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Abstract: Since individual neural networks have limited deep expressiveness and effectiveness, many
learning frameworks face difficulties in the availability and balance of sample selection. As a result, in
change detection, it is difficult to upgrade the hit rate of a high-performance model on both positive
and negative pixels. Therefore, supposing that the sacrificed components coincide perfectly with
the important evaluation objectives, such as positives, it would lose more than gain. To address this
issue, in this paper, we propose a multi-visual collaborative deep network (MV-CDN) served by
three collaborative network members that consists of three subdivision approaches, the CDN with
one collaborator (CDN-C), CDN with two collaborators (CDN-2C), and CDN with three collaborators
(CDN-3C). The purpose of the collaborator is to re-evaluate the feature elements in the network
transmission, and thus to translate the group-thinking into a more robust field of vision. We use
three sets of public double-temporal hyperspectral images taken by the AVIRIS and HYPERION
sensors to show the feasibility of the proposed schema. The comparison results have confirmed that
our proposed schema outperforms the existing state-of-the-art algorithms on the three tested datasets,
which demonstrates the broad adaptability and progressiveness of the proposal.

Keywords: multi-visual collaborative deep network (MV-CDN); collaborative network member;
hyperspectral images; changed sensitivity network; unchanged sensitivity network

1. Introduction

Change detection of hyperspectral images is a hot application in remote sensing. To
detect the earth surface changes resulting from natural causes or human activities in the
same geographic location over time, double-temporal images, which contain a former image
captured at a certain time and a detected image acquired at a later point in time, are needed.
This technique is highly applied in many fields, e.g., eco-environmental protection [1,2],
urban sprawl [3,4], land application [5,6], farmland changes [7,8], geological disaster
monitoring [9,10], as well as forest and wetland conservation [11]. With the development
of multitemporal real-time monitoring, intelligent scene surveillance [12–14] and warning
forecast systems were pushed to fresh highs.

In the remote-sensing field, although multispectral images [6] and synthetic aperture
radar (SAR) images [15] demonstrate good performance in the domain of change detection,
they show some weaknesses in terms of limited spectral information. It is fortunate that
hyperspectral images (HSIs) can carry more detailed descriptions about real physical
objects because of the wider spectrum. This favors the performance improving of change
detection, e.g., through the novel method using multiple morphological profiles (MMPs)
proposed by Hou et al. [16]. To fully utilize the important spectral and temporal sequences
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of HSIs, Wang et al. [17] proposed to join the spectral, spatial, and temporal for change
detection on HSIs. However, the important spectral and temporal sequences for HSIs
are easily ignored. As shown in a literature survey, though many HSIs-oriented change-
detection methods have been developed, this does not mean they can satisfactorily solve
the difficulties caused by the inevitable and unexpected change factors occurring in the
specific wave domains [18]. The traditional practice is to first reduce the dimensional
structure or determine the hoped-for bands selected from hundreds of bands for efficient
analysis. However, although it is beneficial in removing noise and improving computational
efficiency, high-dimensionality reduction may cause the loss of effective features, which
will lead to a matter of mistaken identity.

To minimize the above problems and reduce the misidentification rate, some re-
searchers proposed to make use of all spectral bands for the sake of maximizing the amount
of information and improving the detection performance. In this respect, deep neural
networks (DNNs) possess arbitrary nonlinear expressiveness [19] and are regarded as
the main content of studies. On the premise of full-band information, the breakthrough
points of the DNN-based methods usually include supervised algorithms [20,21], fea-
ture enhancement [22,23], ways to avoid negative factors, optimization of objective loss
function [24] for applicability requirements, etc. With the efforts of many researchers,
extraordinary progress has been made in these respects. However, the deep expressiveness
of a DNN model is limited, and we found no cases about translating the group-thinking of
collaborative network members resulting from the fine-tuning of a prototypical model into
a more robust field of vision.

Accordingly, we propose to employ three light-weight collaborative network members
with sensitivity disparity to serve the multi-visual collaborative deep network (MV-CDN).
In fact, each collaborative network member can independently generate the projection
features for change-detection analysis, the corresponding network architecture, transfor-
mation process, and the theory of loss function are detailed in Section 3. As collaborative
network members, the fully connected network (FCNet) is applied in the state-of-the-art
model deep slow feature analysis (DSFA) [25]. With SFA, it demonstrates the effectiveness
and practicality for change detection in hyperspectral images; the sensitivity disparity
networks (SDN) [26], which consist of an unchanged sensitivity network (USNet) we have
proposed in our previous work [27] and is also known as dual-path partial recurrent net-
works (D-PRNs); and a changed sensitivity network (CSNet). The special note is that the
SDN members, USNet and CSNet, result from the fine-tuning of FCNet and extensive
testing has proven that they are more sensitive to unchanged pixels and more sensitive
to changed pixels, respectively. The collaborators are selectively applied to the network
layers of collaborative network members to translate the group-thinking of collaborative
network members into a more robust field of vision and thus to construct the three branch
approaches: CDN with one collaborator (CDN-C) on the output layer (OL), CDN with
two collaborators (CDN-2C) on the output layer and the second hidden layer (HL-2), and
CDN with three collaborators (CDN-3C) on the output layer, the HL-2 and the first hidden
layer (HL-1), respectively. Table 1 lists their corresponding relationships. After generating
the collaborative projection features (CPF) with the MV-CDN, SFA is applied to suppress
the unchanged features and enhance the changed features in both deep learning and repro-
cessing. After that, to better analyze the change level, the Euclidean distance is applied to
generate the change-intensity map (CIM). Considering that it is hard to uniquely demon-
strate the changes using a CIM, we employ a K-means clustering algorithm [28] afterward
to generate the binary change map (BCM).

