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Abstract: Fractional vegetation cover (FVC) has a significant role in indicating changes in ecosystems
and is useful for simulating growth processes and modeling land surfaces. The fine-resolution FVC
products represent detailed vegetation cover information within fine grids. However, the long revisit
cycle of satellites with fine-resolution sensors and cloud contamination has resulted in poor spatial
and temporal continuity. In this study, we propose to derive a spatially and temporally continuous
FVC dataset by comparing multiple methods, including the data-fusion method (STARFM), curve-
fitting reconstruction (S-G filtering), and deep learning prediction (Bi-LSTM). By combining Landsat
and Sentinel-2 data, the integrated FVC was used to construct the initial input of fine-resolution
FVC with gaps. The results showed that the FVC of gaps were estimated and time-series FVC
was reconstructed. The Bi-LSTM method was the most effective and achieved the highest accuracy
(R2 = 0.857), followed by the data-fusion method (R2 = 0.709) and curve-fitting method (R2 = 0.705),
and the optimal time step was 3. The inclusion of relevant variables in the Bi-LSTM model, including
LAI, albedo, and FAPAR derived from coarse-resolution products, further reduced the RMSE from
5.022 to 2.797. By applying the optimized Bi-LSTM model to Hubei Province, a time series 30 m FVC
dataset was generated, characterized by a spatial and temporal continuity. In terms of the major
vegetation types in Hubei (e.g., evergreen and deciduous forests, grass, and cropland), the seasonal
trends as well as the spatial details were captured by the reconstructed 30 m FVC. It was concluded
that the proposed method was applicable to reconstruct the time-series FVC over a large spatial
scale, and the produced fine-resolution dataset can support the data needed by many Earth system
science studies.

Keywords: fractional vegetation cover; spatio-temporal reconstruction; gap filling; LSTM; deep learning

1. Introduction

Vegetation is an essential component of Earth’s terrestrial ecosystems, since it serves as
a bridge connecting the soil, water, and atmosphere. Forest carbon sinks are an important
potential solution for global climate change, and the absorption of carbon dioxide can be
enhanced by protecting and restoring vegetation [1]. Therefore, it is vital to obtain high-
resolution and real-time information on vegetation cover. When monitoring the dynamics
of the Earth’s vegetation, fractional vegetation cover (FVC) can be used to quantify the
surface vegetation. The FVC is the percentage of the vertical projection area of green
vegetation on the ground to the total statistical area [2]. The temporal dynamics of FVC are
a useful indicator for environmental changes, such as drought and extreme wet conditions,
and are an accurate indicator of the start of the growing season [3]. Additionally, this
time series can be utilized to compare vegetation status in agriculture and forestry from
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year to year [4]. Therefore, FVC is an essential candidate for replacing classical vegetation
indices for monitoring green vegetation [5]. To date, several methods have been proposed
to estimate the FVC. Typically, these methods are divided into three major categories:
empirical-based, physical-model-based, and spectral- unmixing-based [6].

With the rapid development and popularization of remote sensing technology, satellite
data present continuous improvements in the detection range, temporal coverage, and
spatial and temporal resolution [7]. Large-scale dynamic vegetation monitoring technology
is becoming increasingly mature and is very suitable for the rapid estimation of vegetation
coverage and understanding of the dynamic changes in global vegetation coverage [8].
Many institutions around the world have obtained FVC products using various retrieval
methods based on satellite data (e.g., MERIS, SPOT, and POLDER) [9–11]. Current global-
scale FVC products have been generated using remotely sensed data with medium spatial
resolution, including VGT bioGEOphysical product Version 2 (GEOV2), Copernicus Global
Land Operations (CGLOPS), and Global Land Surface Satellite (GLASS) FVC products [12–14].
However, there is an increasing demand for fine data applications. This means that FVC
products based on low- or medium-spatial-resolution satellite data are not adequate to
address the current demand for vegetation analysis. Meanwhile, owing to low spatial
resolution, it is difficult to capture the precise spatial distribution of vegetation in highly
heterogeneous and complex terrains. As a result, vegetation information extraction is
less accurate.

With the continuous improvement of satellite sensors and computing capabilities,
high spatial resolution satellites, such as Landsat, Sentinel, and GF, have been widely
used for various quantitative remote sensing studies [15]. Several studies have used
these satellites as data sources, combined with different retrieval methods, to obtain fine-
resolution FVC products. The MuSyQ GF-series FVC product used Gaofen-1 satellite data
to generate FVC with 16 m/10 d resolution in China from 2018 to 2020. However, this FVC
product has only been available for 3 years in China, restricting time-series analysis [16].
To assess the usefulness of the hyperspectral imager (HSI) onboard the Chinese HJ-1-A
small satellite for vegetation mapping, Zhang et al. [17] used dimidiate pixel models to
retrieve 100 m FVC in the Shihezi Area of Xinjiang, China. The retrieved 100 m FVC
from the HJ-1/HIS data was consistent with the in situ measurements with an R2 of 0.86
and RMSE of 10.9%, indicating that HJ-1/HSI data can provide fine-scale monitoring of
vegetation cover changes. Ludwig et al. [18] generated 10 m/7 d resolution of woody
vegetation cover for the Molopo region in 2016 based on Sentinel-1 and Sentinel-2 data.
Gill et al. [19] used Landsat 5 TM and Landsat 7 ETM+ data with a spectral unmixing
approach to generate woody vegetation cover data for Australia from 2000 to 2010 at 30 m
resolution. In addition, the data had a coefficient of determination of R2 = 0.918, as verified
by field measurements. In summary, despite the expanding number of fine-resolution FVC
products from regional to national scales, most FVC models only estimate fine-resolution
FVC for small or medium-sized regions, and the short period of the estimated FVC is still
not conducive to large-scale, long-term vegetation analysis.

