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Abstract: The pathway, direction, and potential drivers of the evolution in global arid ecosystems
are of importance for maintaining the stability and sustainability of the global ecosystem. Based
on the Climate Change Initiative Land Cover dataset (CCILC), in this study, four indicators of land
cover change (LCC) were calculated, i.e., regional change intensity (RCI), rate of change in land cover
(CR), evolutionary direction index (EDI), and artificial change percentage (ACP), to progressively
derive the intensity, rate, evolutionary direction, and anthropogenic interferences of global arid
ecosystems. The LCC from 1992 to 2020 and from 28 consecutive pair-years was observed at the
global, continental, and country scales to examine spatiotemporal evolution in the Earth’s arid
ecosystems. The following main results were obtained: (1) Global arid ecosystems experienced
positive evolution despite complex LCCs and anthropogenic interferences. Cautious steps to avoid
potential issues caused by rapid urbanization and farmland expansion are necessary. (2) The arid
ecosystems in Australia, Central Asia, and southeastern Africa generally improved, as indicated
by EDI values, but those in North America were degraded, with 41.1% of LCCs associated with
urbanization or farming. The arid ecosystems in South America also deteriorated, but 83.4% of
LCCs were in natural land covers. The arid ecosystems in Europe slightly improved with overall
equivalent changes in natural and artificial land covers. (3) Global arid ecosystems experienced
three phases of change based on RCI values: ‘intense’ (1992–1998), ‘stable’ (1998–2014), and ‘intense’
(2014–2020). In addition, two phases of evolution based on EDI values were observed: ‘deterioration’
(1992–2002) and ‘improvement’ (2002–2020). The ACP values indicated that urbanization and farming
activities contributed increasingly less to global dryland change since 1992. These findings provide
critical insights into the evolution of global arid ecosystems based on analyses of LCCs and will be
beneficial for sustainable development of arid ecosystems worldwide within the context of ongoing
climate change.

Keywords: global dryland; land cover change; CCILC; remote sensing; multi-indices classifiers;
sustainable global ecosystems

1. Introduction

Arid ecosystems are habitats for dryland flora and fauna, playing an essential role in
supporting terrestrial carbon sinks and biodiversity at a global scale [1,2]. The evolution
of arid ecosystems influences cycling processes of the hydrosphere, atmosphere, and bio-
sphere [3–5] and is of importance for the stability and sustainability of the global ecosystem.

However, arid ecosystems are usually fragile [6]. The evolution of arid ecosystems is
influenced by external interferences [7–9], such as climate change [10–12] and human activ-
ities [13–15]. Global warming is generally now acknowledged based on diverse sources of
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evidence [16–18]. The global area of drylands is expanding, and drylands are predicted
to face greater stress than non-drylands in response to ongoing global warming [19]. Hu-
man societies in drylands worldwide are experiencing unprecedented change. Increasing
urbanization and farming practices are reshaping arid ecosystems in direct and indirect
ways [20,21]. Within the context of recent global warming and economic globalization,
close observation and a rich understanding of evolution in global arid ecosystems are
essential for maintaining and improving the resistance and resilience of these unique areas
in response to future unprecedented interferences.

Land cover change (LCC), an indicator of the modifications of the Earth’s surface [22],
could provide a framework to interpret the evolutionary processes of Earth’s ecosystems.
Previous research linked LCCs with several aspects of ecosystems, for instance, ecosystem
services [23], resilience [24], and biodiversity [25]. The transitions among land covers may
indicate the evolutionary behavior of ecosystems [26,27]. Changes in specific land covers
provide clues to natural or anthropogenic drivers of ecological evolution [28,29]. Thus,
monitoring LCC in global drylands is a practical and effective means to understand the
pathway, direction, and potential drivers of the evolution of global arid ecosystems.

Remote sensing platforms, such as AVHRR, MODIS, and Landsat [30–32], are efficient
for monitoring LCC at local [20,33], regional [34], and global scales [35–38]. Although pre-
vious studies have used time-series vegetation indices to capture the land surface change
in global drylands [39–41], few studies have focused on the long-term evolution of Earth’s
ecosystems from the perspective of LCC. A few studies have investigated the land cover
dynamics in dry areas, but such studies focused on limited areas of drylands [13,42] or
a selected thematic LCC [43]. Specifically, Central Asia [44], China [45], southeastern
Australia [46], and southeastern Africa [47] have experienced the loss of bare land and
overall greening in vegetation, whereas the arid ecosystems in South America have been
degraded [48]. Meanwhile, wetland shrinkage has been documented in Uzbekistan [49].
These accounts present different conclusions and differ in study periods, and hence dis-
cerning spatiotemporal changes in global drylands is difficult [34,50]. To date, it is unclear
whether certain dryland hotspots with striking LCCs are representative of drylands world-
wide, as well as whether global arid ecosystems evolve in a linear or nonlinear manner
in the long term. Several global studies of thematic LCCs have recorded a decrease in
the area of bare land [36,37], an increase in water-body area [51,52], net loss of forests
and grasslands [36,37], and rapid expansion of urban areas and agricultural land [36,53].
However, the performance of thematic LCCs in relation to global drylands, compared with
that for global non-drylands, remains unknown. Elucidation of the evolutionary processes
in arid ecosystems worldwide remains a challenging task.