The major contributions of our work are summarized as follows: (1) an MV-CDN
is introduced to mine more robust features from multi-visual deep expressiveness, and
it can achieve a better balance in detecting positive and negative pixels; (2) CDN-C of
greatest efficiency is proposed, and because of the three loose and incoherent outputs,
it has much room for improvement in the model performance, e.g., sample importance
analysis and derivation of weighted network; and (3) CDN-2C is mainly designed for
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actual ensemble learning with model compactness. The results tested on three real-word
hyperspectral image datasets demonstrate the superiority with comparison to the state-of-
the-art benchmarks. We organize the rest of this paper as follows. Section 2 is a review of
the related work. Then we demonstrate the process of the proposed schema in Section 3.
Section 4 describes the details of the tested datasets, the performance of the proposed
scheme, as well as the comparison with state-of-the-art studies. Section 5 discusses the
issues encountered during the experiments. Finally, in Section 6 we draw conclusions from
the comparison of the proposed schema and the benchmarks.

Table 1. The relationship among learning collaborator (LC), output collaborator (OC), the first hidden
layer (HL-1), the second hidden layer (HL-2), the output layer (OL), in three subdivision approaches:
CDN with one collaborator (CDN-C), CDN with two collaborators (CDN-2C), CDN with three
collaborators (CDN-3C). The “×” means not available.

Collaborator CDN-C CDN-2C CDN-3C

HL-1 × × LC
HL-2 × LC LC

OL OC OC OC

2. Related Work

With the explosive growth of double- and multitemporal hyperspectral images, con-
fronting the complexity of background features, traditional algorithms cannot effectively
detect the changes in the spectral domain. Deep learning frameworks, meanwhile, have
shown their powerful expressiveness in change-detection tasks. The deep networks are
grouped by the training data as supervised and unsupervised deep networks. As a su-
pervised model for change detection in remotely sensed images, Feng et al. [29] extended
the encoding path of U-Net into a weight-sharing bilateral encoding path without in-
troducing additional parameters when extracting independent features of bi-temporal
images. The testing results on two real-world aerial image datasets confirmed the effective-
ness and robustness of the novel method in comparison to other state-of-the-art methods.
Yuan et al. [30] proposed a weakly supervised method for change detection in hyperspec-
tral images. With the distance metric learning, evolution regular framework, and Laplacian
regularized metric learning methods, the tested results demonstrated the superiority of
the proposed schema compared with the novel methods under both “ideal” and “noisy”
conditions. Shi et al. [31] proposed a deeply supervised attention metric-based network.
In this work, convolutional block attention modules were integrated in the deep metric
learning to produce more discriminative features; also, the deeply supervised module was
applied to assist the feature extractors in generating more useful features. Compared with
other state-of-the-art work, the proposed method achieved the highest performance on
both tested datasets.

Since the quality of label data largely determines the detection performance of the
supervised model and ill labels can cause uncertainty in the detection results, unsupervised
models that have superiority in this regard are being used by many researchers for change
detection in hyperspectral images. Lei et al. [32] proposed a novel change-detection method
for hyperspectral image change detection. Based on unsupervised adversarial learning for
spectral mapping and spatial attribute optimization for discriminant analysis, the results
tested on two real datasets showed competitive performance over other state-of-the-art
methods. Li et al. [33] proposed to combine two complementary model-driven methods,
structural similarity and change vector analysis, to generate credible labels as training
samples of a subsequent CNN. The experimental results confirmed the effectiveness of the
proposed method.

Although many unsupervised methods perform well in change detection of hyper-
spectral images, the deep expressiveness of an individual deep network is limited. In fact,
there exist few cases served by ensemble DNN to improve the model robustness and the
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detection balance between changed pixels and unchanged pixels. Thus, in this paper, we
propose to apply three similar light-weight collaborative network members with sensitivity
disparity as a MV-CDN, which acts as the main part of our novel multi-visual collaborative
deep network for change detection of double-temporal hyperspectral images.

As a baseline method, the novel baseline DSFA was proposed to detect the changes
of hyperspectral images. The major contribution of DSFA lies in the derivation of the loss
function with the theory of SFA, which results in the suppression of unchanged pixels
to enhance the changed pixels. The testing results have demonstrated its superiority in
change-detection performance in comparison to the state-of-the-art algorithms. To support
our proposed MV-CDN, three collaborative network members, the prototypic model FCNet
used in DSFA, and two other fine-tuned networks with similar structure and sensitivity
disparity, are introduced. Based on the FCNet, we construct the other two collaborative
network members, which are sensitive to unchanged pixels and changed pixels and are
named USNet and CSNet, respectively. With collaborators, the MV-CDN translate the
multi-vision of three collaborative network members into a more robust field of vision and
a more balanced performance in detecting the changed pixels and unchanged pixels.

3. Materials and Methods

• This section describes the procedure of the proposed schema, which is composed of
four modules: the MV-CDN module, the collaborator module, the SFA reprocessing
module, and the change analysis model.

• The MV-CDN consists of three subdivision approaches: CDN-C, CDN-2C, and CDN-
3C, with CDN-C denoting the CDN with one collaborator on the OL, CDN-2C denoting
the CDN with two collaborators on the OL and HL-2, and CDN-3C denoting the CDN
with three collaborators on the OL, HL-2, and HL-1.

• We first feed the double-channel MV-CDN with symmetric training pixels X and Y,
which are selected from specific areas of the pre-detected binary change map (BCM)
obtained from DSFA [25] with SFA reprocessing omitted, and the specific areas are de-
tailed in the experiment section. The MV-CDN model could be well-trained following
Sections 3.1 and 3.2 under the hyperparameter settings in the experimental section.
In the deep learning process, three light-weight collaborative network members, FC-
Net [25], USNet [26], and CSNet [26], are employed to serve the MV-CDN; the SFA
algorithm is applied to construct the loss function for extracting invariance features. As
the central idea of this paper, collaborators are utilized to translate the group-thinking
of the collaborative network members into a more robust field of vision.

