3.2. Time Series of LAI Assimilation

We compared the time series relationship between the fusion LAI and the non-fusion
GLASS LAI in the growing season from 2013 to 2017. That is, the average statistics of the
fused LAI and the 23 images of the GLASS LAI before the fusion were determined, and the
LAI growth season curve every 8 days per year is produced, as shown in Figure 5.
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Figure 5. LAI curve of the fusion image every 8 days during the mean value of stand LAI growing
season from 2013 to 2017 and its comparison with the mean value of GLASS LAI.

According to the figure, it can be observed that the annual changes in the LAI before
and after fusion in 2013–2017 were consistent; that is, the LAI value showed a trend of
increasing first and decreasing, and the annual maximum value is also the same. Addi-
tionally, this accords with the growth trend of plants in the seasons. For example, from
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days 193 to 209 in the year, that is, 15–30 July, when plants grow vigorously in summer,
the vegetation coverage reaches its highest peak of the year. In the initial period of fusion,
that is, from May to June, the leaves of the vegetation are not fully grown and are in the
growing period. In the later stage of fusion, that is, from September to October, the growth
of vegetation stagnates, and plants are in the leaf defoliation stage, so the LAI was lower
and showed a low peak.

It can also be seen from the figure that in the evaluation of the time series relationship
between the fused LAI and the non-fusion GLASS LAI from 2013 to 2017, the R2 was above
99%. The R2 in 2014, 2015 and 2016 was lower, because there were obvious outliers on the
137th day in 2014, the 177–193rd day in 2015, and the 233–257th day in 2016; 2013 and 2017
showed better results than 2014, 2015 and 2016, and the R2 was above 99.6% in all years.
The results show that the STARFM fusion model based on Landsat8 OLI and GF-1 WFV
images obtained LAI products with high temporal and high spatial resolutions, which
provides theoretical and technical references for LAI spatiotemporal fusion research based
on high-resolution data.

3.3. Spatiotemporal Distribution of LAI Enhancement Methods

Based on the fusion method of the STARFM model, forest stands vegetation growth
period (from the 121st to the 305th day of each year) long-term LAI image sequence with
a spatial resolution of 30 m and a temporal resolution of 8d in the study area from 2013
to 2017 was generated. The actual survey data in 2013 were used for correlation analysis
between LAINet and fusion LAI. The LAINet observation data set of the No. 4 (L3) plot in
the Ecological Station of the Genhe Experimental Area (12 August–23 October 2013 was
the 233–246th-day instrument failure) and the 65-day daily LAI data of the 225th–297th
day were aggregated and averaged every 8 days to form time-series LAI data and correlate
with the fused LAI data at the corresponding time in 2013.

Figures 6 and 7 shows the LAI values measured on the ground in 2013, and the LAI
fused with the STARFM model, as well as the GLASS correlation scatterplot of the LAI.
The correlation analysis between the fused LAI and observed LAI showed a stronger
relationship than that between the GLASS LAI and observed LAI. Better R2 and lower
RMSE values were observed (0.8755 and 0.6818 for fused and survey-observed LAI, and
0.8133 and 0.6821 for GLASS LAI and survey-observed LAI, respectively). The accuracy
of the fused LAI was validated using TRAC LAI and LAI-2200 LAI and was found to be
superior to GLASS LAI. Overall, these results demonstrate the effectiveness of the proposed
method for generating spatiotemporal LAI time series over the study area.

Based on the STARFM fusion model, forest stands vegetation growth period (from the
121st to the 305th day of each year) LAI long-term image series with a spatial resolution
of 30 m and temporal resolutions of 8d in the study area from 2013 to 2017 were obtained.
The details of the temporal and spatial distribution are shown in Figure 8.

