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Abstract: Both the vastness of pasturelands and the value they contain—e.g., food security, ecosystem
services—have resulted in increased scientific and industry efforts to remotely monitor them via satellite
imagery and machine learning (ML). However, the transferability of these models is uncertain, as
modelers commonly train and test on site-specific or homogenized—i.e., randomly partitioned—datasets
and choose complex ML algorithms with increased potential to overfit a limited dataset. In this study,
we evaluated the accuracy and transferability of remote sensing pasture models, using multiple ML
algorithms and evaluation structures. Specifically, we predicted pasture above-ground biomass and
nitrogen concentration from Sentinel-2 imagery. The implemented ML algorithms include principal
components regression (PCR), partial least squares regression (PLSR), least absolute shrinkage and
selection operator (LASSO), random forest (RF), support vector machine regression (SVR), and a gradient
boosting model (GBM). The evaluation structures were determined using levels of spatial and temporal
dissimilarity to partition the train and test datasets. Our results demonstrated a general decline in
accuracy as evaluation structures increase in spatiotemporal dissimilarity. In addition, the more simplistic
algorithms—PCR, PLSR, and LASSO—out-performed the more complex models RF, SVR, and GBM
for the prediction of dissimilar evaluation structures. We conclude that multi-spectral satellite and
pasture physiological variable datasets, such as the one presented in this study, contain spatiotemporal
internal dependence, which makes the generalization of predictive models to new localities challenging,
especially for complex ML algorithms. Further studies on this topic should include the assessment of
model transferability by using dissimilar evaluation structures, and we expect generalization to improve
for larger and denser datasets.

Keywords: pasture; transferability; machine learning; Sentinel-2; satellite data; biomass; yield;
nitrogen; cross-validation; complexity

1. Introduction

Grazing lands comprise about 25% of the earth’s land area and are essential for global
food security and the delivery of ecosystem services [1]. Satellite remote sensing (SRS)
technology offers a highly valuable tool for monitoring the expansive and heterogenous
nature of these systems [2,3]. Researchers have demonstrated the potential for SRS models
to estimate key pasture variables—forage quantity and nutritive value—which are critical
for pastoral decision-making and improved management [4,5]. Multi-spectral satellite
products—e.g., Sentinel-2 (S2), Landsat, MODIS—are often used for this purpose, and
machine learning (ML) algorithms are increasingly used to model the spectral data to phys-
iological variables of interest. However, the transferability of these models is uncertain, as
modelers commonly train and evaluate on site-specific data or choose evaluation structures
that homogenize multi-site data—e.g., random K-fold cross-validation (CV). Moreover,
the impact of ML algorithm selection on generalization has been well-documented, and
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complex algorithms have been shown to overfit limited datasets [6]. Therefore, the primary
objective of this study is to assess the accuracy and transferability of SRS pasture models
using multiple ML algorithms and evaluation structures.

Previous studies of empirical SRS pasture models vary in approach and accuracy, with,
for example, R2 values from 0.4 to 0.97 [3]. Vegetation indices (VI)—e.g., NDVI—offer a simple
method of dimensionality reduction, which have been effectively fit to estimate pasture
biomass with linear and exponential regression models [7,8]. However, simple VI models are
confounded by various biophysical states—e.g., soil and moisture conditions—and therefore
lack generalizability to other sampling locations [9–11]. To leverage the full range of spectral
data provided by optical SRS platforms, ML algorithms offer a more robust alternative. Linear
regression algorithms with added regularization or dimension reduction—e.g., LASSO, PCR,
and PLSR—have been previously used to model pasture AGB with effective accuracy [12].
Researchers have also implemented more complex algorithms such as random forest (RF),
support vector machine (SVM), and gradient boosting models (GBM) to predict pasture AGB
with high accuracy [3]. In addition to AGB, nitrogen concentration (%N) of the forage is
an important variable for pasture management decision-making, as it informs on both the
nutritive value and productivity of the pasture. Although less studied than AGB, the potential
to empirically model %N of pasture from SRS multispectral data has been demonstrated
using both VI and ML approaches [13–15]. To our knowledge, our study is the first to develop
AGB and %N SRS models for bahiagrass (Paspalum notatum), a valuable forage species in the
Southeastern United States.