• The collaborators carried by different network layers of the three subdivision ap-
proaches are shown in Table 1, where OC denotes the output collaborator and LC
denotes the learning collaborator.

• Figure 1 shows the procedure of the proposed schema for detecting the changes of
double-temporal hyperspectral images. Given the reference image denoted by R and
query image denoted by Q, we reshape both into N × 1 × B-dimensional data, with N
and B respectively denoting the number of pixels and the band number of an image.
Note that N is equivalent to H × W, with H and W respectively representing the
height and width of the image. All paired pixels will pass the well-trained model to
obtain the CPF with a spatial dimension of H ×W × b, with b denoting the number
of feature bands. Next, the SFA reprocessing module is employed to further inhibit
the unchanged features and enhance the changed features of the spatial data model of
N × 1 × b. Finally, in the change-analysis module, the Euclidean distance [34] and
K-means [28] algorithms are successively applied to compute the change-intensity
map and the final binary change map.
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Figure 1. Flowchart of proposed schema based on multi-visual collaborative deep network (MV-
CDN), which consist of three collaborative network members: fully connected network (FCNet),
unchanged sensitivity network (USNet), and changed sensitivity network (CSNet).

3.1. Architecture and Training Process of Proposed MV-CDN

In this section we describe the architecture of the MV-CDN and explain it mathemati-
cally in detail. The MV-CDN consists of three light-weight collaborative network members
with similar structures and sensitivity disparity. In this work, the FCNet [25] is regarded
as the prototype of the particular collaborative network members. Extensive experiments
have confirmed that the double-cycle of internal parameters W and b in the HL-1/HL-2 is
more conducive to detecting changed pixels/unchanged pixels. Thus far, the construction
of the USNet and CSNet, which we have proposed in our previous work [26], is designed
and implemented. Supposing there is no collaborator, each collaborative network mem-
ber can independently generate the projection features for the change-detection analysis;
with the MV-CDN mechanism, the collaborators are selectively applied to translate the
group-thinking of the collaborative network members into a more robust field of vision.

We illustrate the architecture of the collaborative network members, FCNet, USNet,
and CSNet, in Figure 2 and demonstrate their corresponding parameter settings in Table 2.
In Figure 2, the white nodes on the far left, denoted by X and Y, indicate the input variables
(IV) of the double-temporal samples; the rightmost white nodes denoted by X f /Xu/Xc and
Y f /Yu/Yc indicate the symmetric projection features of the collaborative network members:
FCNet denoted as f, USNet denoted as u, and CSNet denoted as c; the green nodes on the
rightmost stand for the output layer; consequently, the remaining two groups of green
nodes represent the two hidden layers. In Table 2, the 128, 6, and 10 indicate the numbers
of nodes; B and b indicate the number of bands of each detected image and the number of
bands of the corresponding mapped features, respectively. Table 2 also lists the cycle layers,
the activation function of each layer, and the dropout rate. Additionally, the learning rate,
epoch, sampling range, and sample size, etc., are detailed in the experimental section.
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Table 2. Cycle layers of internal parameters and structural configuration of some hyperparameters
for collaborative network members: FCNet, USNet, and CSNet.

Settings Activation Function Nodes Double-Cycle Dropout

FC
N

et

IV N/A B N/A N/A

HL-1 Softsign 128 ×
0HL-2 Softsign 128 ×

OL Softsign 6 ×

U
SN

et

IV N/A B N/A N/A

HL-1 Leaky_relu 128 ×
0.2HL-2 Softsign 128

√

OL Tanh 10 ×

C
SN

et

IV N/A B N/A N/A

HL-1 Leaky_relu 128
√

0.2HL-2 Softsign 128 ×
OL Tanh 10 ×

We feed the symmetric samples X and Y to train the MV-CDN. The well-designed
process of HL-1 is formulated in proper order as (1)–(3).

X f
HL−1 = a f

HL−1

(
W f

HL−1X + b f
HL−1

)
Y f

HL−1 = a f
HL−1

(
W f

HL−1Y + b f
HL−1

) (1)

Xu
HL−1 = au

HL−1
(
Wu

HL−1X + bu
HL−1

)
Yu

HL−1 = au
HL−1

(
Wu

HL−1Y + bu
HL−1

) (2)

Xc
HL−1 = ac

HL−1
(
Wc

HL−1
(
ac

HL−1
(
Wc

HL−1X + bc
HL−1

))
+ bc

HL−1
)

Yc
HL−1 = ac

HL−1
(
Wc

HL−1
(
ac

HL−1
(
Wc

HL−1Y + bc
HL−1

))
+ bc

HL−1
) (3)

where f, u, and c respectively indicate the three collaborative network members: FCNet,
USNet, and CSNet; a f

HL−1, au
HL−1, and ac

HL−1 are the corresponding activation functions,
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a f
HL−1 = Softsign, ac

HL−1, au
HL−1 = Leaky_Relu; the superscript and subscript of internal

parameters W and b indicate the collaborative network members and the current layer,
respectively; and the paired results

(
X f

HL−1, Y f
HL−1

)
,
(
Xu

HL−1, Yu
HL−1

)
, and

(
Xc

HL−1, Yc
HL−1

)
are three outputs of the corresponding layer of the collaborative network members.

In the CDN-3C approach, the outputs of HL-1 will then go through the LC of the
collaborator process module to obtain the pair-wise data

(
Xupd

HL−1, Yupd
HL−1

)
, which are taken

as the input of HL-2, where ‘upd’ means ‘updated’. However, in the case of the other
two subdivision approaches, the output of HL-1 is regarded as the input of HL-2. With LC,
the HL-2 process can be represented as (4)–(6).