The scientific question posed in the present study was as follows: what are the unique
spatiotemporal evolutionary processes of Earth’s arid ecosystems, within the context of
global warming and economic globalization? To answer this question, long-term LCCs
in drylands at global, continental, and country scales were determined using the Climate
Change Initiative Land Cover (CCILC) dataset (1992–2020). Four indicators, i.e., regional
change in intensity of land cover (RCI), rate of change in land cover (CR), evolutionary
direction index (EDI), and artificial change percentage (ACP), were used to derive the inten-
sity, rate, evolutionary direction, and anthropogenic interferences of global arid ecosystems
based on the LCCs. We first determined the evolutionary characteristics of global dry-
lands from 1992 to 2020, and then derived the evolutionary processes in 28 consecutive
pair-years. In this manner, we interpreted the diversity and uniqueness of evolution in
global drylands, as well as the nonlinear evolutionary paths of global arid ecosystems. The
present research provides fundamental evidence of how global drylands have changed
and how arid ecosystems have evolved during the past three decades. The findings are of
importance for understanding the evolutionary mechanism of worldwide arid ecosystems
from the perspective of LCCs.
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2. Methods
2.1. Study Area

The extent of global drylands was determined based on the global climate map using
the Köppen–Geiger system and downloaded from the Global Groundwater Information
System website (https://ggis.un-igrac.org/catalogue/#/dataset/431 (accessed on 4 May
2023)). The most recent version of the map was released in October 2020. The Köppen–
Geiger system includes five climate zones of global extent. The five zones, i.e., tropical (A),
arid (B), temperate (C), continental (D), and polar (E), were determined by consideration of
the local vegetation, long-term precipitation, and long-term temperature status [54]. In the
present study, the dryland area refers to the arid zone (B) of the Köppen–Geiger system,
covering four subzones, i.e., the BWh area (Arid-Desert-Hot), BWk area (Arid-Desert-Cold),
BSh area (Arid-Steppe-Hot), and BSk area (Arid-Steppe-Cold).

The study area was generally located between 10◦ and 50◦ N/S and covered 97 countries
(Figure S1). Given that 35 of the 97 countries had dryland areas of less than 0.02 million km2,
these countries (0.35% of the global dryland area) were excluded from the analysis. Ulti-
mately, the study area included 62 countries on six continents and covered 41.14 million km2

in total (Table S1).

2.2. Data

The CCILC dataset has been widely used in previous LCC monitoring studies [20,36,55]
and was downloaded from the official website of the European Space Agency (https:
//www.esa-landcover-cci.org (accessed on 25 June 2022)). The dataset contains annual
land-cover maps from 1992 to 2020 with 300 m spatial resolution and using the WGS84
geographic coordinate system. The dataset was produced using the Advanced Very
High-Resolution Radiometer (AVHRR) time series (1992–1999), the Systeme Probatoire
d’Observation de la Terre Vegetation (SPOT-VGT) time series (1999–2013), the Project for
On-Board Autonomy V (Proba-V) time series (2014–2015), and the Sential-3 Ocean Land
Color Instrument (S3-OLCI) time series (2016–2020). The overall accuracy of the land-
cover map in the year 2015 proved to be 71.45% in comparison with the GlobCover 2009
validation database [56].

The 37 land-cover categories in the dataset were determined using the Land Cover
Classification System (LCCS), which was developed by the Food and Agriculture Organiza-
tion of the United Nations. Based on the description of the individual land-cover categories,
the 37 land-cover categories were regrouped into eight categories, i.e., farmland, forest,
grassland, wetland, urban land, shrubland, bare land, and other lands, with consideration
of the land cover/land use definitions in the Intergovernmental Panel on Climate Change
land classification system, as well as the ecological function and ecosystem service of each
land-cover category (Table S2).

2.3. Land Cover Change Indices

In this study, the CCILC dataset was the only data source. Four indicators (RCI, CR,
EDI, and ACP) were calculated to progressively capture the intensity, rate, evolutionary
direction, and potential anthropogenic contributions of the LCCs in global drylands. The
statistical computing was conducted using the C# language with ArcGIS Engine functions.

