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Abstract: The special issue “Tree species diversity mapping” presents research focused on the remote
assessment of tree species diversity, using different sensor modalities and platforms. The special
issue thereby recognizes that the continued loss of biodiversity poses a great challenge to humanity.
Precise and regularly updated baseline information is urgently needed, which is difficult, using
field inventories, especially on a large scale. On such scales, remote sensing methods excel. The
work presented in the special issue demonstrates the great potential of Earth Observation (EO) for
addressing knowledge gaps, as EO provides rich (spectral) information at high revisit frequencies
and spatial resolutions. Many tree species can be distinguished well using optical data, in particular,
when simultaneously leveraging both the spectral and temporal dimensions. A combination with
other sensor modalities can further improve performance. EO approaches are, however, limited by
the availability of high-quality reference information. This complicates the task as the collection of
field data is labor and time-consuming. To mitigate this limiting factor, resources should be better
shared amongst the community. The reliance on in situ data also highlights the need to focus research
on the extraction of more permanent (i.e., species-inherent) properties. In this respect, we identify
and discuss some inherent limitations of current approaches regarding tree species discrimination. To
this end, we offer a more fundamental view on tree species classification based on physical principles.
To provide both a summary of the special issue and some stimulating thoughts about possible future
research directions, we structured the present communication into four parts. We first introduce the
need for biodiversity information, followed by a summary of all 19 articles published within the
special issue. The articles are ordered by the number of species investigated. Next, we provide a
short summary of the main outputs. To stimulate further research and discussion within the scientific
community, we conclude this communication by offering a more fundamental view on tree species
classification based on EO data and its biophysical foundations. In particular, we purport that species
can possibly be more robustly identified if we classify/identify them in the biophysical feature space
and not in the spectral-temporal feature space. This involves the creation and inversion of so-called
physically-based radiative transfer models (RTM), which take hyper/multispectral observations
together with their observation geometry (as well as other priors), and project these into biophysical
variables such as chlorophyll content and LAI etc. The perceived advantage of such an approach is
that the generalizability (and scalability) of EO based classifications will increase, as the temporal
trajectory of species in the biophysical parameter space is probably more robust compared to the
sole analysis of spectral data, which—amongst other perturbing factors—also depend on site/time
specific illumination geometry.

Keywords: tree species; classification; biodiversity; machine learning; feature extraction; optical data;
SAR; LiDAR; time series; radiative transfer model
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1. Introduction

The IPBES report on Biodiversity and Ecosystem Services depicts an alarming and
shocking picture of the Earth [1]. With accelerating rates of species extinction, our environ-
ment is declining globally at unprecedented rates. Transformative economic and societal
change is necessary, and will involve far-reaching alterations and actions at both local and
global levels. This issue was recently discussed at UN Biodiversity Conference COP15
in Montréal [2]. To cope with the pace of global change, amongst many other activities,
a rapid increase in knowledge about species numbers, compositions, and conditions is
required, as well as species interactions and environments [1]. This information should
possibly be condensed into quantitative measures of biodiversity [3].

Remote sensing provides the only feasible way to cost-effectively and repeatedly
measure and monitor land cover changes on large scale—while at the same time, allowing
a user to look as far back as the start of the space age, in the 1970s [4,5]. Today’s sensors on
platforms such as satellites, aircraft, and UAV provide a wide range of observational capa-
bility in terms of spatial, temporal, and spectral resolutions. Machine learning approaches
and computational capacity are improving quickly, offering huge potential for improved
data analysis, including “big data” and the development of powerful monitoring systems.
First efforts were undertaken to bridge gaps between Earth observation (EO) scientists on
one hand, and ecologists etc. on the other hand [3]. A first set of comprehensive essen-
tial biodiversity variables (EBVs) and how they can be monitored by EO technique were
defined [4,6,7].

2. Overview of Contributions

The special issue “Mapping Tree Species Diversity” aimed to collect scientific research
covering the following themes:

• biodiversity of forests, with respect to classical species diversity;
• the mapping of changes in diversity;
• the floristic composition of forests;
• invasive species;
• the functional diversity of forests.