X f
HL−2 = a f

HL−2

(
W f

HL−2Xupd
HL−1 + b f

HL−2

)
Y f

HL−2 = a f
HL−2

(
W f

HL−2Yupd
HL−1 + b f

HL−2

) (4)

Xu
HL−2 = au

HL−2

(
Wu

HL−2

(
au

HL−2

(
Wu

HL−2Xupd
HL−1 + bu

HL−2

))
+ bu

HL−2

)
Yu

HL−2 = au
HL−2

(
Wu

HL−2

(
au

HL−2

(
Wu

HL−2Yupd
HL−1 + bu

HL−2

))
+ bu

HL−2

) (5)

Xc
HL−2 = ac

HL−2

(
Wc

HL−2Xupd
HL−1 + bc

HL−2

)
Yc

HL−2 = ac
HL−2

(
Wc

HL−2Yupd
HL−1 + bc

HL−2

) (6)

where a f
HL−2, au

HL−2, and ac
HL−2 are the corresponding activation functions, a f

HL−2, ac
HL−2,

au
HL−2 = Softsign. Likewise, in the CDN-3C and CDN-2C approaches, the LC of the

collaborator process module is used to obtain the updated paired data
(

Xupd
HL−2, Yupd

HL−2

)
,

which will then go through the output layer to obtain the projection features. In the case of
CDN-C approach, the output of HL-2 is regarded as the input of the output layer. With LC,
the process of the output layer can be expressed with (7)–(9).

X f
OL = a f

OL

(
W f

OLXupd
HL−2 + b f

OL

)
Y f

OL = a f
OL

(
W f

OLYupd
HL−2 + b f

OL

) (7)

Xu
OL = au

OL

(
Wu

OLXupd
HL−2 + bu

OL

)
Yu

OL = au
OL

(
Wu

OLYupd
HL−2 + bu

OL

) (8)

Xc
OL = ac

OL

(
Wc

OLXupd
HL−2 + bc

OL

)
Yc

OL = ac
OL

(
Wc

OLYupd
HL−2 + bc

OL

) (9)

where a f
OL, au

OL, and ac
OL are the corresponding activation functions, a f

OL = Softsign,
ac

OL, au
OL = Tanh. Afterwards, OC is applied on the output layer to calculate the pair-

wise CPF (Xnew
OL , Ynew

OL ), which are then used for further change analysis, where ‘new’ means
the new matrix updated from the projection features of the collaborative network members.

To train the MV-CDN model, we follow the loss function of DSFA [25], which is
derived from the feature invariance extraction known as SFA theory on double-temporal
images. The SFA theory is summarized into an objective function and three restrictions [25],
which could be reconstructed into a generalized eigenproblem as (10).

AW = BWL (10)

where W and L stand for the generalized eigenvector matrix and diagonal matrix of
eigenvalues, respectively; A and B denote the expectation of the covariance matrix for the
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first-order derivative of double-temporal features and the expectation of the covariance
matrix for double-temporal features as (11) and (12), respectively.

A = 1
n

n
∑

i=1
(xi − yi)(xi − yi)

T

= ∑ XY
(11)

B = 1
2n

(
n
∑

i=1
xixT

i +
n
∑

i=1
yiyT

i

)
= 1

2 (∑ XX + ∑ YY)
(12)

where xi and yi are regarded as the ith pair-wise pixels; T and n indicate the transpose
operation and the number of pixels of a whole image. In conditions where both ∑ XX and
∑ YY are non-negative and invertible, the generalized eigenproblem can be reformulated
as (13).

B−1AW = WL (13)

where the square of B−1A should be minimized to meet the feature invariance of SFA
theory; thus, the loss function could be designed as (14).

Loss[(WX, bX), (WY, bY)] = tr
[(

B−1A
)2
]

(14)

where tr denotes the trace of the matrix. Through the gradient descent algorithm detailed
in part B of the methodology section of reference [25], both pair-wise internal parameters
(WX, bX) and (WY, bY), which result from the learning of X and Y, are obtained.

3.2. Collaborator Process

In this section, Figure 3 shows the collaborator process of subdivision approaches. In
HL-1 and HL-2, LC is applied for the collaborative task, which is formulated as (15)–(17),
and before that the data of tensor type to be processed should be converted to array type.

Min
(

d
(

x f
i , xu

i

)
, d
(

x f
i , xc

i

)
, d
(
xu

i , xc
i
))

Min
(

d
(

y f
i , yu

i

)
, d
(

y f
i , xc

i

)
, d
(
yu

i , yc
i
))

⇒
{

(xa
i , xb

i )

(ya
i , yb

i )
(15)

where i and d denote the pixel index and the absolute value of the difference between
two values, respectively; Min is an operator to take the minimum of three values; in the
obtained (xa

i , xb
i ) and (ya

i , yb
i ), the pair (a, b) is regarded as one of three pairs: (f, u), (f, c),

and (u, c). Then, (16) is used for the revaluation of (xa
i , xb

i ) and (ya
i , yb

i ).

Mean(xa
i , xb

i )

Mean(ya
i , yb

i )

}
⇒
{

Xnew
HL−j

Ynew
HL−j

(16)

where Mean represents the arithmetic average operator, HL-j signifies the jth hidden layer,
and naturally, the paired data

(
Xnew

HL−j, Ynew
HL−j

)
denote the re-evaluation results of the full

image in HL-j. To realize the network transmission, (17) is utilized to convert the new
results to tensor type without destroying the calculation graph.