In theory, all indices could be derived by comparing land-cover maps from two specific
years. We first calculated the four indices using the land-cover maps for 1992 and 2020 to
outline the long-term changes. Then, we calculated RCI, EDI, and ACP in 28 consecutive
pair-years to enrich information on the detailed pathway of the changes (Figure 1). In this
manner, the long-term consequences and the tortuous evolutionary paths of global arid
ecosystems were considered. A pair-year refers to two consecutive years starting from
1992, for instance, 1992–1993, 1993–1994, and so forth. As a result, there were 29 years and
28 pair-years. The pair-year results were recorded using the start year. For example, the
EDI of 1992 denotes the EDI calculated using the land cover maps in 1992 and 1993. All
maps were visualized using ArcGIS 10.5 software.

https://ggis.un-igrac.org/catalogue/#/dataset/431
https://www.esa-landcover-cci.org
https://www.esa-landcover-cci.org
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• Regional change intensity (RCI)

The RCI is a comprehensive indicator of the intensity of LCCs within a specific spatial
extent for two specific years [57]. It considers all potential transitions among land-cover
categories and was calculated using Equation (1). The RCI is always a positive value.
A high RCI value indicates a high intensity of LCCs for a given area.

RCI =

n
∑

i=1
∆Aij

n
∑

i=1
Ai

× 100% (1)

where Ai is the area of land-cover category i in the start year, and ∆Aij is the absolute
change in areas in which land-cover category i was transferred to category j. Note that i
and j are two different land-cover categories.

• Rate of change in land cover (CR)

The CR indicates the rate of change of land cover categories within a specific spatial
extent for two given years [57,58]. The CR was calculated using Equation (2):

CR =
Ab − Aa

Aa
× 100% (2)

where Aa and Ab are the area of a specific land-cover category in year a and year b, respectively.

• Evolutionary direction index (EDI)

The EDI was conceived to indicate the direction of ecological evolution owing to
LCCs [58]. Because different land cover categories indicate various ecological functions
and values [59,60], we assigned levels 1 to 5 to each of the eight land-cover categories to
represent their influence on ecosystems (Table 1). The ecological levels of the different
land-cover categories were assigned in accordance with previous studies [58,61]. A lower
ecological level indicates a higher benefit to an ecosystem (Table 1). Based on the equiv-
alent value per unit area of ecosystem services determined in a previous study [60], we
determined wetland (including water bodies and lakes) as having the highest ecological
level (i.e., 1).
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Table 1. Ecological level assigned to each land-cover category.

Land Cover Farmland Forest Grassland Wetland Urban Area Shrub Bare Others

Ecological level 5 2 4 1 5 3 5 5

The EDI is a comprehensive indicator. Every local land-cover transition among the
eight categories contributes to the EDI value. The direction of ecological evolution at a
specific site was determined by comparison of ecological levels over two years. Note that
the LCCs associated with farmland and urban pixels were excluded from the calculation
of the EDI. These pixels accounted for a relatively small percentage of the study area and
were mainly controlled by anthropogenic factors. Therefore, in this study, the EDI was
designed to capture the evolution of natural LCCs and was calculated using Equation (3):

EDI = ∑[Ak × (Da − Db)]

∑ A
× 100% (3)

where Da and Db are the ecological levels in year a and b, respectively, in land-cover
transitions associated with land-cover category k (k = 1, 2, . . . , n); Ak is the area of the
land-cover transitions ‘from’ or ‘to’ land-cover category k; and ∑ A is the statistical area.

Given that each land cover category has an ecological level (Table 1), each land-cover
transition would contribute to the upward or downward change in the regional EDI value.
The regional EDI value considers all land-cover transitions and, consequently, indicates
the direction in which local ecosystems evolve. A positive regional EDI value indicates
that the local ecosystem is improving because of the land-cover transitions; a negative
regional EDI value indicates that the local ecosystem is deteriorating because of the land-
cover transitions.

• Artificial change percentage (ACP)

The ACP evaluates the proportion of the LCCs that is directly linked with human
activities. Given that farmland and urban land are two land-cover categories mainly
governed by human societies, the ACP was used to determine the proportion of dryland
changes caused by farming and urbanization. The ACP value indicates the extent of human
influences on local drylands and was calculated using Equation (4):

ACP =
∑ ∆Aqk

∑ ∆Aij
× 100% (4)

where ∆Aij is the absolute area of transitions between category i and category j; ∑ ∆Aij is
the total changed area in the statistical area; ∆Aqk is the absolute area of transitions between
category q and k; and ∑ ∆Aqk is the total changed area caused by modifications of artificial
land-cover categories (i.e., farmland and urban land). Note that, i, j, and q refer to different
land-cover categories, and k refers to artificial land-cover categories. In addition, j is a non-i
land-cover category and q is a non-k land-cover category.