SRS predictions of pasture biomass and quality can inform decision-making, which
would be enhanced by the quantification of how well predictions generalize to other—e.g.,
data-poor—conditions. However, the majority of SRS pasture-modeling publications fo-
cus on model accuracy, while transferability is infrequently discussed. This may be due
to small experimental datasets from which extrapolation is not possible. Where studies
do involve multi-site and multi-temporal data, models are often evaluated as a single
locality without evaluation of how well the model predicts spatially and temporally auto-
correlated subgroups within the dataset. This is a critical issue since ecological data are
well-known to contain internal dependence structures that are unaccounted for by random
resampling methods, resulting in overly optimistic estimates of model performance [16].
This phenomenon has been observed in SRS data as well, and the challenge of model
transferability has been documented for several SRS modeling applications—e.g., land
cover classification [17,18] and forest biomass prediction [19,20]. To account for this spa-
tiotemporal autocorrelation, it has been demonstrated that blocking CV methods provide
more realistic estimates of model error than randomized CV [16,21,22]. Moreover, choosing
CV folds to deliberately induce extrapolation provides an estimate of model transferabil-
ity [22,23]. Therefore, our study investigated the transferability of SRS pasture models by
implementing a variety of different spatiotemporal CV blocking schemes.

In addition to training/evaluation structure, choice of ML algorithm has a large impact
on model transferability [22,23]. The challenge of transferability is closely related to the
bias-variance tradeoff, in that the model must not overfit the training data in order to
extrapolate [24]. In theory, complex ML algorithms are more prone to overfitting as the
increased number parameters allow for model greater flexibility, resulting in enhanced
learning of training data and decreased potential for effective transfer [25]. Moreover, if the
training data contains noise or “difficult” learning cases, the more complex algorithms are
increasingly vulnerable to overfitting those unique instances [26]. Nonetheless, complex
algorithms are increasingly used to model pasture variables from SRS data [3], as the
research objectives of these studies are frequently limited to interpolative evaluations.
Studies investigating the impact of algorithms on transferability indicate mixed results,
and a “silver bullet” algorithm is unlikely for all circumstances [23]. Thus, to address our
objective of assessing the accuracy and transferability of SRS pasture models, we tested six
ML algorithms—LASSO, PCR, PLSR, RF, SVR, and GBM.
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Based on the effectiveness of previous studies for modeling pasture AGB and %N
from multi-spectral data, we hypothesize that our models will return similarly effective
accuracies, especially when employing less extrapolative evaluation structures. We expect
these accuracies to decline as the spatiotemporal groupings increase in dissimilarity. In
addition, given our relatively small experimental dataset, we expect the enhanced learning
of complex ML algorithms to result in higher accuracies for the interpolative evaluations
and lower accuracies for the extrapolative evaluations, in comparison to the relatively
simple linear algorithms. From these results, we will draw conclusions on the transferability
of SRS pasture models and the necessity of diverse evaluation methods in this research area.

2. Materials and Methods
2.1. Experimental Sites and In Situ Measurements

The data for our SRS pasture models were acquired from two experiments—one
specifically designed for S2 ground truthing at the Beef Research Unit (BRU) in Gainesville,
Florida and the other a grazing trial at the North Florida Research and Education Center
(NFREC) in Marianna, FL, for which S2 imagery was acquired retroactively. Both experi-
mental areas consist of multiple paddocks containing Pensacola bahiagrass managed by
the University of Florida Agronomy Department. The soil order at BRU is Spodosol with 0
to 2% slopes and moderately poor drainage, while NFREC contains well-drained Ultisol
soils with 2 to 5% slopes.

The BRU experiment included 20 large scale (30 m × 30 m) plots located by Garmin
GPS to surround the Sentinel-2 20 m pixel grids with a 5 m buffer (Figure 1). The plots were
maintained and monitored for the duration of the 2021 growing season (April–September).
The study included two replications of a gradient-design manipulation of the pasture
height by chopping, i.e., mowing and removing residue. Ten pasture height treatments
were implemented through the use of various mower height settings and a rotational
chopping schedule. To initialize the first five treatments, the spring bahiagrass growth was
chopped to heights of approximately 4, 14, 23, and 33 cm, as well as an uncut treatment.
The same mower heights were used on the second half of the plots 10 days later. Due to the
10-day regrowth period, each of the 10 treatments had a different pasture height (except the
uncut treatments), and the gradient was initialized and ready for monitoring and continued
maintenance. The plot maintenance included chopping the tallest treatment to a height of 4
cm each week for the remainder of the growing season. Thus, each individual plot was cut
2 or 3 times over the duration of the experiment, and at any given time, the 10 treatments
were manipulated to contain different gradations of pasture height. The gradient of pasture
height treatments resulted in a range of physiological variables (e.g., AGB, %N) available
for the ground-truthing of ongoing Sentinel-2 observations.