Xupd
HL−j= Xu

HL−j ∗mask + Xnew_tnr
HL−j ∗(1 − mask)

Yupd
HL−j= Yu

HL−j ∗mask + Ynew_tnr
HL−j ∗(1 − mask)

(17)
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where the pair-wise data
(

Xu
HL−j, Yu

HL−j

)
act as two motherboard tensors;

(
Xnew_tnr

HL−j , Ynew_tnr
HL−j

)
stands for the tensor type of

(
Xnew

HL−j, Ynew
HL−j

)
, which has been obtained with (16); the

mask is a binary matrix whose dimension is consistent with each tensor of paired data(
Xu

HL−j, Yu
HL−j

)
. Moreover, in practice, all feature elements are regarded as updated;

thus, the mask ought to be filled with 0. We calculate the Hadamard product on the
pair-wise data

(
Xu

HL−j, Yu
HL−j

)
and mask, then add the tensor type of the paired data(

Xnew
HL−j, Ynew

HL−j

)
marked with

(
Xnew_tnr

HL−j , Ynew_tnr
HL−j

)
to obtain the needed results Xupd

HL−j and

Yupd
HL−j, which are regarded as the input of the next layer. In (17), the ‘upd’ and ‘new_tnr’

mean ‘updated’ and ‘new_tensor’, respectively. We especially note that the other two pairs of
data

(
X f

HL−j, Y f
HL−j

)
and

(
Xc

HL−j, Yc
HL−j

)
could also be taken as motherboard tensors and

are involved with computing; in particular, we test with the pair-wise data
(

Xu
HL−j, Yu

HL−j

)
in the collaborator process.
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Figure 3. The collaborator process of three subdivision approaches: CDN-C, CDN-2C, and CDN-3C.

Regarding the output layer, since the projection features no longer transmit in the net-
work, (15) and (16) are utilized with (17) omitted to calculate the pair-wise data (Xnew

OL , Ynew
OL ).

3.3. SFA Reprocessing

In the tests we feed the well-trained model with a reference image R and query image
Q to obtain the double-temporal CPF (R1, Q1). To take the SFA efficiency one step further,
the weight vector matrix W resulting from USNet is required because the USNet is more
sensitive to unchanged pixels to match the SFA objectives. The SFA reprocessing can
further inhibit the unchanged features to highlight the changed features as conducive to
the segmentation of thresholding.

As shown in Figure 4a, before SFA reprocessing with the effective network, the red
dots and blue dots of reverse scattering would undoubtedly lead to false segmentation.
To execute the SFA reprocessing, we multiply the transpose of W with (R1, Q1) as in (18)
to produce the feature sets (R2, Q2). The result is indicated as Figure 4b. It is noteworthy
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that the effectiveness of SFA reprocessing depends on the expressiveness of the network
used in the previous step; thus, the deep features of low quality would reinforce the error
description, as described in Figure 4c,d.

R2= WTR1, Q2= WTQ1 (18)
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3.4. Change Analysis

In effect, it is impossible to artificially recognize the change areas from the double-
temporal features (R2, Q2). Therefore, the Chi-square distance [35], Euclidean distance [34]
and improved Mahalanobis distance [36], etc., could be selectively applied to the calculation
of the change-intensity map (CIM). In the tests, the Euclidean distance is employed to serve
the computing of CIM using (19) and (20).

CIM =
√

DiffTDiff (19)

Diff =
b

∑
j=1

n

∑
i=1

(
r(i,j) − q(i,j)

)
(20)

where i, j, n, and b stand for the pixel index, the band index, the number of pixels, and the
number of bands, respectively. The r(i,j) and q(i,j) indicate the feature elements acquired
from the pair-wise data R2 and Q2, respectively.

The computed result of Euclidean distance is regarded as the CIM, which could
be applied for the initial detection of changes. Then the K-means clustering method is
employed as automatic thresholding for image segmentation, and finally the binary change
map is generated, in which the white and black marks uniquely identify the changed and
unchanged areas, respectively. The pseudocode of the proposed schema is summarized
and presented in Algorithm 1.
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Algorithm 1 Pseudocode of proposed schema for change detection of double-temporal
hyperspectral images

Input: Double-temporal scene images R and Q;
Output: Detected binary change map (BCM);
1: Select training samples X and Y based on BCM of pre-detection;
2: Initialize parameters of MV-CDN as PX, PY;
3: Configuration of epoch number, learning rate, sample size, etc.;
4: Case CDN-C:
5: Apply OC on OL;
6: Go to line 13;
7: Case CDN-2C:
8: Apply OC on OL, and LC on HL-2;
9: Go to line 13;
10: Case CDN-3C:
11: Apply OC on OL, and LC on HL-2& HL-1;
12: Go to line 13;
13: while i < epochs do
14: Compute the double-temporal projection features of pair-wise samples X and Y: X̂ = f
(X, PX) and Ŷ = f (Y, PY);

15: Compute the gradient of loss function L(PX, PY) = tr[
((

B̂
)−1Â

)2
] with ∂L(PX,

PY)/∂PX and ∂L (PX, PY)/∂PY;
16: Update parameters;
17: i++;
18: end
19: Generate the double-temporal projection features R1 and Q1 of images R and Q;
20: SFA reprocessing is applied to the CPF to generate the pair-wise data (R2, Q2) with:
R2= WTR1, Q2= WTQ1;
21: Euclidean distance is used for the calculation of CIM;
22: K-means is applied to obtain the BCM;
23: return BCM;

In the tests, we found that other distance methods have little influence on the detection
results in comparison to the using of Euclidean distance; in addition, the K-means clustering
algorithm could be replaced by other threshold algorithms such as Otsu [37]. In particular,
the designed example uniformly adopts the Euclidean distance and K-means threshold
algorithm.