3. Results
3.1. Evolution of Global Drylands from 1992 to 2020
3.1.1. Dryland Changes at the Global Scale

At the global scale, complex land-cover transitions occurred during the past 30 years
(Tables S3–S5). Overall, the global drylands changed at a certain rate with RCI reaching
5.08%. Most land-cover categories remained relatively stable, with the absolute value
of CR less than 10% (Table 2). The evolutionary direction of global arid ecosystems was
encouraging, with a positive EDI value of 0.36%. About one-fifth of LCCs in global drylands
from 1992 to 2020 were linked with anthropogenic disturbances, as indicated by the ACP
value of 19.87%. However, it is worth noting that urban land had the highest positive CR
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(228.18%), and wetland had the lowest negative CR (−7.47%). The CR values for farmland
and grassland increased, whereas those for bare land and shrubland decreased.

Table 2. Rate of change in land cover (CR) for eight land-cover categories in four periods (1992–2020,
1992–2000, 2001–2010, and 2011–2020).

Land Covers
CR (%)

1992–2020 1992–2000 2001–2010 2011–2020

Farmland 3.87 1.97 1.37 0.25

Forest 1.61 −2.03 0.36 4.12

Grassland 3.01 0.02 1.06 1.69

Shrub −1.55 −0.44 −0.37 −0.71

Wetland −7.47 −3.23 −4.55 0.60

Urban area 228.18 24.94 56.70 48.88

Bare −2.09 −0.03 −0.83 −1.12

Others 0.48 −0.30 0.47 0.16

3.1.2. Changes in RCI, CR, EDI, and ACP at Continental and Country Scales

Relatively high RCI values were observed in Oceania and Asia (Figure 2a). Most
countries within these two continents experienced dramatic dryland changes, with RCI
values exceeding 4%, and thus were the main contributors to the global RCI during the
past three decades. Although arid ecosystems comprise a large area of North America, the
dryland changes showed a relatively low RCI value. African countries showed diverse
changes in drylands land cover with regard to the RCI values.
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Seven Asian countries, six African countries, six South American countries, and
Australia comprised the 20 top-ranked countries with the highest RCI values (Figure 3).
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Note that most are developing countries with large dryland areas within their territory.
It is, therefore, understandable that complex and intense LCCs occurred in these areas
during the past three decades. Specifically, the six African countries, i.e., South Sudan,
Kenya, Mozambique, Angola, Zambia, and Zimbabwe, are all located in southeastern
Africa. In Asia, the highest RCI value was observed in the Central Asia area. Accordingly,
southeastern Africa and Central Asia were the most eye-catching regions. The drylands
area in South America is small (0.06%), but six of the eight countries with drylands were
ranked among the top 20 countries based on RCI value.
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At the global level, the CR values for farmland, forest, and urban land increased,
whereas those for bare land decreased. In Asia, Africa, and Oceania, the continental pattern
of change in CR values was identical to that at the global scale (Table S6). Specifically,
Asia accounted for more than 50% of the global increase in urban land. At the same time,
Asia lost 21.7 × 104 km2 of bare land, which was almost half of the global decrease in bare
land. Africa experienced a large increase in farmland area and a marked decrease in bare
land area, whereas Oceania experienced a large increase in grassland area (12.8 × 104 km2)
and the smallest increase in urban land area. South America lost the largest area of forest
compared with all other continents.

The highest positive EDI values were observed in Oceania (i.e., Australia) and the
Mongolian plateau (i.e., China and Mongolia) (Figure 2b). Several countries in eastern
and southern Africa also had positive EDI values. Thus, the arid ecosystems in these
regions were in better condition in 2020 than in 1992. On the American continents, the
arid ecosystems were in worse condition after 29 years. The 10 countries with the highest
positive EDI values were mainly located in southeastern Africa and Central Asia (Figure 4a).
The positive EDI values in these two areas and in Australia largely contributed to the global
positive EDI (0.36%). Note that southeastern Africa and Central Asia were the most
eye-catching areas with respect to RCI (Figure 3). This indicated that, although these
regions experienced intense LCCs during the past three decades, the condition of the arid
ecosystems was improved. The EDI in Pakistan was 4.9%, and the highest contribution
was from the ‘bare land to grassland’ transition, which accounted for 59.0% of the overall
LCC in the country. Certain countries had negative EDI values (Figure 4b). For instance,
arid ecosystems in Uzbekistan had experienced severe deterioration, with the EDI reaching
−18.3%. During the past three decades, most pair-year EDIs were negative, which indicated
that the deterioration had occurred in most years. More than half (55.9%) of the LCCs were
‘wetland (including water bodies) to bare land’, which indicated that wetland shrinkage
might be the most pressing issue in Uzbekistan.
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top 10 countries with the lowest negative EDI values (b). Note, ‘RF’ refers to the Russian Federation.