The NFREC grazing trial site included six 0.85 ha bahiagrass paddocks (Figure 1), and
data were taken during the 2019, 2020, and 2021 growing season (May–October). These
experimental units are larger than the BRU plots, therefore the representative samples
of both experimental and spectral data were averaged for each paddock. Three of these
paddocks received 224 kg N ha−1 yr−1, and three were unfertilized. An approximately
equivalent grazing pressure was maintained over each growing season using a put and
take system. Methods for this experiment are detailed in Jaramillo et al. (2021) [27].

The AGB of both the BRU plots and NFREC paddocks were estimated using double
sampling instruments common to pasture research. A digital rising plate meter (RPM)
was used at BRU, and an analog falling plate meter (FPM) was used at NFREC. The RPM
and FPM readings were taken in an approximately equidistant grid in order to obtain a
representative sample from each experimental unit. At BRU, the plots were experimentally
measured within 5 days of each cloud-free Sentinel-2 observation of the growing season,
while the NFREC paddocks were sampled on a regular biweekly schedule. Calibrating
samples for both instruments were taken monthly to determine the linear regression models
between readings and AGB. In addition, biweekly forage samples were taken from the
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NFREC plots for %N analysis. These samples were selected from leaves in the upper
canopy to simulate the typical grazing behavior of cattle.
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perimental boundaries, indicated in red.

2.2. Sentinel-2 Imagery Processing

S2 Level-2A surface reflectance imagery was retrieved from Google Earth Engine. To
simplify various S2 pixel sizes, the ten-meter bands were aggregated to 20 m. Experimental
pixels were verified to be cloud-free by visual inspection of RGB images, and band 10
(Cirrus—1375 nm) of the level-1C images was used to detect cirrus clouds. Any experi-
mental pixels containing clouds were discarded. The aerosols and water vapor bands were
discarded, returning the ten S2 bands used commonly for landscape observation—2, 3,
4, 5, 6, 7, 8, 8A, 11, and 12. Ten commonly used vegetation indices were calculated from
the S2 bands to be included as additional features for ML modeling (Table 1). This list of
indices was determined from a review of the index-based SRS pasture-modeling literature,
especially studies of the Sentinel-2 platform [8,28].

Table 1. Vegetation indices applied to Sentinel-2 datasets. Rλ represents reflectance, and λ represents
the central wavelength (nm) of the band.

Abbreviation Index Name Formula Citation

DLH Difference light height R783 − 0.5(R865 + R740) [29]

DO Three band Dall’Olmo R865 ×
(

1
R783

− 1
R740

)
[30]

EVI Enhanced vegetation index 2.5(R842−R665)
R842+6∗R665−7.5∗R490+1

[31]

NAOC Normalized area over reflectance curve 1 − 40∗R665+35∗R705+43∗R740
118∗R783

[32]

NDI Normalized difference index R783−R740
R783+R740

[8]
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Table 1. Cont.

Abbreviation Index Name Formula Citation

NDTI Normalized difference tillage index R1610−R2190
R1610+R2190

[33]

NDVI Normalized difference vegetation index R842−R665
R842+R665

[34]

NDWI Normalized difference water index R842−R1610
R842+R1610

[35]

TBI1 Three band index 1 R490
R560+R665

[8]

TBI2 Three band index 2 R740
R665+R785

[8]

At BRU, six good S2 images were identified over the course of the 2021 growing season
and successively sampled within a 5-day window. The S2 pixel contained in each BRU
experimental plot was extracted and paired to the mean RPM-estimate of AGB, resulting in
120 rows of data. At NFREC, 25 good S2 images were retroactively identified to be within
5 days of the experimental dates throughout the 2019, 2020, and 2021 growing seasons. The
mean reflectance was taken for each paddock—each containing between 7 and 14 S2 pixels
without overlap of the boundaries—and paired to the mean FPM-estimates of AGB and
%N values. Thus, the NFREC AGB dataset contained 140 rows of data and 145 rows of data
for %N. The BRU and NFREC AGB datasets were merged for ML modeling and evaluation.