The Landsat-based FVC product is a global FVC product with 30 m resolution and
long time series, using Landsat data as its data source and selecting training samples
from Landsat 8 and Gao Fen 2 based on the Random Forest (RF) algorithm [20]. The
Landsat FVC product outperforms other FVC products in terms of spatial resolution. This
makes it more effective in investigating vegetation cover in small areas by providing finer
details of the distribution of vegetation cover and allowing for the long-term monitoring of
vegetation dynamics in recent decades. However, there are several issues with Landsat FVC
products. Given that Landsat satellites revisit every 16 days, the Landsat FVC is frequently
discontinuous in time series and is often contaminated by clouds or high concentrations
of aerosols, resulting in fluctuations or gaps in the FVC product. In addition, certain
areas are cloudy all year round, making it difficult for Landsat satellites to obtain accurate
observations in these areas. As a result, they often have long periods of missing data,
causing the vegetation cover data to be incomplete and discontinuous in both temporal
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and spatial aspects. Therefore, there is an urgent need to reconstruct the Landsat FVC to
improve its spatial integrity and temporal continuity.

To fill in the gaps between the missing dates and cloud occlusion in the fine-resolution
FVC, we attempt to reconstruct the time-series FVC spatially and temporally. Currently,
the most effective method of achieving such objectives is through the integration of multi-
source spatial resolution data, referring to other vegetation time-series parameters, and
using deep learning methods. Additionally, there has been much research on the spatio-
temporal reconstruction of satellite data products. For example, Chen et al. [21] obtained
high-quality interpolated reconstructions of missing time in time-series images by fitting
synthetic NDVI time series produced by combining MODIS NDVI data with Landsat cloud-
free observations using a Savitzky–Golay (S-G) filter. Gao et al. first proposed the Spatial
and Temporal Adaptive Reflectance Fusion Model (STARFM), which improves remote
sensing data by fusing high-resolution Landsat data with low- and medium-resolution
MODIS data [22]. The Flexible Spatio-temporal Data Fusion (FSDAF) method was proposed
by Zhu et al. based on spectral unmixing analysis and a thin plate spline interpolator [23].
Morteza used the FSDAF algorithm to produce Landsat-like land surface temperature
images with Landsat spatial and MODIS temporal resolutions [24]. Zhou fused MODIS
and Landsat data to generate time-series NDVI and EVI with 30 m spatial resolution
for dryland vegetation monitoring in Qinghai Province [25]. Walker fused MODIS and
Landsat data to generate a 30 m spatial resolution time series of NDVI and EVI for dryland
vegetation monitoring in Arizona [26]. Meng combined NDVI from HJ-1 CCD and MODIS
for crop biomass estimation [27].

In recent years, deep learning methods have been widely applied in various remote
sensing estimation applications and have outperformed traditional machine learning meth-
ods. Among the many deep learning architectures, recurrent neural networks (RNNs) can
address the time dependence of time-series data [28] and handle time-series regression or
prediction of satellite data. In vegetation index estimation based on time-series data, this
approach has excellent noise tolerance and nonlinear processing ability, which can solve
the limitation problem when data saturation exists. For instance, the reconstruction of
high-quality NDVI time-series data was achieved using Long Short-Term Memory (LSTM)
and the predictive reconstruction of MODIS NDVI time-series data, the results of which
were well adapted to NDVI series trends [29]. Perceptual layer neural networks were
used to extract vegetation cover from randomly selected training samples [30]. The LSTM
deep learning framework was applied to spatio-temporal environmental dataset prediction
based on experimental results from three marine datasets [31].

In this study, we aim to optimize the spatio-temporal integrity of FVC results and
produce an accurate fine-scale vegetation dataset at a regional scale. All Sentinel-2 and
Landsat 8 observations within a single year were integrated to derive the 30 m FVC,
which contained gaps, at least twice a month. We compared three common reconstruction
methods by applying them to the incomplete 30 m FVC. We selected the method with the
highest accuracy at sample sites and optimized the method in terms of the model input and
parameters to satisfy a regional application. Finally, the optimized method was selected
and applied to produce the 30 m/16 d FVC of the study region.

2. Study Area and Materials
2.1. Study Area

Hubei Province is located in the middle Yangtze River basin of central China, and it
includes the Jianghan Plain for cropland. The vegetation cover types in Hubei are mainly
deciduous and evergreen forests and croplands. To compare the accuracy of different
reconstruction methods, we selected three sample sites in Hubei Province representing
different types of vegetation (Figure 1). The method with the highest accuracy was further
applied to the entire province for regional analysis.
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2.2. Fine-Resolution Satellite Data and Preprocessing
2.2.1. Landsat 8 Data and Preprocessing

Launched in February 2013, the Operational Land Imager (OLI) sensor is a high spatial
resolution multi-spectral imager onboard the Landsat 8 satellite in a sun-synchronous orbit
(705 km altitude) with a 16-day repeat cycle. Landsat 8 data are suitable for pixel-level
time-series analysis [32]. Thus, using Landsat surface reflectance data as the data source,
the Landsat FVC product was developed based on the RF algorithm to select training
samples. Landsat FVC has a spatial resolution of 30 m on a global scale and a temporal
resolution of 16 d, covering the period from 2013 to the present [20]. In this study, we used
27 Landsat 8 images acquired in 2017 covering 3 sample sites to test reconstruction methods
and 129 images covering the entire province for regional FVC retrieval.

2.2.2. Sentinel-2 Data and Preprocessing

The Sentinel-2A/B product available for users is Level-1C data (https://scihub.
copernicus.eu, accessed on 1 October 2022), which refers to top-of-atmosphere reflectance
in cartographic geometry in the UTM/WGS84 projection, with a size of 100 km × 100 km.
The study area was covered by one Sentinel-2 tile (T49RGP). Sentinel-2 L1C data covering
2016 to 2018 in the study area with less than 10% cloud cover was used. Sentinel-based
FVC data were generated using the RF model.