The ACP values in most Asian and African countries remained above 20% (Figure 2c),
indicating there were considerable changes to farmland and urban land among arid ecosys-
tems. In contrast, the ACP in Oceania was less than 20%. The highest RCI and EDI values,
as well as the lowest ACP value, were indicative of the improvement of the natural envi-
ronment in Oceania. The 10 countries with the highest ACP values had notable proportions
of drylands changing to urban land and farmland (Figure 5). However, the EDI values of
these countries were diverse. Three Asian countries, i.e., United Arab Emirates, Azerbaijan,
and India, experienced arid ecosystem deterioration and large areas of urbanization and
farming activity. This indicated that human activities negatively affected the dryland
environment by severely affecting artificial and natural land covers. A similar pattern
was observed in the United States. Other countries, for instance, Egypt and Spain, ex-
perienced substantial areas of changes in artificial land covers, but the arid ecosystems
generally improved.
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Figure 5. Top 10 countries with the highest artificial change percentage (ACP) values. Note, UAE
refers to the United Arab Emirates.

The arid ecosystems in Oceania, Europe, and Africa had high RCI and positive EDI
values (Figure 2d). The arid ecosystems in South America and Asia had negative EDI
and high RCI values. South America had the lowest EDI (−1.0%), but the ACP values
in all South American countries remained low. This indicated that the deteriorated arid
ecosystems in this continent were the result of indirect human-induced or natural-induced
LCCs. Although the EDI value in Asia was negative, China had high RCI and EDI values.
However, the ACP in China was relatively higher than that observed for other Asian
countries (Figure 2c). This indicated that, although farming and urbanization of Chinese
drylands had undergone dramatic changes, the natural arid environments were improved
during the past 29 years.
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3.2. Pair-Year Changes in Global Drylands
3.2.1. Pair-Year RCI

Although the global RCI (1992–2020) was 5.08%, the RCI values in the 28 pair-years
were relatively small with values generally less than 0.6% (Figure 6a). This finding is
reasonable because LCCs might occur year by year and lead to accumulated consequences
over a long period. The pair-year RCI went through three phases from 1992 to 2020
(Figure 6a): an increasing trend from 1992 to 1998, a decreasing trend from 1998 to 2014,
and another increasing trend after 2014. Overall, the pair-year 2017–2018 had the highest
intensity in LCC with the highest RCI value of 0.51% compared with all other pair-years.
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We calculated the RCI values of global drylands in the pair-years 1992–1998 and
1998–2014. The former was 0.55% and the latter was 3.39%. Most countries had larger LCCs
in the latter period than in the former period (Figure 6b,c). This finding was in conflict with
the observed trends of RCI values in these two phases (Figure 6a). However, the increasingly
intense dryland dynamics from 1992 to 1998 may occur within approximately the same
spatial extent, whereas decreasingly intense dryland dynamics from 1998 to 2014 might
have gradually spread to different territories. In addition, the value and spatial distribution
of RCIs from 2017 to 2018 (Figure 6d) were similar to that derived from the seven-year
period (1992–1998) (Figure 6b), which indicated that the global dryland dynamics became
increasingly intense and widespread. Countries in northern Africa had consistently low
RCI values, whereas Australia always had high RCI values (Figures 1a and 5b,c). Most
countries, especially the Russian Federation and China, showed stronger RCI values in the
latest 20 years compared with values in the first 10 years.

3.2.2. Pair-Year EDI

As described in Section 3.1.1, the EDI (1992–2020) of global arid ecosystems was
positive (0.36%). However, the pair-year EDI was consistently negative before the pair-year
2002–2003 (Figure 7a). After 2003, the EDI was positive in most pair-years and the maximum
value was attained in the pair-year 2017–2018. This indicated that the improvements in
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global arid ecosystems during the past three decades were mainly because of improvements
after 2003. The highest EDI in pair-year 2017–2018 was mainly be cause of the LCCs in
Australia, Mongolia, Ethiopia, and Somalia (Figure 7d).
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The EDI of global drylands experienced two phases during the past three decades. We
further calculated the EDI in the pair-years 1992–2002 and 2002–2020. The former value
was −0.39% and the latter was 0.74%. Several countries, for instance, Australia, Mongolia,
Iran, Somalia, and South Africa, experienced conversion of EDIs from negative to positive
(Figure 7b,c), which was consistent with the overall trend in global drylands. The United
States experienced a deterioration of EDI, which was the opposite of the global overall
trend. The EDI values remained stable in some countries, such as Libya (consistently
negative EDI) and China (consistently positive EDI). Overall, the improvement of global
arid ecosystems during the past three decades was mainly contributed by improvements in
Australia, Mongolia, Somalia, and South Africa after 2003. The consistent improvement of
arid ecosystems in China also contributed to the overall improvement of global drylands
as indicated by the EDI.

3.2.3. Pair-Year ACP

The ACP values in the 28 consecutive pair-years showed a decreasing trend if the
abnormal peak observed in 2014 is excluded (Figure 8a). It is worth noting that the ACP
declined rapidly during the initial years. After 1995, the ACP value fluctuated to a limited
extent around 20%. This indicated that the global dryland changes were increasingly
contributed by modifications of the natural land-cover categories over time.