2.3. Evaluation Structures

Eight evaluation structures were used for the training and testing of the ML algorithms,
including seven nested CV evaluations and one train/test holdout (Table 2). The nested
CV structures included an outer loop to partition the training/test sets for prediction and
accuracy evaluation, and the inner loop was used to tune model hyperparameters. Thus,
the nested CVs allowed the development and evaluation of multiple models and the use of
the full dataset. Predictions were pooled across all iterations, followed by calculation of
overall error metrics R2 and RMSE. The train/test holdout evaluation involved training on
the BRU data and testing on NFREC and only one CV for hyperparameter tuning.

Table 2. Summary of data partitioning structures. Hyperparameter tuning was performed on the
training partition for each evaluation.

Variable Evaluation Name Train/Test Partitioning Hyperparameter Tuning Partitioning

AGB

Random 10-fold shuffled CV 5-fold shuffled CV
Plot LOGOCV grouped by experimental plot 5-fold CV grouped by experimental plot
Date LOGOCV grouped by S2 acquisition date 5-fold CV grouped by experimental date

Location Trained on BRU data, tested on NFREC data 3-fold CV grouped by experimental plot

%N

Random 5-fold shuffled CV 3-fold shuffled CV
Plot LOGOCV grouped by experimental plot 3-fold CV grouped by experimental plot
Date LOGOCV grouped by S2 acquisition date 3-fold CV grouped by experimental date
Year LOGOCV grouped by year 3-fold CV grouped by experimental plot

Since our objective was to investigate transferability, different spatial and temporal
CV fold structures were used with increasing dissimilarity. The least dissimilar evaluation
structures involved conventional random K-fold CV evaluations for both AGB and %N
datasets. The next evaluations used the spatial plots (and paddocks) as the partitioning
unit for a Leave One Group Out CV (LOGOCV) for both pasture variables. To test temporal
extrapolation, a LOGOCV was used with the individual S2 images as the partitioning
unit. The final AGB model evaluation structure was the train/test holdout trained on BRU
data and tested on NFREC data. The final %N model evaluation structure used LOGOCV
with the year as the partitioning unit. Each evaluation structure also included a parameter
tuning method, detailed in Table 2.
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2.4. ML Algorithms and Hyperparameters

The ML algorithms were selected based on prevalence in the literature and theoretical
efficacy for regressing a relatively small dataset and moderately sized feature space. The
relative simplicity of the linear models—LASSO, PCR, and PLSR—are theoretically less
prone to overfitting, while offering feature selection or dimensionality reduction. RF,
SVR, and GBM—herein referred to as complex algorithms—were selected as algorithms
capable of regressing more complex response patterns. The models were implemented
in Python, using the Xgboost (XGB) library for the GBM [36] and scikit-learn for all other
algorithms [37]. The simplistic algorithms contained only one hyperparameter for tuning,
while the complex algorithms contained multiple.

Hyperparameter tuning was conducted using cross validation and an exhaustive grid
search function [38]. For each algorithm, the most frequently manipulated hyperparameters
were identified and a wide-ranging grid of acceptable values were identified for tuning.
Hyperparameter ranges and final values are reported in Supplementary Tables S1 and S2.

The six ML regression algorithms were implemented for each of the eight evaluation
structures. Additionally, each model fit was performed on two feature sets—S2 bands only
and S2 bands + VI—resulting in 96 model fits. Only the more accurate of the feature sets
was included for each model fit, leading to 48 model evaluations for publication.

3. Results

All AGB and %N models, including all ML algorithms, performed effectively (test
R2 = 0.50–0.73) when evaluated with the two most interpolative evaluation structures—
random CV and CV grouped by plot (Tables 3 and 4). The difference between the error
metrics of these two evaluation structures was negligible. For the date-level evaluation
(i.e., extrapolation to new S2 images), the model performances (R2 = 0.20–0.60) exhibited an
overall decline in accuracy, with some models yielding ineffective predictions. All models
were less effective (R2 < 0.4) for the most rigorous evaluation strictures—extrapolation to
different location for AGB and extrapolation to different years for %N.