Further analysis of Figure 8 shows that the Spatiotemporal distribution of the fused
LAI presented a typical seasonal variation, with lower LAI values in spring and autumn
and higher LAI values in summer. During the growing season from May to October: in
spring (May), DOY121–145, the LAI value gradually increased; in summer (June–August),
DOY145–241, the LAI continued to grow and reached its peak, indicating that the peak pe-
riod of vegetation growth occurred in during mid- and late July (193–208 days); in autumn
(September–October), DOY 242–305, the LAI value decreased gradually. In summary, the
fused LAI image was in line with the seasonal growth trend of plants.
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Figure 8. Spatiotemporal distributions of time-series LAI assimilation of forest stand vegetation
in research area during 2013–2017. (a) Fusion LAI results in the GF-1 WFV growing season 2013;
(b) Fusion LAI results in the Landsat8 OLI growing season 2014; (c) Fusion LAI results in the
Landsat8 OLI growing season 2015; (d) Fusion LAI results in the GF-1 WFV growing season 2016; and
(e) Fusion LAI results in the GF-1 WFV growing season 2017.

4. Discussion

In this study, we estimated stand LAI using Landsat8 OLI and GF-1 WFV reflectance
products with the SA-BPNN model. The resulting LAI estimates and GLASS LAI products
were fused using the STARFM model to generate time-series LAI products for forest stands
during the vegetation growth period from 2013 to 2017, with a temporal resolution of
8 days and a spatial resolution of 30 m.

Fused LAI maps of high spatial resolution long time series were generated using
the SA-BPNN model. The results of this study suggest that the LAI maps generated by
the SA-BPNN model have demonstrated good performance when compared to ground
measurements obtained from the LAI-2000 datasets (Figure 4). In previous studies, the
most commonly used method has been to calibrate the PROSAIL radiative transfer model
to the specific characteristics of the study area by using background information, and this
model can more effectively match the target value range [54–56]. However, the PROSAIL
radiation transfer model involves a variety of physiological and biochemical parameters
and has disadvantages, such as high data acquisition requirements. On the other hand,
the SA-BPNN model used in this study has strong nonlinear mapping, high self-learning
and self-adaptive abilities, automatically extracts the “reasonable rules” between input
and output data through learning, and adaptively memorizes the learning content among
the weights of the network; and has strong generalization ability and a certain level of
fault tolerance. Furthermore, the effectiveness of the model and inversion strategy has
been demonstrated in numerous previous studies, showing that LAI can be successfully
retrieved from multitemporal and multiresolution images. Therefore, the model represents
a new idea for forest vegetation LAI inversion.

STARFM aims to generate 30 m spatial resolution and 8d LAI by fusing time-sparse
Landsat8 OLI LAI and GF-1 WFV LAI images with collected high temporal resolution
GLASS LAI images. Divide the LAI assimilated each year from 2013 to 2017 into six
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levels, and obtain the corresponding LAI histogram (Figure 9). The results show that the
histogram of assimilated LAI also shows the same pattern. Specifically, during spring and
winter, the majority of the LAI values were low, while during summer and early autumn,
there was a significant increase in the proportion of high LAI values. In addition, the
assimilated average LAI from 2013 to 2017 (Figure 5) is consistent with the changing trend
in the LAI histogram corresponding to each year (Figure 9). This result suggests that the
assimilated LAI effectively captures the spatial and temporal dynamics of forest vegetation
LAI. In this study, it was successfully used to fuse the LAI product generated using the
SA-BPNN model. By utilizing a method that searches for pixels with similar spectral
characteristics within a moving window, the generated high spatiotemporal-resolution
images successfully captured the temporal variation in the GLASS LAI time series while
maintaining the high-resolution spatial details found in both the Landsat8 OLI LAI and
GF-1 WFV LAI images.

Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 23 
 

 

and obtain the corresponding LAI histogram (Figure 9). The results show that the histo-
gram of assimilated LAI also shows the same pattern. Specifically, during spring and win-
ter, the majority of the LAI values were low, while during summer and early autumn, 
there was a significant increase in the proportion of high LAI values. In addition, the as-
similated average LAI from 2013 to 2017 (Figure 5) is consistent with the changing trend 
in the LAI histogram corresponding to each year (Figure 9). This result suggests that the 
assimilated LAI effectively captures the spatial and temporal dynamics of forest vegeta-
tion LAI. In this study, it was successfully used to fuse the LAI product generated using 
the SA-BPNN model. By utilizing a method that searches for pixels with similar spectral 
characteristics within a moving window, the generated high spatiotemporal-resolution 
images successfully captured the temporal variation in the GLASS LAI time series while 
maintaining the high-resolution spatial details found in both the Landsat8 OLI LAI and 
GF-1 WFV LAI images. 