Sentinel-based FVC was generated in two steps: preprocessing and FVC estimation.
The preprocessing of the Sentinel-2 data included atmospheric correction, spatial resam-
pling, BRDF normalization, and band normalization. The European Space Agency (ESA)
recommends free, open-source Sentinel Application Platform (SNAP) toolboxes developed
by the ESA for the scientific exploitation of Sentinel-based information. The Sen2Cor
algorithm in the SNAP toolbox, version 2.4.0, was utilized for atmospheric correction. It
eliminated the effects of the atmosphere and delivered the Level-2A product, which is a
bottom-of-atmosphere reflectance in cartographic geometry. Band-pass normalization was
used to reduce the small difference between the spectral bands of MSI and OLI sensors [33].
Next, the preprocessed Sentinel-2 images were used as input to produce the FVC using the
same RF model as the Landsat FVC [20]. In this case, we manually selected 61 Sentinel-2

https://scihub.copernicus.eu
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tiles acquired in 2017, covering the 3 sample sites, as the data source to produce the original
fine-resolution FVC. For regional analysis, 548 Sentinel-2 tiles were utilized.

2.3. Coarse-Resolution Satellite Products

CGLOPS produced a global 300 m resolution FVC product (FCover 300) by applying
a dedicated neural network to instantaneous top-of-canopy reflectance from Sentinel-3
OLCI (v1.1 products) and daily top-of-aerosol input reflectance from PROBA-V (v1.0)
from 2014 to the present (https://land.copernicus.eu/global/products/fcover, accessed on
1 October 2022). The GEOV2 (v2.0) FVC product was derived through the Geoland2/BioPar
project from SPOT/VEGETATION (SPOT/VGT) and PROBA-V (GEOV2/PV) observations
at 1 km and a 10 d step, extending the temporal coverage of global FVC from 1981 to the
present. The FVC estimated from PROBA-V was based on neural networks [12].

GLASS products include Leaf area index (LAI), Fraction of Absorbed Photosyntheti-
cally Active Radiation (FAPAR), Broadband Albedo (albedo), Broadband Emissivity (BBE),
Land Surface Temperature (LST), Daily Net Radiation (NR), Evapotranspiration (ET), Gross
Primary Production (GPP), Net Primary Production (NPP), and Air Temperature (AT).
GLASS products have been demonstrated to be of high quality and accuracy and are widely
used [34]. This study used data from each GLASS product from 2016 to 2018 and selected
GLASS products with similar (no more than three days) dates to the Landsat-based and
Sentinel-based FVC data as training samples. Furthermore, we resampled the resolution of
each GLASS product uniformly to 1 km as multivariate features were added during the
deep learning training.

3. Methodology
3.1. Research Framework

In this study, the spatio-temporal reconstruction of fine-resolution FVC was based
on data fusion, time-series fitting, and a deep learning approach. These methods were
evaluated to identify the most efficient methods for spatio-temporal reconstruction. A
schematic overview of the reconstruction approach is illustrated in Figure 2, which includes
three key steps. First, the preprocessed Sentinel-2 data were used to generate the Sentinel-2-
based FVC using the RF model. Then, Landsat and Sentinel FVC images with a 30 m spatial
resolution were reconstructed by applying different spatial and temporal reconstruction
methods. These included STARFM, S-G filtering, and different LSTM models with changing
variables. Finally, the accuracy of the predicted FVC was estimated, and the advantages
and disadvantages of these three methods were assessed. The predicted results were
consolidated at a resolution of 30 m to reconstruct the 30 m FVC.

3.2. Reconstructing FVC Using STARFM

To optimize the temporal continuity of 30 m FVC, we used the Spatial and Temporal
Adaptive Reflectance Fusion Model (STARFM) algorithm [22] to combine a pair of coarse-
and fine-resolution images at moment t1 and coarse-resolution image data at the moment t2
and simulated and predicted the fine-resolution image data at the moment t2 with different
spatial weights. The formula is as follows:

L
(

x w
2

, y w
2

, t2

)
=

w

∑
i=1

w

∑
j=1

n

∑
k=1

wijk×(M(xi, yi, t2) + L(xi, yi, t1)−M(xi, yi, t1)) (1)

where (xw/2, yw/2, t2) represents the central pixel to be predicted by the moving window
at the moment t2, w is the size of the moving window, wijk is the weight factor of pixels
in the window similar to the central pixel, and L and M denote the pixel values of the
fine-resolution image and the coarse-resolution image, respectively. The fusion method
predicted the target pixel using the uniqueness of the spectrum, uniqueness of time, and
relative distance between neighboring pixels and the target pixel. This was incorporated to
give weight to the central pixel value at the moment of prediction. The FVC data in this
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study were input into the model with a window size set to 25. Additionally, pixels with
spectral similarity to the central pixel FVC were sought in the 30 m FVC data based on
spectral correlation and then combined with different weights and conversion coefficients
to calculate the predicted value of the central pixel.

Here, using a subset of T49RGP as an example, the full year 2017 was used for this
study, with 7 tiles of Landsat FVC, 14 tiles of Sentinel FVC, and 36 tiles of FCover 300 (1 tile
every 10 d, from 1 January 2017, to 31 December 2017). After normalizing the DN values
and ensuring that the two pairs of images cover the same spatial extent, we used Landsat
FVC products based on Landsat and Sentinel-2 (30 m) as the fine-resolution image data
and FCover (300 m) as the coarse-resolution image data to predict the FVC values in a
particular region on a particular day.
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3.3. Reconstructing FVC Using S-G Filtering Method

The S-G filtering method, also known as the data-smoothing polynomial filtering
method, is a convolution algorithm based on smoothed time-series data and the principle
of least-squares [35]. The algorithm can be described as follows:

Y∗j =
∑m

i=−m Ci ×Yj+i

N
(2)

where Y∗j is the fitted value, Yj+i is the original value of the image element, Ci is the
coefficient when the first i value is filtered, m is the width of the filter window, and N is
the filter length, which is equal to the width of the sliding array, 2m + 1. In practice, S-G
filtering requires two parameters to be set: the filter window and the order of polynomial
operations. Based on the characteristics of the S-G filter, setting a filter window length
that is too small may overfit the data points, making it difficult to capture the trend of the
entire time series. However, setting a filter window length that is too large may miss some
significant changes in the FVC time series. Different polynomial orders can also affect the
fitting results of the S-G filter, and this parameter is generally set from two to four.
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Considering the importance of temporal details in the FVC time series for phenology
studies, we conducted a study with different combinations of w and d and finally chose a
parameter combination of w = 7 and d = 2. This parameter choice provides an excellent
trade-off between retaining temporal variation details and the overall time-series trend.
Considering the edge effect seen in the S-G filter, the 0 m FVC during the period from
December 2016 to January 2018 was employed to constitute a complete filter window
for the first four points and the last four points of the NDVI time series. To evaluate the
performance of the S-G filter, a subset of the T49RGP (113◦37′–113◦43′E, 29◦43′–29◦48′N)
was used to construct a high-quality FVC time-series dataset.

Here, using Sentinel-based and Landsat-based FVC as input, we filled in the time
series of FVC at 30 m resolution. A total of 31 scenes of the T49RGP from 2017 were
selected as the time series. They were entered into the S-G filter model for spatio-temporal
reconstruction. As the data were processed using Fmask4.0, the empty values caused by
clouds and shadows were flagged as no values. Thus, we could reconstruct the data values
in the image directly. Additionally, for scenes with missing dates, the entire scene was
reconstructed as if it were all no-data values.

3.4. Reconstructing FVC with LSTM and Optimized Parameters
3.4.1. The LSTM Method

Time-series data prediction refers to learning patterns of change in past time series and
predicting future trends. Traditional deep learning methods are unable to solve the problem
of change over time, which has resulted in the development of RNNs. However, because
RNNs perform poorly in solving long-term-dependent information, Hochreiter et al. pro-
posed LSTM by adding the structure of gates to the RNN to selectively add or remove
time-series information [36]. The LSTM cell states consist of two activation functions (sig-
moid and tanh), which constitute the forgetting, input, and output gates. The sigmoid
function outputs the input parameters as values between 0 and 1. These values are used
to determine the impact on the model, with a maximum impact of 1. The tanh function
outputs the input parameters as values between −1 and 1, which are used to normalize
the results.

3.4.2. The Bi-LSTM Method

Bi-LSTM is another alternative RNN containing two separate recurrent net layers:
forward and backward layers [37]. Bi-LSTM combines the strengths of RNNs and LSTM
by applying LSTM-gated memory units to a bidirectional propagation model. The Bi-
LSTM network has the advantage of using information from the entire input time-series
sequence when predicting the current target, effectively solving the disadvantage that
LSTM can use only information from the previous moment. Figure 3 illustrates LSTM and
Bi-LSTM structures. Where Ct represents the long-term memory of the cell, ht represents
the short-term memory of the unit, and FVCt represents the external input. It can be seen
that Ct passes through each cell by deleting unimportant information and adding relevant
information thereafter. In general, short-term memory, which is used as the final prediction,
is the result of the interaction between Ct, ht-1, and FVCt-1.

To build the dataset for model training, the corresponding 2016 to 2018 time-series
30 m FVC data from the study area were extracted as training data. Owing to the small
training set, the dropout method was used to randomly remove neurons during the learning
process to prevent overfitting. The time interval of the training data for the input model
was set to 16 d. Additionally, the masking layer incorporated the missing dates into the
model to automatically skip them during training. This was to ensure that the dataset for
the training model had the same time interval.

In this study, LSTM and Bi-LSTM were used to train the model. These two meth-
ods were designed as one input layer, one LSTM/Bi-LSTM layer, one masking layer,
one dropout layer, and one output layer. The LSTM and Bi-LSTM models were trained



Remote Sens. 2023, 15, 2948 8 of 24

using Landsat and Sentinel-based FVC time-series data. The ratio of the training set to the
test set was 7:3.
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3.4.3. Changing the Time Steps

To investigate the impact of the LSTM model’s time step on reconstruction perfor-
mance, we conducted separate experiments comparing single and multiple time steps. The
single-step prediction (one-to-one) model takes the previous time step as input and predicts
the next subsequent value in the time series, while the multi-step prediction (many-to-one)
produces a predicted output using multiple inputs from the previous time steps. By com-
paring the estimated R2 and RMSE performance of the one-step (1SP) and multi-step (3SP)
models, we can determine which time step scheme yields the best performance.

3.4.4. The Inclusion of Various Input Variables

Furthermore, it was found that LSTM based on multiple feature inputs can improve
prediction accuracy [38]; whereas, we currently only use FVC as a single variable to predict
the model. In this study, we added GLASS products as multivariate data to the original
model for multivariate LSTM prediction. We conducted statistical analyses of the data
for the different factors for which GLASS products were selected as multiple variables.
Based on the results of the analysis, we removed factors with low or insignificant trends
from the time series. We retained factors with a high correlation with FVC. Univariate and
multivariate models with different factors were trained separately, and their accuracies were
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compared. Here, we selected GLASS product data from 2016 to 2018, and the date of each
product was kept consistent with the date of the FVC training data. Ideally, the difference
in timepoints should not exceed three days. In addition, to simplify the calculation and
training, we resampled all GLASS products at a spatial resolution of 1 km. To compare
different GLASS variables, we employed the Phik (ϕk) coefficient, a new and practical
correlation coefficient proposed by Baak et al. [39]. It is a practical correlation coefficient
based on refinements to the Pearson correlation coefficient, which captures the nonlinear
dependency, and is useful when measuring the correlation of different variables.