Table 3. Performance metrics of AGB (kg ha−1) prediction models for the four evaluation structures.

Evaluation Feature Set Algorithm Train R2 Train RMSE Test R2 Test RMSE

Random Spectral bands + indices

LASSO 0.68 715 0.65 759
PCR 0.68 717 0.63 769
PLSR 0.68 716 0.64 760

RF 1.00 73 0.71 683
SVR 0.87 465 0.72 679
XGB 1.00 58 0.69 704

Plot Spectral bands + indices

LASSO 0.68 718 0.64 769
PCR 0.68 718 0.63 776
PLSR 0.68 717 0.63 774

RF 1.00 56 0.69 710
SVR 0.90 405 0.73 656
XGB 0.99 92 0.66 746

Date Spectral bands + indices

LASSO 0.68 716 0.58 825
PCR 0.67 727 0.60 800
PLSR 0.68 724 0.59 811

RF 0.99 109 0.48 916
SVR 0.68 723 0.45 941
XGB 0.98 188 0.49 914
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Table 3. Cont.

Evaluation Feature Set Algorithm Train R2 Train RMSE Test R2 Test RMSE

Location Spectral bands

LASSO 0.66 791 0.27 923
PCR 0.63 820 0.28 915
PLSR 0.65 799 0.31 900

RF 1.00 0 0.05 1050
SVR 0.75 680 0.25 937
XGB 0.89 449 0.02 1069

Table 4. Performance metrics of %N prediction models for the four evaluation structures.

Evaluation Feature Set Algorithm Train R2 Train RMSE Test R2 Test RMSE

Random Spectral bands + indices

LASSO 0.75 0.29 0.65 0.34
PCR 0.74 0.29 0.66 0.33
PLSR 0.75 0.29 0.64 0.34

RF 0.99 0.05 0.57 0.37
SVR 0.80 0.25 0.65 0.34
XGB 0.97 0.10 0.50 0.40

Plot Spectral bands + indices

LASSO 0.75 0.29 0.66 0.33
PCR 0.74 0.29 0.65 0.34
PLSR 0.75 0.29 0.66 0.33

RF 1.00 0.04 0.55 0.38
SVR 0.82 0.24 0.70 0.31
XGB 1.00 0.01 0.52 0.40

Date Spectral bands

LASSO 0.72 0.30 0.60 0.36
PCR 0.69 0.31 0.53 0.39
PLSR 0.72 0.30 0.55 0.38

RF 0.99 0.05 0.20 0.51
SVR 0.72 0.30 0.55 0.38
XGB 0.97 0.10 0.25 0.49

Year Spectral bands

LASSO 0.74 0.29 0.36 0.46
PCR 0.75 0.29 0.28 0.48
PLSR 0.74 0.29 0.21 0.51

RF 0.99 0.04 −0.41 0.68
SVR 0.78 0.27 0.27 0.49
XGB 0.95 0.13 −0.41 0.68

For the two most interpolative evaluation structures, SVR returned the best error
metrics of these evaluations, especially within AGB models as SVR algorithm yielded an
RMSE of 656 kg ha−1 (approximately 100 kg ha−1 lower than any of the simplistic models).
Moreover, all the complex algorithms outperformed the simple models for AGB prediction
with the interpolative evaluation structures. For the %N models, the performance of SVR
was equivalent to the simple models for the random evaluation, but SVR exceeded the
accuracy of the simple models for the plot-level CV evaluation. The decision tree-based
algorithms exhibited lower %N predictive accuracy than the simple algorithms for both of
these evaluation structures, despite having a very high test accuracy (R2 = 0.98–1.0).

The next evaluation structure was more extrapolative, evaluating the models by
S2 image acquisition date. Here, there is a wider divide in performance between the
complex and linear algorithms. For AGB, the PCR algorithm returned the best error metrics
(R2 = 0.60, RMSE = 800 kg ha−1). The other simple models performed slightly worse
but still effectively (R2 = 0.58–0.59, RMSE = 811–825 kg ha−1). In contrast, the complex
models performed markedly less effectively (R2 = 0.45–0.49). Again, the decision tree-based
algorithms (RF and XGB) exhibited very low training error.