 
Figure 9. Statistical histogram of 2013–2017 fusion LAI values. 

A uniform seasonal distribution of sharp high-spatial-resolution scale images is an-
other important requirement for achieving good performance with the STARFM algo-
rithm. In areas with frequent cloud cover, Landsat8 OLI images alone are insufficient to 
capture temporal changes in forest vegetation. The addition of high-spatial-resolution GF-

Figure 9. Statistical histogram of 2013–2017 fusion LAI values.



Remote Sens. 2023, 15, 2812 20 of 23

A uniform seasonal distribution of sharp high-spatial-resolution scale images is an-
other important requirement for achieving good performance with the STARFM algorithm.
In areas with frequent cloud cover, Landsat8 OLI images alone are insufficient to cap-
ture temporal changes in forest vegetation. The addition of high-spatial-resolution GF-1
WFV images provides additional temporal information and improves the ability to detect
changes in canopy structure. In this study, combining high spatial resolution GF-1 WFV
and Landsat8 OLI data with GLASS LAI data can provide more detailed spatial information
and effectively increase the high spatial resolution. However, this study also found the
significant impact of cloud cover on the accuracy of the STARFM model during vegetation
parameter estimation and fusion. Cloud cover can cause pixel distortion, making it chal-
lenging for the model to extract vegetation parameter information from remote sensing
data accurately. Furthermore, it can result in data loss, further reducing the accuracy of
the model. Therefore, it is crucial to address cloud cover by using cloud masks, cloud
restoration algorithms, etc., to minimize its impact on the model in future research when
applying the STARFM model to estimate vegetation parameters. Previous studies have
also demonstrated that the STARFM model may encounter significant prediction errors
when estimating vegetation parameters in small areas if no pure-sized pixels are found in
the search window [25,57], as observed in this study. Furthermore, the STARFM model
can eliminate most of the abnormal points in the original LAI curve; a small number of
abnormal fluctuations in the LAI time series may still lead to uncertainty in the spline
interpolation and result in a less smooth LAI curve. To overcome this challenge, future
research can employ higher spatial resolution vegetation datasets, which may help identify
purer coarse-resolution neighboring pixels and reduce prediction errors in vegetation pa-
rameters within small areas. Alternatively, future research could explore the use of more
advanced time series data algorithms to replace missing or poorly observed values and
generate temporally smooth and spatially complete datasets. This approach can lead to
more accurate prediction results, improving the overall performance of the model.

5. Conclusions

In this study, we utilized multisource remote sensing ground reflectance data from
Landsat8 OLI and GF-1 WFV to construct an SA-BPNN model for LAI estimation in the
study area. Subsequently, we employed the STARFM to integrate the GLAAS LAI product
with the high-spatial-resolution LAI data estimated from Landsat8 OLI and GF-1 WFV.
By doing so, we generated a time-series product of forest stand vegetation growth (LAI)
during the growth period (121st to 305th day of each year) with a temporal resolution of
8 days and a spatial resolution of 30 m. The results show the following: (1) The SA-BPNN
estimation model had high precision (the estimated values of the 2013 LAI model were
R2 = 0.7537 and RMSE = 0.3758; the estimated values of the 2016 LAI model were
R2 = 0.7365 and RMSE = 0.1746); (2) After fusion, the 30 m LAI product had good correla-
tion with the LAI verification of the measured sample site (R2 = 0.8775); compared with
the GLASS LAI interannual trend line in the same time period Same result (R2 = 0.8133).
The results indicate that combining ground reflectance data from Landsat 8 OLI and GF-1
WFV sensors enhances LAI estimation and expands the range of available data for analysis.
These findings provide a valuable reference for future research on the spatiotemporal fusion
of LAI with high-resolution domestic data. The high-temporal and high-spatial-resolution
LAI products generated in this study offer critical data to facilitate investigations into
changes in carbon cycles.
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