The areas of change in continents are shown in Figure 8b. Overall, Asia and Africa
experienced the two largest areas of dryland changes. These results were reasonable
because most countries in these two continents were agriculture-dominated regions and
had experienced rapid urbanization during the past 29 years. In Europe and North America,
the areas of change were small, but more than half of these changes were associated with
artificial land covers. In South America, more dryland changes occurred, but fewer changes
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were caused by artificial land-cover changes, compared with those in Europe and North
America. Oceania experienced large areas of dryland changes, but less than 5% of the
changes were associated with farming and urbanization.
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4. Discussion

The present study is the first to focus on the evolutionary behavior of global arid
ecosystems during the last three decades. In general, the Earth’s arid ecosystems evolved
with a promising direction from the perspective of LCCs. This conclusion is consistent
with previous research using a time-series normalized difference vegetation index [39–41].
However, worldwide drylands experienced different LCCs [62,63] because of differences in
human–nature interactions [21,64,65]. It is of considerable interest to understand the diver-
sity and uniqueness, as well as the nonlinear evolutionary paths, of Earth’s arid ecosystems.

4.1. Diversity and Uniqueness of Evolution in Global Drylands

The arid ecosystems in Oceania, Central Asia, and southeastern Africa generally
improved, despite the intense LCCs in these areas. A previous local study [44] also
indicated that Central Asia experienced an overall decrease in bare land and an overall
increase in natural land covers from 2001 to 2017; the potential driving factors might be
the amount of rainfall and severity of drought [44]. The intensive LCCs in the areas of
interest in southeastern Africa were observed from the 1980s to 2013 [47]. The present
results further confirmed that the arid ecosystems generally improved. Among hotspot
countries, the greening trend in southeastern Australia from 1981 to 2007 has been recorded
previously [46,66]. Evidence from previous research supported the finding of a decrease
in bare land in Pakistan [13]. The greening of China in recent decades was observed in
previous research analyzing a satellite imagery time-series [67]. Many Chinese region-
wide eco-projects have been conducted in arid areas [68], which might be the main reason
for positive EDI and relatively high RCI for China. The arid ecosystem has degraded
in Uzbekistan because of wetland (including water bodies) shrinkage, which has been
recorded in previous studies documenting wetland deterioration in the Amu Darya River
Basin and the Aral Sea. The former might be caused by the expansion of farming, reservoirs,
and irrigation [49], and the latter is claimed to be driven by global warming and the
absence of water-saving technology in farming [69]. The arid ecosystems in South America
deteriorated because of intensive natural land-cover transitions. A previous study has
reported severe land degradation in Argentina [48].

The uniqueness of evolution in global drylands is shown by the differences with
evolution in global non-drylands. First, the decrease in bare land and wetland, as well as
the increase in forest and grassland, are distinct with regard to natural LCCs. Bare land
accounts for the largest proportion of global drylands and decreased by 43.8 × 104 km2

with CR of −2.09%. Previous evidence also supports the decrease in bare land. However,
the extent of the decrease ranged from 75.2 × 104 km2 [37] to 16.5 × 104 km2 [35] during
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1982–2016, and approximately 50 × 104 km2 during 1992–2018 [36]. Taking into account
the most severe decrease (75.2 × 104 km2) recorded in previous research [37], 58.2% of the
decrease was in drylands according to the present results. This indicates that the decline in
bare land is more serious in drylands than in non-drylands. The wetland (including water
bodies and water-covered shrubs/herbaceous) in global drylands decreased with CR as
high as −7.47%, whereas global evidence indicates an overall increase in permanent surface
water area from 1984 to 2015 [51,52]. Although global water monitoring still has numerous
challenges [70,71], a previous study on global endorheic basin water [72], which covered
approximately the same spatial extent as that observed in the present study, showed a clear
trend for decline in water storage (1984–2015). Furthermore, the global forest/tree canopy
cover showed a net loss from 1992 to 2018 [36], but the present results showed that forest in
drylands experienced a slight increase with CR of 1.61%. The grassland/short vegetation
cover showed a net loss [35,37], but in the present study, grassland slightly increased in
global drylands with CR of 3.01%. The global loss of forest and grassland has mainly
occurred in non-drylands. The greening in natural land cover generally portrays a unique
and encouraging evolution in global drylands. These findings explain the overall positive
EDI and may be associated with recent evidence of climate change in drylands [4,44].