For the %N models of the date-level evaluations, the simple models outperformed the
complex models except for SVR which performed equivalently. LASSO returned the best
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performance metrics (R2 = 0.6, RMSE = 0.36), and PCR, PLSR, and SVR had similar metrics.
In contrast, the decision tree-based algorithms were ineffective for predicting %N in this
evaluation structure. They exhibited overfitting, with low training and high test error.

The final evaluation structure was the most extrapolative, using the NFREC data as the
test set for the AGB models and the different years of the NFREC data as groupings for %N
models. For these evaluations, the decision tree-based models were entirely ineffective, with
an R2 near or below zero. PLSR provided the best metrics for AGB (R2 = 0.31), with a slightly
worse performance from LASSO, PCR, and SVR. For the %N models, LASSO performed
best (R2 = 0.36), followed by PCR, PLSR, and SVR. None of the models demonstrate an
effective prediction for the most extrapolative evaluation structures.

Figures 2 and 3 compare the predictive accuracy of the best-performing complex
algorithm (SVR) to the best-performing simple algorithm for both the AGB and %N datasets.
Figure 2 demonstrates that the complex SVR performed best for the interpolative AGB
evaluations, while the simplistic PLSR was better for extrapolation. Figure 3 demonstrates
that the simplistic LASSO was superior or equivalent to SVR for all model evaluations.
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To summarize our results, Figure 4 displays the means and standard deviations of
the models grouped by variable, algorithm complexity, and evaluation structure. Overall,
the figure illustrates how the mean model accuracies decreased as the dissimilarity of
evaluation structure increased, especially when the transferability of the models was
evaluated at different locations and years. Moreover, Figure 4 highlights the extent of the
inaccuracy of the complex ML algorithms at increased levels of extrapolation, indicating
increased over-fitting in comparison to the simpler algorithms. Additionally, the increased
standard deviation of the complex algorithm accuracy is attributable to the divergence of
performance between SVR and the decision tree-based algorithms, which exhibited more
instances of overfitting than the other algorithms.
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4. Discussion

The most important finding of this study is the demonstrated inverse relationship
between model performance and level of extrapolative evaluation (Figure 4), which demon-
strates a lack of transferability for SRS pasture models. Numerous examples of accurate
site-specific SRS pasture modeling exist in the literature, and the error metrics of the inter-
polative evaluation of our AGB and %N models are within the range of accuracy exhibited
by those studies [3,39]. However, since our models declined in model accuracy when
extrapolated to unseen experimental dates or locations, we expect other ML pasture models
from similar datasets to follow this trend. Moreover, our results of ML algorithm compari-
son across evaluation structures reveal that complex algorithms may not be the best choice
for the objective of transferability in SRS pasture models, although we expect generalization
to improve for larger and denser datasets. Our findings are especially important if the goal
is to develop a serviceable tool that can work across multiple sites and temporalities. In
this case, model overfitting and extrapolation accuracy must be evaluated to decrease the
probability of ill-informed management decisions.

The potential for SRS modeling of pasture physiological variables to improve man-
agement has been noted for many years [2] and is gaining attention as data-driven tools
are becoming more available to the livestock industry [40]. Advances in data capture tech-
nology, such as hyperspectral sensors, generate larger and denser datasets that necessitate
the use of ML algorithms for the prediction of complex variables. Pasture physiological
variables AGB and %N have been previously modeled from SRS data. However, to our
knowledge, we are the first to publish these models for bahiagrass, a prevalent forage
in the southeastern US, especially in the large cow-calf industry of Florida. Our results
indicate that with in situ data, a reliable model can be developed for both of these important
variables, but a global model, transferable to the larger bahiagrass pasture agroecosystem,
remains a challenge.