3.5. Validation of the Reconstructed FVC

Whether the FVC generated by spatio-temporal reconstruction can accurately and
truly reflect the missing data of Landsat FVC needs to be confirmed by validity analysis.
In this study, three approaches were adopted: (1) First, we used visual verification of the
consistency of the spatial distribution at the image level. (2) Second, assuming the real date
FVC as the missing date FVC to be predicted, the results predicted by the three methods
were compared with the real FVC in a scatter plot. The closer the distribution of points
in the scatter plot is to a 1:1 line, the less variability in the spatial distribution, and the
more accurate the prediction. The validation of the results was further tested by comparing
the fitting of the prediction results of the different methods with the true values of the
time-series curves. (3) Third, we compared the reconstructed FVC with the available FVC
product in the time-series curves to verify its consistency with the reference FVC.

To evaluate the accuracy of each method, we used the R2 and RMSE values calcu-
lated based on the real FVC and predicted FVC. These values were calculated using the
following equations:

R2 = 1−
∑i

(
FVCi_pred − FVCi_real

)
2

∑i

(
FVCi_pred − FVCi_aver

)
2

(3)

RMSE =

√
1

num_p∑i

(
FVCi_pred − FVCi_real

)
2 (4)

where i is the number of testing samples; FVCi_pred and FVCi_real denote the predicted and
real FVC for sample i, respectively; and FVCi_aver is the average of all FVC predictions.

4. Results
4.1. Consistency between the Landsat and Sentinel-2 FVC

The comparison between the Sentinel-based and Landsat-based FVC is shown in
Figure 4 in terms of image level and scatter plot over various vegetation cover types. The
correlation was 0.83 for the summer woodland (Figure 4a) and 0.82 for grassland (Figure 4b).
The high correlation between the two FVCs indicates that Landsat and Sentinel-2 FVCs
were overall consistent after band normalizations. The Landsat FVC had slightly higher
values than the Sentinel-2 FVC, likely due to terrain effects in mountainous regions. The
overall FVC values were lower than for cropland. In Figure 4c, the window was mainly
featured with rainfed and irrigated cropland, and the FVC values were concentrated within
the lower ranges (10–30%). The overall correlation was 0.732, which is slightly lower than
other vegetation types. The Sentinel-2 FVC was slightly lower than the Landsat FVC.
The points that deviated from the 1:1 line were possibly owing to residues in the band
normalization and uncertain FVC values for cropland. At the image level, the Landsat-
based and Sentinel-based FVCs have similar spatial distributions across different vegetation
types. The results demonstrated that the combination of FVC from Landsat and Sentinel-2
can be used as input to reconstruct the time-series 30 m FVC.
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(a) forest, (b) grassland, and (c) cropland.

4.2. Comparison of Different Reconstruction Methods
4.2.1. Accuracy Comparison of Different FVC Reconstructions

The results of the comparison between the real and predicted FVC values are illustrated
for a subset of the data located in T49RGP. The scene located in this subset was mainly
composed of cropland and evergreen broad-leaved forests. Visually, the reconstruction
results predicted by the three methods presented similar overall spatial distributions to
the real FVC values, successfully capturing the details of the FVC variations (Figure 5).
While there were unrealistic areas in all the strategies, the LSTM method generated the
most reliable prediction. The distinction between low and high FVC values in the STARFM
results was not as clear as that in the other methods. This was especially true in forested
and non-forested areas, because STARFM uses coarse spatial resolution FVC as reference
data and cannot accurately distinguish vegetation from non-vegetation. Both the S-G
filter results and the STARFM results underestimated high FVC values to varying extents,
while the LSTM results showed improved predictions for high FVC values, but slightly
overestimated low FVC values, such as bare soil and cropland in the northwest of the
subset and forest in the north.
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Figure 5. Comparisons between real FVC and predicted FVC on 24 December 2017: (a) is the real
FVC with gaps; (b) is the FVC predicted by the STARFM method; (c) is the FVC predicted by the S-G
filter; and (d) is the FVC predicted by LSTM.

To further evaluate the performances of these three strategies, we verified the pre-
diction results by comparing the scatter plot with real data. Overall, the pixel-to-pixel
validations showed significant consistency between the real and predicted FVC values
(Figure 6). In terms of prediction accuracy, LSTM (R2 = 0.857) performed better than
STARFM (R2 = 0.709) and S-G (R2 = 0.705). Compared with the S-G filter and LSTM,
STARFM had more points distributed far from the 1:1 reference line, and more points
appeared to be biased. The dense distribution of points in the LSTM results in a low-value
range of 10 to 30. Additionally, the high-value range of 50 to 70 indicates that the LSTM
was able to effectively distinguish between high and low values. This characteristic was
also found in the S-G filter results, where the points were more densely distributed in
both intervals (Figure 6). However, the points in the STARFM results were less sensitive
to the high-value range than the other two methods (Figure 6), probably because of the
incorporation of coarse-resolution data.

4.2.2. Time-Series FVC Derived from Different Reconstruction Methods

We performed spatio-temporal reconstructions on different samples using three re-
construction strategies. In the results of the consistency analysis of the FVC time series
of randomly selected pixels (Figure 7), the black line represents the time series of the real
FVC data, and the other three colors represent the time series of the results obtained using
different time reconstruction methods. The overall fitting results of the three methods
reflected the normal growth conditions and seasonal change patterns of the vegetation.
Among them, LSTM had the most accurate fit (RMSE = 8.175), followed by STARFM
(RMSE = 19.628) and S-G filtering (RMSE = 22.857). The results of the small subset spatio-
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temporal reconstruction indicated that all three strategies were effective in reconstructing
the FVC time series.
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Additionally, FVCs reconstructed from three methods are capable of revealing the
annual variation and phenological characteristics of various vegetation types. The tem-
poral resolution of the reconstruction results was improved. In addition, the number of
reconstructed images increased owing to the integration of the STARFM method with the
10 d resolution FCover FVC data. However, there were several abruptly changing values
in the STARFM reconstructions (e.g., April, 15, 19 July and 10 October), which may be
partially due to the quality of the referenced coarse-resolution data and may also be due to
differences in satellite images before and after crop harvest. The reconstructed results of
the S-G filtering method were solely based on Sentinel FVC and Landsat FVC as inputs,
without other reference data. Therefore, the S-G filter is limited by the original time-series
data, and the prediction results may be affected by the absence of the original data. The
Bi-LSTM deep learning model runs more slowly than the other two algorithms but solves
the problem of noise (contamination from clouds and snow) or missing values contained in
the FVC data more efficiently than other methods. This is because Bi-LSTM can effectively
extract information from the entire FVC time series, rather than a single point in time,
which means that the Bi-LSTM model enables us to capture the dependencies of the FVC
time sequence data and predict the missing or future FVC values with high accuracy.