In total, the special issue includes one review and 17 research articles. Despite the
limited number of studies, a wide range of different ecoregions could be covered. The
studies were conducted on all continents except Antarctica. With six studies each, there
is a focus on Europe and Asia, followed by Africa with three studies. One study each
was performed in North America, South America, and Oceania. As a result of the broad
geographical coverage, a relatively wide range of plant species and climatic zones were
examined, from boreal and temperate forests to tropical forests. It is also exciting that
numerous studies were carried out in forests that are subject to a certain protection category,
from biosphere parks to nature reserves and national parks, which shows the increasing
interest in monitoring such areas with EO data.

Most studies focused on the separation and classification of tree species or tree species
groups, using optical data from different platforms and sensors (Table 1). The review paper
summarized the current knowledge of LiDAR for tree species classification. Two studies
investigated the advantages of combining optical data with LiDAR and one with SAR
data. Most studies used spectral signatures or resultant spectral indices as discriminative
features, either derived from single scenes or multiple images. In addition to the well-
established Landsat and Sentinel-2 (S2) satellites, which provide high quality data free of
charge, commercial satellites with higher spatial resolution such as Worldview (WV)-2/3 or
Gaofen-1/2, were also used. Textural measures, and approaches borrowed from computer
vision, were used in the case of very high-resolution (sub-meter) data recorded by aircraft
and unmanned aerial vehicles (UAV). To separate and classify tree species, Random Forest
(RF) and Support Vector Machine (SVM) algorithms were most often used, in particular
when using (orbital) remote sensing data with metric to hecto-metric ground sampling
distance (GSD). A few neural network approaches were used when UAV data was analyzed.
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Table 1. Summary of the contributions to the special issue about tree species diversity mapping
describing the used data, location of the study, number of species considered (used for the order of
the table), used classifier, and achieved accuracy (GSD: ground sampling distance, MS: multispectral,
HS: hyperspectral, LS: Landsat, S1: Sentinel-1, S2: Sentinel-2, WV: WorldView, UAV: unmanned aerial
vehicle, ANN: artificial neural network, CNN convolutional neural network, RF: random forest, SVM:
support vector machine; OA: overall accuracy).

Data Type Platform Sensor Spectral Bands GSD Temporal
Coverage Location Number of

Species * Classifier OA (%) Ref.

LiDAR Review study 60–80 [8]

MS Satellite S2 10 10 m Multi-
temporal Senegal 1 ANN 91 [9]

RGB Airplane Different aerial
cameras 3 0.1 cm Bi-

temporal New Zealand 1 CNN &
XGBoost 83 [10]

MS Satellite LS 6 30 m Multi-
temporal Russia 2 RF 90 [11]

MS +
LiDAR

Airplane +
Helicopter

Xp-w/a|DMCIII;
RIEGL LMS Q 680i 4 55 pts/m2,

0.17/0.095 m
Mono-

temporal Germany 2–4 RF 87–98 [12]

MS Satellite LS8 6 30 m Multi-
temporal China 4 RF 79 [13]

RGB UAV RGB camera 3 0.003–0.5 m Serval flights Germany 4 CNN 92 [14]

MS Satellite Gaofen-1&2, S2,
LS8 2 (NDVI) 4, 10, 16, 30 m Multi-

temporal China 4 RF 85 [15]

MS Satellite WV-3 4 0.4 m Mono-
temporal China 6 CNN, SVM, RF 83 [16]

MS Satellite S2 10 10 m Multi-
temporal Serbia 8 RF 83 [17]

HS UAV 25 0.1 m 3 flights in 3 years Brazil 8 RF 50 [18]

MS Satellite WV-2 8 0.5 m Mono-
temporal Kenya 8 RF, SVM 70–73 [19]

MS Satellite WV-3 16 0.3 cm Mono-
temporal Canada 11 SVM, RF 75 [20]

MS +
LiDAR

Satellite +
Airplane

S2, RGB,
RIEGL LMS-Q680 3 + 10 3.6 pts/m2, 0.12 m,

10 m
Mono-/multi-

temporal China 11 SVM, RF 90–94 [21]

MS + SAR Satellite S2, S1 10 10 m Multi-
temporal Austria 12 RF 84 [22]

MS Satellite S2 10 10 m Multi-
temporal Austria 12 RF 89 [23]

MS Satellite Formosat-2 4 8 m Multi-
temporal France 13 SVM 48–60 [24]

HS Airplane AVIRIS 366 4 m Mono-
temporal India 20 SVM 86 [25]

* Sometimes, species were grouped into broader “classes”.