To our knowledge, this study is the first assessment of the transferability of SRS
pasture models. Roberts et al. [16] published an important description of the phenomenon
of autocorrelation within ecological datasets, which provides a theoretical rationale for the
challenge of extrapolation. This concept has been demonstrated for several SRS modeling
applications [17–20], and researchers have reported a shift of both magnitude and direction
of regression model parameters when training on different sites [19,20]. However, it is
common for SRS pasture studies to ignore the spatial dependence within multi-site data
and to evaluate models through randomly selected test sets. Our results indicate that
many of these literature models are dataset-specific, and reassessment with extrapolative
evaluation methods will result in diminished performance. If the transferability of the SRS
models is an objective, we recommend choosing an evaluation structure that reflects the
expected degree of extrapolation.

In addition to the choice of evaluation structure, our results indicate that the selection
of the ML algorithm has an impact on SRS pasture model transferability. Decision tree
algorithms, although highly accurate for interpolative evaluations, exhibited significant
overfitting and inaccurate predictions of unseen experimental locations and dates. The
other complex model tested, SVR, was less vulnerable to overfitting but was still out-
performed in extrapolative evaluations by PLSR for AGB and LASSO for %N models.
More hyperparameters were tuned for the decision tree-based algorithms, potentially
contributing to increased overfitting. Studies have demonstrated that the overfitting of
complex algorithms can be avoided by limiting the number of parameters used in the mod-
eling [22,41]. However, this approach may not improve transferability for all algorithms, as
Wenger and Olden (2012) reported minimal improvement in RF transferability after setting
hyperparameters to constrain complexity—e.g., reducing the maximum number of nodes
per tree [22]. As a pioneering study of this specific topic—transferability of SRS pasture
models—we hypothesize that our findings would be reaffirmed in investigations of com-
parable datasets. However, other studies of transferability have demonstrated conflicting
results for the performance of complex and decision tree-based algorithms [22,42]. Thus,
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we recommend the testing of multiple algorithms in addition to the implementation of
multiple evaluation structures for the development of transferable models.

Although our results demonstrate transferability to be a challenge, we remain opti-
mistic that larger and richer data can enable effective agroecosystem-wide SRS-pasture
models. Enhancement of on-board spectral resolution, such as the hyperspectral EnMAP
satellite [43], will provide deeper datasets, theoretically enabling the prediction of more
complex response variables. For such datasets, complex algorithms may be more capable
of controlling for confounding variables and noise while effectively capturing the data
patterns of the variable of interest.

For the train/test holdout evaluation of our AGB model, we speculate that the differ-
ent soil types of the two experimental locations are the main cause of divergent reflectance
distributions. For the evaluations extrapolating by date and year, we suggest senesced vege-
tation to be the largest source of confounding variation. Both senescence and soil brightness
are well known to impact the reflectance of vegetative canopies [44]. Other potential sources
of bias include shifts in soil or vegetation moisture, as well as sampling error. Moreover,
the more extrapolative evaluations involved larger test partitions and, therefore, smaller
training partitions, which may have exacerbated the degree of extrapolation/overfitting.
Thus, future studies should make use of larger datasets and integrate additional data types
with the potential to inform on these sources of bias, which contaminate SRS modeling
across spatial and temporal groupings. In addition to hyperspectral technology, the fusion
of other RS data has the potential to improve transferability. The incorporation of soil
data, such as texture, moisture, and organic matter, could be instrumental to the elimi-
nation of confounding variables in SRS pasture models. In addition, synthetic aperture
radar and light detection and ranging (LiDAR) have been studied for their potential to
measure crop canopy height and volume, especially in conjunction with optical data [45].
Another potential solution is the inclusion of SRS data into process models—e.g., radiative
transfer models or crop simulation models—which offer enhanced transferability in theory,
provided that the parameter distributions include the range of potential test conditions.

5. Conclusions

Overall, our results demonstrated an inverse relationship between ML model perfor-
mance and the degree of extrapolative evaluation, providing evidence for the challenge
of transferability in SRS pasture models. Moreover, we found that the relatively simple
ML algorithms (LASSO, PCR, PLSR) predicted dissimilar spatiotemporal groupings more
accurately than the complex algorithms (SVR, RF, XGB), suggesting that the less complex al-
gorithms offer greater potential for transferable SRS pasture modeling. Regardless of model
choice, our study has demonstrated the impact of test set partitioning on model perfor-
mance, and we recommend future studies implement multiple spatiotemporal evaluation
structures to assess the transferability of their SRS pasture models.

Supplementary Materials: The following supporting information can be downloaded at: https:
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