Although we observed an overall promising evolution in global drylands during
the past 30 years, an opposing trend is the rapid expansion of urban land and farming.
Urbanization in drylands is more rapid than that in global non-drylands. The CR of urban
land reached 228.2% in drylands (Table S4), whereas a global CR of 126.1% was reported in
previous research [39]. Although the extents of increase in urbanization in previous studies
differed because of disparity in the definitions of urban and dryland areas [14,36], there is
no doubt that rapid urban expansion in drylands is a worldwide phenomenon. Globally,
farmland increased by 100 × 104 km2 during 1992–2018 [36], but farmland in drylands only
increased by 22.3 × 104 km2 from 1992 to 2020. This indicates that the worldwide increase in
farmland has mainly occurred in non-drylands. Given that anthropogenic consequences are
usually permanent, the dramatically increasing artificial land covers indicate that cautious
steps are required to avoid potential issues caused by rapid urbanization and for long-term
sustainable development in global drylands.

4.2. Nonlinear Evolutionary Paths of Global Arid Ecosystems

The nonlinear evolutionary paths of global arid ecosystems are difficult to discern from
previous LCC studies. Traditionally, LCC information is obtained based on the existing
land-cover maps, i.e., the so-called ‘post-classification’ change detection strategy [59].
Previous LCC studies using this strategy usually summarized LCCs by comparing land-
cover information in selected and limited years [35,37,39]. The evolutionary processes
determined by these studies might be approximate, and even biased, because the results
were mainly shaped and restrained by the preliminary selected temporal phases. In
contrast, in the present study, a long-term LCC dataset (1992–2020), combined with detailed
changes occurring in 28 consecutive pair-years, jointly portrayed the nonlinear evolutionary
pathway for global drylands in the past three decades.

Although the present results (for the period 1992–2020) proved that global drylands
seemed stable and global arid ecosystems even improved slightly in recent decades, the
optimistic situation was not achieved through a linear process. Tortuous paths were
reflected in long-term RCI, EDI, and ACP values. With respect to RCI, differences in the
extents of RCI were differentiable into three phases, namely, ‘intense’ during 1992–1998,
‘stable’ during 1998–2014, and ‘intense’ during 2014–2020. Considering EDI, the evolution of
global arid ecosystems went through two periods, i.e., remaining consistently deteriorating
before 2003 and assuming a promising direction after 2003. These nonlinear changes
are closely associated with the nonlinear changes in climatic factors or human activities.
Previous studies have reported that the climate [28,73,74], human impacts on the Earth’s
systems [75,76], and even the relationship between vegetation greenness and rainfall [77]
have all experienced frequently nonlinear changes in the past. However, because of
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the differences in study areas, study periods, research objects (satellite-based vegetation
indicators, thematic LCC, or comprehensive indicators derived from general LCCs), and the
method of nonlinear diagnosis (statistical analysis of vegetation trajectories or observation
of annual consequence of general LCCs), the derived results are not comparable. We
believed these results are not conflicting, but rather represent different perspectives of the
Earth’s evolution and may be supplementary to obtain rich background information on
global dryland evolution.

With regard to ACPs, the current results indicated a consistent decline in the contri-
butions from urbanization and farming to the global dryland changes (excluding 2014).
However, it may not necessarily imply that anthropogenic interferences for global drylands
have decreased. Based on the existing evidence [78–80], a more likely explanation is that
society is changing the methods of exploiting arid ecosystems. Humans might instead turn
to modification of other land covers or influence drylands through indirect measures.

4.3. Limitation and Outlook

The present study used the most recent version of the global climate map using
the Köppen–Geiger system (released in 2020) to determine the geographical extent of
global drylands. Therefore, the evaluations in this study are only relevant within this area,
assuming that the area of global drylands is stable. However, previous research has proven
that the extent of global drylands has changed in recent years [4,33,62]. Future studies
could capture LCC characteristics in dynamic scenarios by updating the extent of drylands.

The present analyses were based on the CCILC dataset because of its advantages in
long-term data accumulation and broad application at the global scale [20,36,55]. However,
the present findings will contain a certain level of uncertainty related to the following
aspects of the CCILC dataset. First, the coarse spatial resolution (300 m) of the CCILC
dataset would instinctively lead to mixed pixels, which would influence the calculated
area of land covers and their corresponding changes [20]. Further studies using datasets
with relatively higher spatial resolution are required. Second, the accuracy of the CCILC
dataset, including an overall accuracy of approximately 71.45%, different accuracies of
land-cover categories, and the temporal inconsistency, would cause error accumulation
and propagation effects, leading to spurious changes to some extent. Previous studies
have shown that the product of individual map accuracies determines the accuracy of
LCCs [22,81]. In particular, the temporal consistency of the CCILC dataset has received
considerable attention because the data are based on imagery from multiple satellite
sources [82]. The producers used a ‘baseline’ and a uniform legend to ensure consistency
between the map series. Although previous studies assessed its temporal consistency [83]
and compared the CCILC dataset with other land-cover products [20,55], these studies
only targeted limited countries or areas of interest. To date, the global performance of its
temporal consistency remains uncertain. In the present work, a noteworthy phenomenon
is that the RCI, EDI, and ACP in 2014 were 0.0066, −0.0021, and 92.1%, respectively. This
indicates that, during 2014 and 2015, the total change areas of global drylands remained
extremely small, but 92.1% of the changes were associated with urbanization and farming.
More importantly, the arid ecosystems deteriorated slightly because of these changes. These
abnormal results indicate that the land-cover map for 2014 might be extremely similar to
that of 2015, especially in the distributions of natural land covers. Given that the official
documentation acknowledged that the changes occurring during 2014–2015 are limited
to certain changes [84], users are warned to be cautious of the LCC information during
2014–2015. It is impossible to validate an individual global map of the CCILC dataset, and
hence it is difficult to assess the influences of these uncertainties on the present results.
Further studies could build on the present results by developing high-quality time-series
LCC products.