The review paper on LiDAR [8] pointed out that LiDAR data are currently often used
for the separation of only a few (2–4) tree species. In addition to geometry, the use of
the full-waveform and intensity features improves the classification performances. The
authors concluded that combinations with other data sources from the spectral domain are
promising, but also challenging.

Lu et al. [9] mapped Faidherbia albida, often used in Senegal’s agroforestry systems,
using multi-spectral S2 time series. The “reversed” phenology of this species, compared
to many other species in the region, did not show the expected clear signal. This was
explained by the spectral contribution of the herbaceous layer. Nevertheless, especially
with data from the senescence phase, the species could be detected very well, and thus, a
good data basis for management activities could be established.

Pearse et al. [10] highlighted the potential of deep learning approaches for the mapping
of one specific species (Metrosideros excelsa) based on RGB data from drones. Distinctive
phenological features like red flowers facilitate the recognition of the species but are not
mandatory. Higher spectral resolution and image quality would be helpful to distinguish
more species.

Tian and Fu [11] showed the possibility of EO data, in particular Landsat scenes, for
largescale mapping of the boreal forest cover in Siberia. They analyzed changes in the cover
of broadleaved and coniferous trees between 1985 and 2015. The quality of the 2015 map
was validated by using very high resolution (VHR) data (Gaofan-2).

Next to the separation of coniferous and broadleaved trees; the main aim in the study
of Krzystek et al. [12] was the mapping of standing dead trees which were separated in
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snags and among trees with crowns. Dead trees are often important habitats for fauna
and flora, and therefore, often a driver for biodiversity in forests. The work highlighted
the potential of ALS data for individual tree crown (ITC) approaches and the detection of
standing deadwood in a nature protected area (national parks) on the border Germany and
Czech Republic.

Well-executed topographic corrections are a prerequisite for the optimum analysis
of high-quality EO data. Dong et al. [13] found that the overall accuracy of classifications
models for four tree species in a mountainous area in the Shandong Province, China can be
improved by 4–13 percentage points by using better-suited topographic correction methods.
The use of vegetation indices (VI) can further reduce the influence of the topography and
can therefore improve the classification.

Egli and Höpke [14] analyzed UAV data acquired at different daytimes for tree species
classification with a convolutional neural network (CNN) and found that the models are
independent from illumination conditions. In contrast, the spatial resolution of the input
data has a strong impact on the classification accuracy. Decreasing the GSD/resolution
through resampling degraded the model results, however, the classification accuracy of a
human interpreter dropped much faster and earlier than the CNN models.

Xu et al. [15] analyzed the influence of the spatial resolution on tree species classifica-
tion in northeast China. They analyzed NDVI time series obtained by monthly data from
four different sensors with spatial resolution between 4 to 30 m for the separation of four
species. The 10 m data sets outperformed the other data sets. The use of additional metrics
describing the land surface phenology (LSP) improved the models. The study showed that
phenological parameters were not independent from spatial resolution.

Yan et al. [16] used WV-3 data with the four standard bands to distinguish tree species
in a park landscape in Beijing, China by using an ITC approach. They pointed out the
importance of high quality crown delineation for achieving good accuracies which is more
complicated in natural forests. The CNN outperformed traditional classifiers such as RF
and SVM while not needing a separate feature extraction step.

Kovačević et al. [17] used multi-temporal S2 data and analyzed different vegetation
types for the entire geography of Serbia. Their approach is based on a probability classifica-
tion model that considers the temporal information of the data sets and a spatial-temporal
aggregation. The authors also highlighted the challenges regarding reference data for the
classes of interest in terms of occurrence, recognizability, and demarcation.

Takahashi Miyoshi et al. [18] used UAV-borne hyperspectral data for their ITC ap-
proach in a study site in the Brazilian Atlantic forest. They found some differences in the
interpretability of the three flights, which were done in June/July of three consecutive
years. Different phenological stages and illumination conditions have an influence on the
models. They found that the added value of multi-temporal data has to be investigated in
detail with a more extensive reference data set.

Jackson and Adam [15] analyzed a WV-2 scene in a study area on Mount Kenia. They
highlighted the importance of the Red, RedEdge, and NIR bands for the separation of the
tree species. They used under and oversampling to generate a more balanced data set
which improved the classification accuracy slightly.