4.3. Accuracies of LSTM Models with Changing Parameters
4.3.1. Accuracies of LSTM and Bi-LSTM

The performance of the deep learning model in reconstructing the 30 m time-series
FVC was assessed using two metrics, the R2 and RMSE. We trained the deep learning
model using an I80V598 desktop computer (Intel i7, 4 CPU, RX550 GPU, 3.6 GHz, 24 GB
RAM). To obtain the optimal parameters, we performed a tuning experiment. The results
showed that the model predicted accurately when the number of neurons was 128 and the
number of iterations was 2000. We trained both the LSTM and Bi-LSTM models with the
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training dataset separately, and the training results showed that Bi-LSTM performed more
effectively, as assessed by both R2 and RMSE (Figure 8). This is because the Bi-LSTM model
can use information from the entire input time series when predicting the current target,
effectively solving the drawback that traditional LSTM can only use information from the
previous moment.
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4.3.2. Accuracy of Changing the Time Step

A comparison of the prediction results with different time steps (Figure 9) shows that
the prediction results using three time steps (3SP) were more accurate than the prediction
results with a single time step (1SP). This is because single-step prediction is based on the
most recent data and cannot be applied across input or output time steps, whereas multistep
prediction is based on multiple data points and has more temporal dependency characteristics.

4.3.3. Accuracy of Changing Input Variables

According to the statistical results of the Phik (ϕk) correlation coefficient (Figure 10),
FAPAR, Albedo, LAI, GPP, and NPP were highly correlated (here, GPP and NPP were re-
moved because the same vegetation indices were used for GPP, NPP, and FVC), indicating
that they can be used as training features for multivariate analysis. We trained the LSTM
neural network based on different features. A comparison of the training results (Table 1)
shows that the accuracy of the model with GLASS LAI data added is higher than that of
the original model. However, this was not the case when there were more variables. When
variables such as LAI, Albedo, FAPAR, AT, ET, NR, BBE, and LST were added to the model
as multivariate features, model accuracy decreased. The model accuracy was highest when
LAI, Albedo, and FAPAR were selected as multivariate features, in accordance with the
correlation results.



Remote Sens. 2023, 15, 2948 14 of 24

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 26 
 

 

4.3.2. Accuracy of Changing the Time Step 

A comparison of the prediction results with different time steps (Figure 9) shows that 

the prediction results using three time steps (3SP) were more accurate than the prediction 

results with a single time step (1SP). This is because single-step prediction is based on the 

most recent data and cannot be applied across input or output time steps, whereas multi-

step prediction is based on multiple data points and has more temporal dependency char-

acteristics. 

 

 

Figure 9. Model validation results with different time steps (blue line is the result of three steps, red 

line is the result of one step). 

4.3.3. Accuracy of Changing Input Variables 

According to the statistical results of the Phik (φk) correlation coefficient (Figure 10), 

FAPAR, Albedo, LAI, GPP, and NPP were highly correlated (here, GPP and NPP were re-

moved because the same vegetation indices were used for GPP, NPP, and FVC), indicating 

that they can be used as training features for multivariate analysis. We trained the LSTM 

neural network based on different features. A comparison of the training results (Table 1) 

shows that the accuracy of the model with GLASS LAI data added is higher than that of 

the original model. However, this was not the case when there were more variables. When 

variables such as LAI, Albedo, FAPAR, AT, ET, NR, BBE, and LST were added to the model 

as multivariate features, model accuracy decreased. The model accuracy was highest 

when LAI, Albedo, and FAPAR were selected as multivariate features, in accordance with 

the correlation results. 

Figure 9. Model validation results with different time steps (blue line is the result of three steps, red
line is the result of one step).

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 26 
 

 

 

Figure 10. Phik (φk) correlation coefficients for different GLASS products and FVC. 

Table 1. LSTM model accuracy results with different input feature variables. 

Statistical  

Test 

Feature 

FVC 
FVC, 

LAI 

FVC, LAI, 

Albedo, FAPAR 

FVC, LAI, Albedo,AT 

FAPAR,ET,NR,BBE, LST 

R² 0.94 0.97 0.98 0.94 

RMSE 5.022 3.012 2.797 4.696 

4.4. Reconstructed Time-Series FVC in Hubei Using the Optimized Model 

4.4.1. Spatial Performance of the Reconstructed FVC Image 

In the spatial domain, the proposed method successfully reconstructed FVC values 

of gap pixels over different landscapes (Figure 11). The optimized Bi-LSTM model rebuilt 

the spatial characteristics omitted in gaps by learning from fine-resolution images at 

neighboring dates. The spatial details, such as roads, terrain ridges, and field boundaries, 

were presented in the reconstructed images. By contrast, the original FVC values were 

substituted by the model estimation derived from FVCs at forward and backward dates, 

as well as the temporal trends of coarse-resolution products. Thus, the similarity between 

neighboring pixels of the reconstructed images was reduced in comparison to the original 

images. 

Figure 10. Phik (ϕk) correlation coefficients for different GLASS products and FVC.

Table 1. LSTM model accuracy results with different input feature variables.