The EDI, which was conceived using information on LCCs, was used to indicate
the direction of evolution in arid ecosystems. However, multiple indicators could be
used to estimate eco-evolution from different perspectives. Further studies on the use
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of various indicators to estimate eco-evolution are warranted. The present study sheds
light on the drivers of LCCs in arid ecosystems by targeting urbanization and farming
activities. However, numerous external interferences would influence the processes of
LCC in drylands during the last three decades. For instance, variation in precipitation and
temperature may cause the shrinkage or expansion of wetlands. Various human activities,
such as afforestation, grazing prohibition, and rest–rotation grazing, may have shaped
the LCCs in global drylands. Further research is recommended on the use of indicators
involving multiple drivers to obtain further information on the processes responsible.

5. Conclusions

Analysis of LCCs in global drylands is important for understanding the evolutionary
mechanisms of global arid ecosystems. This study is the first to explore long-term dryland
dynamics at the global scale. Four indicators, i.e., RCI, CR, EDI, and ACP, were used to
capture the intensity, rate, evolutionary direction, and potential drivers of global dryland
change. We examined the characteristics of LCC at the global, continental, and country
scales, and several hotspots with eye-catching LCCs were highlighted. From a temporal
perspective, the long-term changes (1992–2020) and the annual changes in 28 consecu-
tive pair-years were targeted to represent the nonlinear evolutionary path of global arid
ecosystems. In this manner, the pathway, direction, and anthropogenic interferences of the
evolution of global arid ecosystems were examined. The main findings and inferences were
as follows:

(1) From 1992 to 2020, the global RCI, EDI, and ACP were 5.08, 0.36, and 19.87%, respec-
tively. This indicated that global arid ecosystems generally evolved in a promising
direction despite certain LCCs and human interferences. However, cautious steps
are required to avoid potential issues caused by rapid urbanization and farming
expansion in global drylands.

(2) Several hotspot drylands were observed. The arid ecosystems in Australia were im-
proved, but the lowest ACP indicated that the improvements were mainly associated
with natural factors. Although arid ecosystems in Asia deteriorated, as indicated by
the negative EDI, many Asian countries were noteworthy. The arid environments
in China improved despite intensive LCCs and dramatic urbanization and farming
expansion; the arid environments in Pakistan improved mainly because of large areas
changing from bare land to grassland. The arid environments in southeastern Africa
generally improved with intensive LCCs during the past three decades. The arid
ecosystems in North American countries deteriorated, with 41.1% of changes caused
by urbanization or farming. The arid ecosystems in South American countries also
deteriorated, but 83.4% of changes were associated with changes in natural land
covers. The arid ecosystems in Europe generally improved, although 50.6% of the
changes were associated with urbanization and farming activities.

(3) Global arid ecosystems experienced three phases, as indicated by RCI values: intensive
change with increase in RCI values (1992–1998); stable with decline in RCI values
(1998–2014); and intensive change with increase in RCI values (2015–2020). Two phases
were differentiated based on EDI values, namely, a ‘deterioration’ period with mainly
negative EDI values (1992–2002), and an ‘improvement’ period with mainly positive
EDI values after 2002. The ACP values, in general, decreased over time, providing a
clear indication that urbanization and farming gradually contributed less to dryland
change (excluding 2014).

The highlighted hotspots provide evidence for the diversity of evolution in global
drylands. The results inferred that urban land increased more rapidly in drylands than in
non-drylands, but that farmland in drylands expanded more slowly than in non-drylands.
The overall global decrease in bare land mainly occurred in drylands. Forest and grassland
increased in drylands but decreased at a global scale. In contrast, wetland decreased in
drylands but increased globally. These findings demonstrated the uniqueness of evolution
in global drylands. The nonlinear evolutionary pathway for global dryland dynamics in the
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past three decades provides insights into the evolutionary mechanism for arid ecosystems
worldwide. Further research is required using dynamic scenarios for drylands, remote
sensing products with higher overall accuracy and improved temporal consistency, and
multiple statistical indicators to build on the present results.
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transitions from 1992 to 2020(%); Table S6: Net change areas (×104 km2) of 8 land cover categories
in continents.
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