Varin et al. [20] combined WV-3 and LiDAR data to analyze ITC. Transferring the
canopy delineation done on the LiDAR canopy height model (CHM) to the WV-3 scene was
challenging. The different spatial resolutions of the bands, especially the SWIR bands, also
complicate the analyses. Therefore, they concluded that the 8-band data is preferable to the
16-band dataset. They also mentioned the problem of trees which were either not seen (too
small crown and/or located in the understory) or species which were not considered in the
reference data set.

Wan et al. [21] combined LiDAR data, aerial images, and S2 time series data in an hilly
forest in China. They found the data with higher spatial resolution were more important for
the species classification. However, the highest accuracies were achieved with the fusion
approach using all data sets.
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Lechner et al. [22] tested the combination of S2 and S1 data for the classification of
12 tree species in a biosphere reserve in Austria. A dense S1 time series (SAR) was able
to separate coniferous species quite well and also improved mono-temporal S2 models.
However, considerably higher accuracies were achieved by a multi-temporal S2 data set. In
this case, additional SAR data could not further increase the accuracy.

Immitzer et al. [23] analyzed, for the same study site, an extensive multi-temporal
S2 data set covering several years to identify the most important dates and bands to
distinguish 12 tree species. They showed the high importance of the Red band for the
separation of species in the coniferous group, the SWIR band for the broadleaved trees, and
the NIR for the separation between these two tree species groups. VIs further improved the
model performance when added to the spectral signatures. Spectral data sets with at least
5–7 scenes, covering the main phenological stages such as spring, summer, and autumn,
led to very good results.

Karasiak et al. [24] used multi-temporal, 4-band Formosat-2 data from several years
for tree species classification. The results showed that the usage of multi-temporal data
improves the model performance; however, the best dates for optical data acquisition
varied between years. They also tested different validation approaches and emphasized
the importance of the number and quality of reference samples.

Chaurasia et al. [25] used hyperspectral data to produce species abundance maps and
analyzed the intra- and inter-species spectral diversity for three test sites in India. They
found higher spectral diversity within abundant species and attributed this to improved
adaptation of these species to local conditions. Changes in species diversity over climatic
gradients were also observed, which can be important with respect to climate change.

3. Summary of Main Outputs and Findings

The work presented in this special issue re-confirmed a number of findings. For
example, no noticeable issues were reported in separating coniferous and broadleaved
trees, thus confirming many previous studies [26,27]. The main features permitting this
separation were located in the NIR, as in this spectral region the spectral differences are
largest (Figure 1).
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Figure 1. Mean spectral signatures of tree crowns from seven Central European tree species using
airborne HySpex imaging spectrometer data. Species with reddish lines are broadleaved species;
green and blue lines indicate coniferous species. The data used for this illustration was also used in
the work of Maschler et al. [28].
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This points to an overwhelming impact of leaf optical properties, and in particular,
leaf anatomy (Figure 2a) [29,30]. Indeed, both empirical and physically-based leaf optical
properties models have demonstrated that the difference in leaf anatomy is the main
trait that makes needle leaves much less reflective in the NIR compared to leaves from
broadleaved trees [31]. All other conditions being identical, simulations using the forest
radiative transfer model INFORM [32,33] confirm this (Figure 2b).

Within the two broad tree species groups (broadleaved/coniferous trees), some species
can be distinguished relatively well, while others are more difficult to separate [26,34,35].
For example, some species are usually sufficiently separable in the VIS-NIR-SWIR optical
domain, while others are spectrally too similar to be distinguished. This overlap in spectral
signatures persists throughout the growing season and points to three main effects:

• Between several tree species, often only very small inter-class differences in leaf bio-
chemical and structural properties exist, leading to very similar leaf optical properties
(Figure 2a).

• Most species exhibit a relatively large intra-class variability of canopy properties [34,36].
Intra-class variability exist, for example in terms of differences in tree age, stem density,
growth form, and crown closure [37–39]. Additional intra-class variability results from
changes in weather and growth conditions.