Statistical
Test

Feature

FVC FVC, LAI FVC, LAI,
Albedo, FAPAR

FVC, LAI, Albedo, AT FAPAR,
ET, NR, BBE, LST

R2 0.94 0.97 0.98 0.94

RMSE 5.022 3.012 2.797 4.696
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4.4. Reconstructed Time-Series FVC in Hubei Using the Optimized Model
4.4.1. Spatial Performance of the Reconstructed FVC Image

In the spatial domain, the proposed method successfully reconstructed FVC values
of gap pixels over different landscapes (Figure 11). The optimized Bi-LSTM model re-
built the spatial characteristics omitted in gaps by learning from fine-resolution images
at neighboring dates. The spatial details, such as roads, terrain ridges, and field bound-
aries, were presented in the reconstructed images. By contrast, the original FVC values
were substituted by the model estimation derived from FVCs at forward and backward
dates, as well as the temporal trends of coarse-resolution products. Thus, the similarity
between neighboring pixels of the reconstructed images was reduced in comparison to the
original images.
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method with multiple variables.

4.4.2. Temporal Trend of the Reconstructed FVC Pixels

At the pixel level, the reconstructed 30 m FVC differentiated seasonal trends of different
vegetation types (Figure 12). Although grassland and forest pixels corresponded to a single
growing season per year, the peak FVC of forests was higher than that of other vegetation
types. Double cropping and single cropping were both practiced in Hubei Province in
2017 [40], as captured by the reconstructed FVC (Figure 12). The seasonal trends showed
that FVC at fine resolution was close to that captured by coarse-resolution FVC products
and characterized by similar start- and end-of-season dates (Figure 12). The peak occurred
in July, likely owing to grasses being restored between double cropping periods [40].
Regarding the three major vegetation types in Hubei, the 30 m FVC values were usually
closer to GLASS FVC, which was lower than CGLOPS and GEOV2 FVC during the growing
season and higher than CGLOPS and GEOV2 FVC from November to March. Furthermore,
the reconstructed FVC values of grass and forest pixels fluctuated during the peak growing
periods, which was likely caused by the difference between Landsat and Sentinel-2 FVC,
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as well as the fluctuating trends introduced by the coarse-resolution products used in the
reconstruction model.
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Figure 12. Comparison of the reconstructed FVC in 2017 using the optimized multivariate Bi-LSTM
model to three reference FVC products for different vegetation types, including grassland, cropland,
and forest. The 30 m FVC has been aggregated to 500 m for the purpose of comparison.

4.4.3. Regional Accuracy of the Reconstructed FVC

The 30 m/16 d FVC time series of Hubei Province in 2017 was reconstructed using
the optimized Bi-LSTM model. From the reconstruction results, the FVC mosaics in Hubei
illustrated spatial and seasonal variations of different vegetation covers (Figure 13). The
forests located in the west of the province usually have much higher FVCs than croplands in
central regions. The contrast shrank until the middle of the year, when crops, especially rice,
cotton, maize, etc., were at their peak growing stages and had high FVCs. The reconstructed
FVC and three reference FVC products, including GLASS, GEOV2, and CGLOPS FVC,
showed a high degree of consistency across different vegetation types. Statistically, the R2

ranged from 0.4 to 0.8 and the RMSEs were generally less than 10 (FVC values ranged from
0 to 100). The R2 for cropland (0.670–0.709) and grassland (0.806–0.857) was higher than that
for broadleaf forest (0.402–0.673), and needleleaf forest had the lowest R2 (0.332–0.444). The
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R2 and RMSE were stable for forests; however, the R2 decreased rapidly from 0.70 to 0.589
for crops from January (Figure 14) to July (Figure 15). This is likely because different types
of crops were in different growing stages in July, causing uncertainties in FVC estimations
for crops. The reconstructed FVC presented the highest consistency with the GLASS FVC
product for both seasons and vegetation types (Figures 14 and 15). This suggests that
the reconstructed FVC can effectively capture information on seasonal changes in various
vegetation types. As a result, the time-series FVC reconstruction of the region demonstrates
the feasibility of the proposed method for rebuilding a 30 m spatial resolution FVC at a
larger scale.
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Figure 15. Comparison between the reconstructed FVC in July and coarse-resolution products for
major vegetation types in Hubei. For illustration purposes, all FVC pixels have been aggregated to
1 km resolution.



Remote Sens. 2023, 15, 2948 20 of 24

5. Discussion
5.1. Implications of the Reconstructed 30 m FVC Dataset

Current FVC products, such as the GEOV2, GLASS, and CGLOPS, are usually gen-
erated at a spatial resolution of several hundred meters [12–14], enabling the large-scale
analysis of vegetation dynamics while hindering the investigation in heterogenous land-
scapes. The Landsat FVC provides global long time-series FVC datasets at a 30 m spatial
resolution [20], but it suffers from spatial incompleteness and temporal discontinuity
caused by cloud cover and a long revisit cycle. To overcome these limitations and improve
the efficiency of utilizing 30 m FVC imagery, this study compared different reconstruction
methods and proposed a deep learning based method to develop 30 m FVC products.
The reconstructed FVC dataset is complete in a spatial extent and continuous with a time
interval of ~16 d. The reconstructed 30 m FVC in Hubei Province can greatly improve the
current understanding of spatial and temporal dynamics of vegetation in vital ecological
regions, which previously was derived from coarse-resolution products [41]. By apply-
ing the proposed reconstruction method to the entire Landsat 8 FVC, a time-series, 16 d
FVC dataset can be derived for the past decade. Such a fine-resolution dataset is highly
desired by researchers from the field of urban plant phenology, who address vegetation
characteristics and changes caused by long-term urbanization processes in complex urban
landscapes [42,43].