4. Results

To test the performance of comparison methods, three hyperspectral image datasets
acquired from web address [38] are employed. We detail the tested datasets as follows.
As shown in Figure 5, all three datasets are double-temporal data models. Among them,
the scene images of “Hermiston” were taken in 2004 and 2007. It covers Hermiston
City, Oregon, with a 30 m ground resolution using the HYPERION sensor and a size of
390 × 200 pixels. There are 242 spectral bands selected for change-detection tasks. The
full image of Hermiston is labelled with 78,000 pixels, including 9986 positive pixels and
68,014 negative pixels. The two hyperspectral images of the dataset “Santa Barbara” were
obtained from the AVIRIS sensor in 2013 and 2014 over Santa Barbara, California, USA,
with a 20 m ground resolution and having a spatial dimension of 984 × 740 × 224 to
indicate the height and width of pixels and the number of bands, respectively. The “Bay
Area” scenes were acquired using the AVIRIS sensor in 2013 and 2015 over Patterson City,
California, USA, with a 20 m ground resolution and dimensional size of 600 × 500 × 224.
It is estimated that the full image of the Santa Barbara dataset has 728,160 pixels, including
52,134 positive pixels, 80,418 negative pixels, and 595,608 unlabeled pixels; while in the
‘Bay Area dataset, there are 300,000 pixels in each image, including 39,270 positive pixels,
34,211 negative pixels, and 226,519 unlabeled pixels.
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4.1. Measurement Coefficients

Figure 5(C3) demonstrates the ground-truth maps of the tested datasets. Among
them, the white marks and black marks of (R2, C3) indicate the positives and negatives,
respectively, while in (R1, C3) and (R3, C3), the silver marks and white marks represent the
labelled areas, with silver marks denoting the negatives and white marks representing the
positives. Based on the ground-truth maps with confidence of absoluteness, five metric
coefficients, OA_CHG, OA_UN, OA [39], Kappa and F1 [40], as defined in (21)–(26), are
employed to quantify the comparison among methods of change detection.

OA_CHG =
TP
LP

(21)

OA_UN =
TN
LN

(22)
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OA =
TP + TN

ALL
(23)

Kappa =
OA− Pe

1− Pe
(24)

Pe =
(TP + FP)× LP + (TN + FN)× LN

ALL2 (25)

F1 =
2TP

2TP + FP + FN
(26)

where OA_CHG and OA_UN are two metric coefficients on positive pixels and negative
pixels, respectively, while OA, Kappa, and F1 are three comprehensive coefficients of
different measurement modes. In the equations, ALL stands for the total number of labelled
pixels; TP and FN indicate the number of true positives and false negatives, respectively,
and the sum of them is equivalent to LP, which means the number of labelled positives; TN
and FP represent the number of true negatives and false positives, respectively, and their
sum is equivalent to LN, which signifies the number of labelled negatives.

With respect to the hyperparameters, the number of nodes of each hidden layer de-
noted by NoH, the number of nodes of the output layer represented by NoO, and the
learning rate (LR) are, respectively, 5× 10−5, 128, and 10. In clinical practice, the pair-wise
pixels matched to the specific areas are regarded as training samples. Hence, in the tests,
the pre-detected binary change map (PD-BCM) resulting from the change-detection model
using the fully connected network (CD-FCNet) [25] and with SFA reprocessing cancelled is
applied as the sampling reference object. Furthermore, because of the synchronous collabo-
ration, all collaborative network members train with 2000 epochs. The dataset Santa Barbara
requires 3000 paired pixels selected from the changed areas of PD-BCM, while 3000 paired
pixels of unchanged areas are selected for the other two datasets, Hermiston and Bay Area.
We especially note that the visualization and quantization results of a particular dataset are
generated from the same sampling strategy; therefore, the comparison is fair.

When the training of the MV-CDN is completed, two detected images are fed to the
well-trained model to generate three couples of CPF for three subdivision approaches,
CDN-C, CDN-2C, and CDN-3C. Since an RGB image has three bands, we endow the
fourth, third, and second bands to synthesize the feature map of pseudo-color from CPF.
By performing the comparison methods on three tested datasets, we demonstrate the
double-temporal feature maps of CPF in Figure 6, where the left column, right column, top
row, and bottom row are assigned to the feature maps resulting from the reference image
and query image with and without SFA reprocessing, respectively. (C1)–(C6) correspond
respectively to the comparison methods: DSFA [25], the change-detection model using
the unchanged sensitivity network (CD-USNet) [26], the change-detection model using
the changed sensitivity network (CD-CSNet) [26], and the proposed CDN-C, CDN-2C,
and CDN-3C.

In Figures 7–9, (R1) demonstrates the divergence maps; (R2) shows the change-
intensity maps (CIM), with very bright marks indicating a change of high probability
and very dark marks denoting a small change or no change. In the grayscale CIM, it
is difficult to determine the pixel-wise change states. Therefore, the K-means clustering
algorithm is then applied to generate the BCM as shown in (R3), where the white marks
and black marks represent the detected changed areas and unchanged areas, respectively.
To identify the detected states of TP, FN, TN, and FP, as well as the unlabeled domain, we
recolor the BCM with white, red, green, yellow, and black, respectively, to generate the
hitting state map (HSM), as shown in (R4). Since the dataset Hermiston does not contain
an unlabeled domain, there exist no black marks in the corresponding HSM.



Remote Sens. 2023, 15, 2834 14 of 20
Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 23 
 

 

(C1) (C2) (C3) (C5)(C4) (C6)

(R1)

(R2)

(R3)

 

Figure 6. Feature maps of double-temporal CPFs on three tested datasets: (R1): Hermiston, (R2): 

Santa Barbara, (R3): Bay Area; (C1): deep slow feature analysis (DSFA) [25], (C2): change-detection 

model using the unchanged sensitivity network (CD-USNet) [26], (C3): change-detection model us-

ing the changed sensitivity network (CD-CSNet) [26], (C4): CDN-C, (C5): CDN-2C, (C6): CDN-3C; 

left column: from reference image; right column: from query image; top row: feature map without 

SFA reprocessing; bottom row: feature map with SFA reprocessing. 