• Even for relatively closed forests, the canopy reflectance is heavily impacted by the
optical properties of the forest floor, specifically, the type and amount of understory
vegetation [38,40,41]. This induces a large range of “background noise”, thus “widen-
ing” the spectral signature recorded by the sensor [42–44].
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Figure 2. Impact of leaf/needle optical properties on canopy signatures. (a) Mean spectral signatures
of leaves/needles from seven Central European tree species measured in the laboratory with an
ASD FieldSpec Pro FR spectrometer following the method presented in Einzmann et al. [45]. Species
and colors are identical to Figure 1. (b) Simulations of forest canopy reflectance using the INFORM
radiative transfer model. For the simulations (n = 5000), leaf optical properties typical for broadleaved
species (red) and coniferous species (blue) were used. Other INFORM parameters were randomly
selected and kept identical for the two classes, so that solely differences resulting from the leaf optical
properties are shown.

Together, it is not surprising that the sometimes very strong and persistent overlap
of spectral-temporal signatures between two or more tree species cannot be untangled—
independent of which classifier is used [26,46–48].

With respect to the sole use of spectral vegetation indices (VI), the situation is even worse,
as spectral indices are only simple (equivariant) arithmetic combinations of 2–3 spectral bands
(e.g., with an infinite number of band combinations leading to the same VI value). VIs
should, therefore, never replace the spectral signatures, but should instead be added to the
predictive feature set, for example to provide some “correction” for undesired factors of
spectral variation [23].

In the same line of thinking, it is also unsurprising that accuracies obtained from
a limited band setting are usually not able to perform as well as using the full spectral
resolution [49]. Similar observations have been reported (Figure 3) when comparing single-
frequency SAR data in two polarizations to multi-spectral optical sensors [22].

As expected, spectral observations over multiple time steps facilitate species iden-
tification. As we will show later, multi-temporal (optical) time series inherently capture
and analyze the temporal (co)variation of the canopies’ structural characteristics and bio-
chemical composition. Analyzing such time series offer, therefore, strong improvements
compared to single date analyses. Similar findings were reported in other studies [50–53].
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Figure 3. Overall classification accuracy for 12 tree species based on Sentinel-2 (S2) and Sentinel-1
(S1) data: mono-temporal S2 data, two seasonal selections using the three worst and the three best-
performing S2 triples, and all available S2 data—alone and in combination with S1 phenological data
(adapted from Lechner et al. [22]).

As active sensor modalities, such as LiDAR and SAR, react primarily to canopy prop-
erties not/less strongly impacting the spectral signatures recorded by optical sensors (e.g.,
structural canopy properties other than LAI), the combination of optical data with the active
devices is generally beneficial. Similar findings have been reported in [27,54]. However,
the improvement is usually not overly strong, as the active data is often very noisy (in
particular, SAR) and/or focusing on a single vegetation trait (e.g., 3D structure/clumping
in the case of LiDAR). For the same reason, neither SAR nor LiDAR alone were able to
achieve the accuracies which can be achieved with optical (time series) data, confirming the
conclusion of the review paper by Fassnacht et al. [46]. The research studies in our special
issue also confirmed the importance of representative and comprehensive field samples [46].
When reference data are collected, foremost attention should be put on samples near the
decision boundaries in the respective feature space, as pointed out by Foody et al. [55].
Indeed, the “difficult cases” matter most when dividing the feature space into thematic
classes [56]. Compared to overly cleaned and curated data for training and evaluation,
these data generate more reliable error statistics. Several studies [47,50,57] highlighted the
fact that auxiliary variables such as altitude can help to improve the performance of tree
species classification models. Consequently, a representative distribution of reference data
for each class has to be ensured. Unlike spectral measurements, variables such as altitude
are not a true explanatory variable for actual occurrence of a species. A comprehensive
summary of the main findings and conclusions of our special issue, major limits, and
possible amendments, is provided in Figure 4.
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4. A More Fundamental View Going Forward: Use of Physically-Based Approaches

The studies published in this special issue have in common the proposal of data-driven
machine-learning based approaches, in which the classification is performed in the spectral-
temporal feature space (e.g., based on spectral signatures and other spectral/temporal
metrics). We argue that this is possibly contributing to the reported difficulties, as spectral-
temporal features are not easily transferable across space and time, depend on observation
conditions, and are not necessarily species-inherent. As an alternative approach, we
propose instead, working in the feature space of biophysical variables retrieved using
appropriate forest RTMs. In our opinion, this has not yet been investigated enough.