5.2. Uncertainties of Different Spatio-Temporal Reconstruction Methods

Each of the three reconstruction methods had advantages and limitations. When using
the STARFM model for prediction, the combination of the spatial resolution of Landsat FVC
and the temporal resolution of CGLOPS FVC allows the reconstruction results to reflect
the dynamic changes in vegetation growth with high accuracy. Owing to the difference in
temporal resolution between the reference data and the original 30 m FVC data, there may
be a bias of several days in the selection of matched images, which is one of the reasons
for the uncertainty in the reconstruction results. Coarse-resolution data cannot accurately
distinguish vegetation and non-vegetation on the surface, causing the STARFM predictions
to fail to distinguish between high and low FVC values. In addition, the reconstruction
of the STARFM method is highly dependent on coarse-resolution reference data; without
reference data, the STARFM method cannot make predictions. However, a more effective
ESTARFM algorithm is available [44]. Given the small amount of raw data and large date
interval, which does not effectively provide input data for both time pairs, the ESTARFM
algorithm was not chosen for the reconstruction.

The uncertainty of the S-G filter reconstruction results is mainly embodied in the time
interval of the input data, which can adversely affect reconstruction accuracy. In the case of
long date intervals especially, S-G filters are unable to fit the time-series curve well since
there are too few points in the raw time-series data input [35]. Therefore, the method is
limited by the original time-series data; when the original data contains more gaps and
poor time continuity, the S-G filtering method is no longer applicable. The overall accuracy
of the first two models was slightly inferior compared to that of the deep learning methods.
However, they have advantages such as being simple and easy to implement, having low
computational complexity, high productivity, not requiring sample selection or training,
and direct dependency of the accuracy of the model reconstruction on the quality of the
original data. Other methods, such as the FSDAF [23] and GF-SG [21], can be utilized to
test the accuracy of the FVC reconstruction.

Bi-LSTM reconstructions are the most accurate method for addressing noise and
missing values in FVC data, such as contamination from clouds and shadows. This is
because the Bi-LSTM network can efficiently extract information from the entire FVC
time series and accurately predict missing or future FVC values with high precision [45].
Furthermore, the time efficiency of training is twice that of traditional LSTM. In this study,
the training samples of the Bi-LSTM model were primarily pixels of various vegetation
types (mainly evergreen broad-leaved forests and croplands) in tile T49RGP; therefore, the
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representativeness of the training samples and the transferability of the training model still
need to be improved. To avoid the use of the Convolutional LSTM for image processing
specifically, it was discovered that using the Convolutional LSTM would destroy the
original spatial distribution structure of the surface vegetation because of the heterogeneity
of the reconstructed regional surface. During future research, we hope to expand the sample
area to provide a more representative sample for training LSTM models. In addition, we
intend to use in situ weather station measurements (e.g., temperature and precipitation) as
training features for multivariate LSTM models. Deep learning methods also have many
advantages in large-scale and multi-temporal FVC mapping. These advantages can be
summarized as follows: (1) the model can achieve spatio-temporal reconstruction with
higher accuracy without using auxiliary data when making predictions; (2) the neural
network model can ensure that the reconstruction interval is fixed, which means that the
LSTM model can reconstruct high-accuracy FVC even during long periods of poor data
quality or no observational data.

5.3. Further Improvements to the Proposed Method

In this study, the Sentinel-based FVC was produced using the RF model proposed
by Song [20]. By comparing the FVC images under three typical vegetation covers, the
consistency of the FVC produced by the two different sensors was verified. However, the
model was trained using Landsat data, and despite the normalization operation, some
differences were observed between the data obtained from the two sensors. In addition,
when the GLASS product data were added to the Bi-LSTM model as multiple variables, we
resampled each GLASS product to a spatial resolution of 1 km to simplify the computation,
rather than one variable value per pixel, as should be the case in theory, which may be
a source of uncertainty. In the future, we expect to use other parameters as multivariate
training features to train the Bi-LSTM, aiming to ensure that it can capture more long-
term and short-term time-dependent information and make the prediction model more
robust. Furthermore, owing to differences in the temporal resolution of the sensors, all
data cannot be obtained at the same time. This can lead to uncertainty during the model
training and validation of the comparison. Owing to the lack of ground measurement
data, the FVC in this study can only be compared with existing FVC products for accuracy
verification. The reference FVC products (GLASS FVC, CGLOPS FVC, GEOV2 FVC) were
selected based on their spatial coverage, time span, and spatio-temporal resolution, as
well as the availability of data. However, these products have different spatial resolutions;
therefore, the resolution was uniformly resampled to 300 m in the comparison, which may
lead to uncertainty in the verification results [46]. While the Bi-LSTM model can produce
smooth and continuous spatio-temporal predictions, the smoothing of noise in the time
series may classify important ecological changes and disturbances as noise and filter them
out, creating uncertainty [45]. Further research is needed to investigate how rapidly and
abruptly changing FVC values may affect the model performance.

6. Conclusions

In this study, we compared three types of spatio-temporal reconstruction methods
by applying them to the 30 m resolution FVC derived from integrated use of Landsat 8
and Sentinel 2 data. Among the three methods, the Bi-LSTM model was the most effective
and had the highest accuracy, followed by the STARFM method and the S-G filtering
method. In comparison to the data fusion and filtering method, the deep learning Bi-
LSTM model captures the dependencies of the FVC time sequence data and can predict
missing or future FVC values with high accuracy. Setting the proper time step in Bi-LSTM
and inclusions of relevant variables, such as LAI and albedo, have further improved the
prediction accuracy. Moreover, a 30 m FVC dataset of every 16 days in Hubei Province
of China was produced using the optimized Bi-LSTM method. The derived time-series
FVC dataset has shown the tremendous details of the spatial distribution of FVC values as
well as the seasonal dynamics of different vegetation types in Hubei. It is concluded that
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the proposed model can effectively accomplish reconstruction of fine-resolution FVC in a
province or larger spatial scale, and the generated 30 m FVC product can support many
Earth system science studies.
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