In Figures 7–9, (R1) demonstrates the divergence maps; (R2) shows the change-inten-

sity maps (CIM), with very bright marks indicating a change of high probability and very 

dark marks denoting a small change or no change. In the grayscale CIM, it is difficult to 

determine the pixel-wise change states. Therefore, the K-means clustering algorithm is 

then applied to generate the BCM as shown in (R3), where the white marks and black 

marks represent the detected changed areas and unchanged areas, respectively. To iden-

tify the detected states of TP, FN, TN, and FP, as well as the unlabeled domain, we recolor 

the BCM with white, red, green, yellow, and black, respectively, to generate the hitting 

state map (HSM), as shown in (R4). Since the dataset Hermiston does not contain an un-

labeled domain, there exist no black marks in the corresponding HSM. 

Figure 6. Feature maps of double-temporal CPFs on three tested datasets: (R1): Hermiston, (R2):
Santa Barbara, (R3): Bay Area; (C1): deep slow feature analysis (DSFA) [25], (C2): change-detection
model using the unchanged sensitivity network (CD-USNet) [26], (C3): change-detection model
using the changed sensitivity network (CD-CSNet) [26], (C4): CDN-C, (C5): CDN-2C, (C6): CDN-3C;
left column: from reference image; right column: from query image; top row: feature map without
SFA reprocessing; bottom row: feature map with SFA reprocessing.
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Figure 7. Visualization results on dataset Hermiston. (R1): DSFA [25], (R2): CD-USNet [26], (R3): 

CD-CSNet [26], (R4): CDN-C, (R5): CDN-2C, (R6): CDN-3C; (C1): divergence map, (C2): change-
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Figure 7. Visualization results on dataset Hermiston. (R1): DSFA [25], (R2): CD-USNet [26], (R3): CD-
CSNet [26], (R4): CDN-C, (R5): CDN-2C, (R6): CDN-3C; (C1): divergence map, (C2): change-intensity
map, (C3): binary change hap, (C4): Hitting state map.
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CD-CSNet [26], (C4): CDN-C, (C5): CDN-2C, (C6): CDN-3C.

4.2. Comparison with State-of-the-Art Work

This part analyzes and compares the proposed scheme and the state-of-the-art work:
DSFA [25], CD-USNet [26], and CD-CSNet [26] in the perspectives of visualization and
quantitation. Figures 7–9 shows the visualization results on the three datasets Hermiston,
Santa Barbara, and Bay Area, respectively.

In Figure 7, (R4, C4), (R5, C4), and (R6, C4), and in Figures 8 and 9, (R4, C4), (R4, C5),
and (R4, C6) are the three images with the smallest area of red marks and largest area of
white marks, representing the minimum FN values and maximum TP values, respectively.
This also indicates that the proposed scheme is a method to obtain a high hit-rate of changed
pixels in comparison to the benchmarks. Moreover, a closer examination reveals that, even
if the proposed schema does not always have the superiority in detecting unchanged pixels,
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due to its distinct advantage on changed pixels, it always outperforms the benchmarks in
overall performance.
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Figure 9. Visualization results on dataset Bay Area. (R1): divergence map, (R2): change intensity
map, (R3): binary change map, (R4): hitting state map; (C1): DSFA [25], (C2): CD-USNet [26], (C3):
CD-CSNet [26], (C4): CDN-C, (C5): CDN-2C, (C6): CDN-3C.

The five well-formulated coefficients OA_CHG, OA_UN, OA, Kappa, and F1 given
in (21)–(26) were calculated to show the performance of the change-detection methods.
Reliable and high-quality data are provided for analysis in Tables 3–5, where the more
recent advanced algorithms, CD-SDN-AM and CD-SDN-AL [26], are compared, with the
best result of each quantization coefficient marked in bold. We summarize the data analysis
as follows. (1) Collaborative network members serving the MV-CDN are theoretically
effective: based on the DSFA algorithm, the CD-CSNet model outperforms the DSFA in
OA_CHG, while it underperforms in the OA_UN coefficient, and the CD-USNet model
has been proved to be contrary. (2) Due to the characteristics of multi-vision, the MV-CDN
model achieves a better balance in the detection performance of positive and negative
pixels. (3) The proposed schema has intense, comparative, and slight superiority over
the other comparison methods on the datasets Bay Area, Santa Barbara, and Hermiston,
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respectively. (4) Compared with CDN-2C, the CDN-3C with one more collaborator cannot
further improve the detection performance. (5) Even though the proposed CDN-C and
CDN-2C may not always be in the top two for the coefficients OA_CHG and OA_UN, their
performance in the comprehensive coefficients OA, Kappa, and F1 is not inferior to any
other method on any tested dataset.

Table 3. Comparison of quantization results on dataset Hermiston.

Results TP TN FP FN OA_CHG OA_UN OA Kappa F1

DSFA [25] 9299 67,467 547 687 0.9312 0.9920 0.9842 0.9287 0.9378
CD-USNet [26] 9206 67,650 364 780 0.9219 0.9946 0.9853 0.9331 0.9415
CD-CSNet [26] 9314 67,535 479 672 0.9327 0.9930 0.9852 0.9334 0.9418

CD-SDN
CD-SDN-AM [26] 9195 67,674 340 791 0.9208 0.9950 0.9855 0.9338 0.9421
CD-SDN-AL [26] 9346 67,632 382 640 0.9359 0.9944 0.9869 0.9407 0.9482

MV-CDN
CDN-C (Proposed) 9420 67,578 436 566 0.9433 0.9936 0.9872 0.9421 0.9495

CDN-2C (Proposed) 9414 67,597 417 572 0.9427 0.9939 0.9873 0.9428 0.9501
CDN-3C (Proposed) 9456 67,543 471 530 0.9469 0.9931 0.9872 0.9424 0.9497

Table 4. Comparison of quantization results on dataset Santa Barbara.