To illustrate our statement, let us assume deca-metric, multi/hyper-spectral optical EO
data such as Landsat, S2, or EnMAP, where individual trees are not resolved. For simplicity,
we also ignore possible atmospheric perturbations and calibration issues in the EO data.
In this case, and under a more fundamental physical view, spectral signatures of trees
under a given illumination/observation geometry and at a given acquisition date (t), are
the expression of the biochemical composition and structural settings of the trees within
the IFOV of the sensor (see also discussion of Baret & Buis [58] with respect to agricultural
crops). If we denote the biochemical properties of the trees as Θbio, the canopy structural
properties as Θstruc, background properties as Θbg, and observation and illumination
geometry as Θview, this can be expressed as:

R(λ,t) = f(Θbiot, Θstruct, Θbgt, Θviewt). (1)

Important biochemical and structural variables are listed in Table 2. Note that the
tree-related variables themselves (short: Θtree = Θbio + Θstruc), and their temporal
(co)evolution within and across seasons, are the result of the growth and development of the
respective genotype under the historical/current environmental setting and management
practices (time-dependent notation here omitted for sake of clarity):

Θtree = f(gene, environment). (2)

In this context, it is also worth noting that the “growth form or habitus”, i.e., the
phenotypical expression of the genotype leading to the trees we literally see with our eyes
(Figure 5 right—examples of bark, branching, leaf form, growth form) is fundamentally
different compared to EO measurements. When we observe tree species with our eyes,
we tend to characterize and differentiate them based on leaf form, fruits and reproductive
organs, bark structure, habitus, tree growth form etc. (Equation (3)). The spectral signatures
of trees are predominantly influenced by factors other than the mentioned plant traits
(Equation (2)), unless specifically examining high-resolution data from centimeter-level
UAV and LiDAR analysis.

Human discernible plant traits (pheno-type) = f(gene, environment) (3)



Remote Sens. 2023, 15, 3074 11 of 16

Table 2. Important biochemical and structural properties of trees. These biochemical and structural
variables determine the spectral signature of a tree canopy. In bold, the spectrally most important
variables. Note that understory/background variables are not included here.

Biochemical
Properties

Structural Properties

Micro-Scale Macro-Scale Meso-Scale

Chlorophyll A + B
content Leaf structure Leaf Area Index Crown size

Leaf water
thickness Leaf hairing Leaf angle

distribution
Gap size

distribution/gap fraction

Protein content Waxing Leaf clumping/
arrangement Crown shape

Dry matter content/specific
leaf area Tree branching Stem density

Other photosynthetic
pigment content Leaf size

Non-photosynthetic
pigment content Leaf form
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Figure 5. Tree species identification using (space-borne) EO measurements and human vision. Note
the fundamental differences resulting from the different perspectives: features that we literally see
from the ground (and partly from UAV and terrestrial sensors) (bottom right) and the spectral-
temporal signatures that we measure from space (top right).

Using remote sensing data at deca-metric spatial resolution, we thus capture a com-
pletely different expression of the tree’s geno-type, compared to computer/human vision
and centi-metric resolution UAV/LiDAR systems (Table 3).
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Table 3. Simplified enumeration of main traits and approaches used for the identification of tree
species using different sensor modalities from laboratory (genetics) to satellite-based Earth Observa-
tion. In the right-most column, our recommendation for future research.

Genetics Botany &
Human Vision

Computer
Vision LiDAR EO

Current
EO

Recommended

DNS
analysis Leaf shape & size Crown

structure
Point-cloud

derived metrics
Spectral-temporal

features

Biophysical variables
(Table 2) extracted

using RTM

Bark structure
& color Crown shape Crown shape

Supervised
classification in spatial-

spectral-temporal
feature space

Learning of the temporal
co-evolution of derived

biochemical &
structural variables

Fruits and flowers Branching Branching
pattern

Branching pattern

Habitus/growth
form

From the above it is also evident that the link of tree species to the biochemical and
structural properties (Θtree) is inherently closer than the link to direct use of spectral
signatures, as the latter relation is shaped by external factors (Θbg and Θview) and sub-
jected to a strong time factor that limits generalization over large geographic regions. In
botany and human vision, on the other hand, one recognizes (more or less) permanent
and species-inherent properties (Table 4) that allow a trained observer to correctly classify
many different tree species as the observed traits are relatively invariant. Unfortunately,
the remote sensing literature is very short on attempts to retrieve the species-inherent
co-evolution of biochemical and structural properties (Θtree), even though this would
potentially lead to a more generalizable pattern.

Table 4. Important plant traits for human visual recognition of tree species.

Individual Tree Tree Components

Habitus/crown form/shape Size, shape, color, orientation of leaves/needles
Crown structure/branching Structure and color of bark

Color, shape, size, orientation of flowers
Color, shape, size, orientation of fruits

In our opinion, this idea amounts to more than a simple hypothesis. Indeed, the
fact that simple classifications of time series of spectral data are successful (at least to
some degree), provides strong evidence that such species-inherent structural/biochemical
pattern do indeed exist.

The relationships between the fundamental properties and the spectral signatures
have already been formalized and modeled using various kinds of RTMs (e.g., [31,59]).
Existing formalizations are mainly based on analytical expressions (e.g., SCOPE [60]),
3D geometric-optical models (e.g., FLIM [61]), and mixtures of both (e.g., INFORM [32];
PARAS [62,63]). In addition, ray-tracing models such as DART track the path of individual
photons as they interact with the canopy elements, where the canopy is discretized into
voxels with specific optical properties [64]. RTMs can be readily inverted using a panoply
of methods such as look-up-tables, numerical optimization, predictive equations, Bayesian
approaches and neural networks (e.g., [58,62,65]).

Existing radiative transfer models have definitively ample room for improvement, as
highlighted by systematic but irregular evaluations against each other, and some natural
and synthetic benchmark datasets (e.g., RAMI [31]). However, with some effort the models
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can certainly be improved so that the biophysical and biochemical traits can be derived
with sufficient accuracy, using remotely sensed data. This seems to be a more plausible
path towards robust and generalized models, compared to the current data-driven ap-
proaches. Indeed, as trees are living organisms embedded in their respective biotic/abiotic
environment, the spectral signatures will change over the course of the season and evolve
as trees age, as both the biochemical composition and the structural setting change/evolve.
Hence, instead of “viewing” the classification task in the wavelength and reflectance space,
(Figure 6a) one should, in our opinion, view species “living” in the space of Θbio and
Θstruc (Figure 6b).
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Hence, from a physics-based deduction, as well as from an empirical inference, we
strongly believe that this under-researched area needs to be exploited in order to make EO
data analysis more generalizable across large geographic regions and more transferable
across time and space. This is needed not only for the classical applications of remote
sensing and biodiversity research, but also for more efficient implementations of financial
instruments such as nature-based solutions (NBS). The latter rely heavily on robust and
cost-efficient monitoring-reporting-verification (MRV) for supporting the development of
(voluntary) carbon markets, which progressively integrate attempts to protect/enhance
biodiversity.
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Spatio-Temporal Classification Framework for Mapping Woody Vegetation from Multi-Temporal Sentinel-2 Imagery. Remote Sens.
2020, 12, 2845. [CrossRef]

18. Takahashi Miyoshi, G.; Imai, N.N.; Garcia Tommaselli, A.M.; Antunes de Moraes, M.V.; Honkavaara, E. Evaluation of Hyperspec-
tral Multitemporal Information to Improve Tree Species Identification in the Highly Diverse Atlantic Forest. Remote Sens. 2020,
12, 244. [CrossRef]

19. Jackson, C.M.; Adam, E. Machine Learning Classification of Endangered Tree Species in a Tropical Submontane Forest Using
WorldView-2 Multispectral Satellite Imagery and Imbalanced Dataset. Remote Sens. 2021, 13, 4970. [CrossRef]

20. Varin, M.; Chalghaf, B.; Joanisse, G. Object-Based Approach Using Very High Spatial Resolution 16-Band WorldView-3 and
LiDAR Data for Tree Species Classification in a Broadleaf Forest in Quebec, Canada. Remote Sens. 2020, 12, 3092. [CrossRef]

21. Wan, H.; Tang, Y.; Jing, L.; Li, H.; Qiu, F.; Wu, W. Tree Species Classification of Forest Stands Using Multisource Remote Sensing
Data. Remote Sens. 2021, 13, 144. [CrossRef]

22. Lechner, M.; Dostálová, A.; Hollaus, M.; Atzberger, C.; Immitzer, M. Combination of Sentinel-1 and Sentinel-2 Data for Tree
Species Classification in a Central European Biosphere Reserve. Remote Sens. 2022, 14, 2687. [CrossRef]

23. Immitzer, M.; Neuwirth, M.; Böck, S.; Brenner, H.; Vuolo, F.; Atzberger, C. Optimal Input Features for Tree Species Classification
in Central Europe Based on Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 2599. [CrossRef]