Results TP TN FP FN OA_CHG OA_UN OA Kappa F1

DSFA [25] 43,426 79,333 1085 8708 0.8330 0.9865 0.9261 0.8411 0.8987
CD-USNet [26] 43,442 79,580 838 8692 0.8333 0.9896 0.9281 0.8452 0.9012
CD-CSNet [26] 45,497 77,087 3331 6637 0.8727 0.9586 0.9248 0.8406 0.9013

CD-SDN
CD-SDN-AM [26] 46,532 76,838 3580 5602 0.8925 0.9555 0.9307 0.8539 0.9102
CD-SDN-AL [26] 45,481 78,892 1526 6653 0.8724 0.9810 0.9383 0.8684 0.9175

MV-CDN
CDN-C (Proposed) 45,547 78,855 1563 6587 0.8737 0.9806 0.9385 0.8689 0.9179

CDN-2C (Proposed) 45,537 78,912 1506 6597 0.8735 0.9813 0.9389 0.8697 0.9183
CDN-3C (Proposed) 45,593 78,781 1637 6541 0.8745 0.9796 0.9383 0.8685 0.9177

Table 5. Comparison of quantization results on dataset Bay Area.

Results TP TN FP FN OA_CHG OA_UN OA Kappa F1

DSFA [25] 32,972 32,961 1250 6298 0.8396 0.9635 0.8973 0.7955 0.8973
CD-USNet [26] 32,959 33,042 1169 6311 0.8393 0.9658 0.8982 0.7974 0.8981
CD-CSNet [26] 33,738 32,603 1608 5532 0.8591 0.9530 0.9028 0.8062 0.9043

CD-SDN
CD-SDN-AM [26] 35,717 31,815 2396 3553 0.9095 0.9300 0.9190 0.8377 0.9231
CD-SDN-AL [26] 35,632 32,422 1789 3638 0.9074 0.9477 0.9261 0.8521 0.9292

MV-CDN
CDN-C (Proposed) 35,654 32,618 1593 3616 0.9079 0.9534 0.9291 0.8581 0.9319

CDN-2C (Proposed) 35,645 32,681 1530 3625 0.9077 0.9553 0.9298 0.8596 0.9326
CDN-3C (Proposed) 35,590 32,675 1536 3680 0.9063 0.9551 0.9290 0.8579 0.9317

On the platform of Tensorflow 2.0.0, Python 3.6.3, and with graphics hardware of
NVIDIA GeForce RTX 3070 for each collaborative network member, the time costs of CDN-
C, CDN-2C, and CDN-3C in the deep learning process were, respectively, 16 s, 21 s, and
28 s on dataset Hermiston; 25 s, 33 s, and 47 s on dataset Santa Barbara; and 16 s, 22 s, and
29 s on dataset Bay Area, as demonstrated in Figure 10.
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5. Discussion

The proposed MV-CDN is an effective deep model for change-detection tasks on
double-temporal hyperspectral images. The subdivision approaches, CDN-2C and CDN-
3C, are two collaborative deep models of compactness, because they restrict each other in the
hidden layer(s). As we have shown, the CDN-3C, which takes the most time in the learning
process with no improving performance, is an eliminated subdivision approach. The less
time-consuming CDN-2C is not inferior to CDN-3C in terms of detection performance.
Based on this, considering the performance and model compactness, CDN-2C is desirable.
The CDN-C carries only one collaborator and takes the least time. In this case, the three
collaborative network members have no mutual restriction before the output layer, and
they do not even require a synchronized process or similar structure; thus, there is much
variability in the collaborative network members when using CDN-C.

As we know, CDN-3C does not show performance superiority, whether in terms of
detection accuracy or time consumption, compared to the other two approaches. The
reasons can be explained as follows: (1) The mechanism of the proposed schema lies in
the effective perspectives; however, in the HL-1, the transformation process of FCNet
and USNet are the same, and this is reflected in Figure 2 and Table 2. In this case, the
additional collaborator of the first hidden layer of CDN-3C may prevent the MV-CDN from
generating better description features. (2) The sensitivity disparity between FCNet and
USNet is formed until it reaches the HL-2, and therefore achieves a better multi-vision effect.
(3) Within the effective range of perspectives (the second hidden layer and the output layer),
CDN-2C outperforms the CDN-C because it has more collaborators.

6. Conclusions

In this paper, we propose a MV-CDN for double-temporal hyperspectral image change
detection. In the proposed schema, three light-weight collaborative network members,
the prototypical FCNet, USNet, and CSNet, are employed to serve three subdivision ap-
proaches: CDN-C, CDN-2C, and CDN-3C. In the CDN-C approach, an output collaborator
is applied on the output layer; based on CDN-C, an additional learning collaborator is
applied on the HL-2 for CDN-2C, while two additional learning collaborators are applied
on HL-1 and HL-2 for CDN-3C. The collaborators integrate the multi-vision of three col-
laborative network members. When the collaborative projection features are acquired, the
SFA reprocessing and Euclidean distance are successively applied to enlarge the difference
between the changed pixels and unchanged pixels and then generate the change-intensity
map. Finally, the K-means method is employed to split the change-intensity map into



Remote Sens. 2023, 15, 2834 19 of 20

a binary change map, which can uniquely identify the detected changes. We implemented
the proposed schema on three open double-temporal hyperspectral image datasets. The
tested results show that our proposed scheme could outperform any change-detection
model with a single collaborative network member and achieves a better balance in the
detection performance of positive and negative pixels in comparison to the benchmarks.
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