24. Karasiak, N.; Dejoux, J.-F.; Fauvel, M.; Willm, J.; Monteil, C.; Sheeren, D. Statistical Stability and Spatial Instability in Mapping
Forest Tree Species by Comparing 9 Years of Satellite Image Time Series. Remote Sens. 2019, 11, 2512. [CrossRef]

25. Chaurasia, A.N.; Dave, M.G.; Parmar, R.M.; Bhattacharya, B.; Marpu, P.R.; Singh, A.; Krishnayya, N.S.R. Inferring Species
Diversity and Variability over Climatic Gradient with Spectral Diversity Metrics. Remote Sens. 2020, 12, 2130. [CrossRef]

26. Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution
8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [CrossRef]

27. Waser, L.T.; Rüetschi, M.; Psomas, A.; Small, D.; Rehush, N. Mapping Dominant Leaf Type Based on Combined Sentinel-1/-2
Data—Challenges for Mountainous Countries. ISPRS J. Photogramm. Remote Sens. 2021, 180, 209–226. [CrossRef]

28. Maschler, J.; Atzberger, C.; Immitzer, M. Individual Tree Crown Segmentation and Classification of 13 Tree Species Using Airborne
Hyperspectral Data. Remote Sens. 2018, 10, 1218. [CrossRef]

29. Lukeš, P.; Stenberg, P.; Rautiainen, M.; Mõttus, M.; Vanhatalo, K.M. Optical Properties of Leaves and Needles for Boreal Tree
Species in Europe. Remote Sens. Lett. 2013, 4, 667–676. [CrossRef]

https://doi.org/10.1098/rstb.2013.0190
https://www.ncbi.nlm.nih.gov/pubmed/24733945
https://doi.org/10.1038/523403a
https://www.ncbi.nlm.nih.gov/pubmed/26201582
https://doi.org/10.1177/0309133316639403
https://doi.org/10.1002/rse2.15
https://doi.org/10.1016/j.gecco.2017.01.007
https://doi.org/10.3390/rs13030353
https://doi.org/10.3390/rs14030662
https://doi.org/10.3390/rs13091789
https://doi.org/10.3390/rs12244116
https://doi.org/10.3390/rs12040661
https://doi.org/10.3390/rs12050787
https://doi.org/10.3390/rs12233892
https://doi.org/10.3390/rs13142716
https://doi.org/10.3390/rs13030479
https://doi.org/10.3390/rs12172845
https://doi.org/10.3390/rs12020244
https://doi.org/10.3390/rs13244970
https://doi.org/10.3390/rs12183092
https://doi.org/10.3390/rs13010144
https://doi.org/10.3390/rs14112687
https://doi.org/10.3390/rs11222599
https://doi.org/10.3390/rs11212512
https://doi.org/10.3390/rs12132130
https://doi.org/10.3390/rs4092661
https://doi.org/10.1016/j.isprsjprs.2021.08.017
https://doi.org/10.3390/rs10081218
https://doi.org/10.1080/2150704X.2013.782112


Remote Sens. 2023, 15, 3074 15 of 16

30. Hosgood, B.; Jacquemoud, S.; Andreoli, G.; Verdebout, J.; Pedrini, G.; Schmuck, G. Leaf Optical Properties Experiment 93 (LOPEX93);
Report EUR 16095 EN; European Commission Joint Research Center: Brussels, Belgium, 1994; pp. 1–46.

31. Widlowski, J.-L.; Mio, C.; Disney, M.; Adams, J.; Andredakis, I.; Atzberger, C.; Brennan, J.; Busetto, L.; Chelle, M.;
Ceccherini, G.; et al. The Fourth Phase of the Radiative Transfer Model Intercomparison (RAMI) Exercise: Actual Canopy
Scenarios and Conformity Testing. Remote Sens. Environ. 2015, 169, 418–437. [CrossRef]

32. Atzberger, C. Development of an Invertible Forest Reflectance Model: The INFOR-Model. Decade Trans-Eur. Remote Sens. Coop.
2000, 14, 39–44.

33. Schlerf, M.; Atzberger, C. Inversion of a Forest Reflectance Model to Estimate Structural Canopy Variables from Hyperspectral
Remote Sensing Data. Remote Sens. Environ. 2006, 100, 281–294. [CrossRef]
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