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Abstract: An accurate spatial distribution map of the urban dominant tree species is crucial for evalu-
ating the ecosystem service value of urban forests and formulating urban sustainable development
strategies. Spaceborne hyperspectral remote sensing has been utilized to distinguish tree species, but
these hyperspectral data have a low spatial resolution (pixel size ≥ 30 m), which limits their ability
to differentiate tree species in urban areas characterized by fragmented patches and robust spatial
heterogeneity. Zhuhai-1 is a new hyperspectral satellite sensor with a higher spatial resolution of
10 m. This study aimed to evaluate the potential of Zhuhai-1 hyperspectral imagery for classifying the
urban dominant tree species. We first extracted 32 reflectance bands and 18 vegetation indices from
Zhuhai-1 hyperspectral data. We then used the random forest classifier to differentiate 28 dominant
tree species in Shenzhen based on these hyperspectral features. Finally, we analyzed the effects of the
classification paradigm, classifier, and species number on the classification accuracy. We found that
combining the hyperspectral reflectance bands and vegetation indices could effectively distinguish
the 28 dominant tree species in Shenzhen, obtaining an overall accuracy of 76.8%. Sensitivity analysis
results indicated that the pixel-based classification paradigm was slightly superior to the object-
based paradigm. The random forest classifier proved to be the optimal classifier for distinguishing
tree species using Zhuhai-1 hyperspectral imagery. Moreover, reducing the species number could
slowly improve the classification accuracy. These findings suggest that Zhuhai-1 hyperspectral data
can identify the urban dominant tree species with accuracy and holds potential for application in
other cities.

Keywords: Zhuhai-1; hyperspectral; tree species classification; urban; satellite

1. Introduction

Urban forests play a significant part in the urban ecosystem, supplying various ecosys-
tem services such as fixing CO2 and releasing O2, lowering urban air temperatures, mitigat-
ing urban air pollution, isolating noise, alleviating urban floods, and providing habitats
for animals [1–4]. However, there are significant differences in ecosystem service functions
among different tree species [5]. The accurate evaluation of the ecosystem service effect
of urban forests depends on accurate information regarding tree species composition and
spatial distribution, which is also the premise of quantitative monitoring and effective
evaluation of urban green quantity, biomass, and carbon stock [6–12]. In addition, tree
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species diversity is a vital parameter to characterize urban ecosystems [13]. Accurately
understanding the spatial patterns of the urban dominant tree species is crucial in bet-
ter evaluating the ecosystem service value of urban dominant trees, improving urban
environments, and formulating urban sustainable development strategies.

The traditional method of urban dominant tree species classification is to sample
randomly in the city and then investigate the tree species. This method always takes
a long time and has a high cost, making it hard to implement in large areas. Remote
sensing can obtain the ground surface characteristics in large regions accurately and quickly,
which provides a good opportunity for the timely and low-cost classification of the urban
dominant tree species. Earlier research utilized multispectral remote sensing imagery
such as Landsat, Sentinel-2, SPOT, WorldView, and Quickbird to distinguish the urban
dominant tree species [14–18]. For example, Gavier-Pizarro et al. extracted the NDVI and
the brightness, greenness, and wetness components of the Tasseled Cap Transformation
from Landsat data to map the spatial pattern of glossy privet in an urban area of Argentina,
obtaining an overall accuracy of 84% [19]. Poortinga et al. extracted a series of vegetation
indices from Landsat and Sentinel-2 data to map rubber, palm oil, and mangrove, achieving
an overall accuracy of 84% [20]. Pu et al. extracted a great deal of spectral and textural
features from sunlit WorldView-2 imagery to identify seven urban tree species in the city of
Tampa, FL, USA, using an object-based method, achieving an overall accuracy of 67.2% [18].
Nevertheless, because of inadequate spectral information in multispectral data, tree species
classification accuracy is restricted.

Hyperspectral remote sensing imagery has notable advantages in classifying various
species due to its fine spectral resolution, which enables the accurate detection of small
spectral differences among various ground objects. Several studies have previously used
airborne hyperspectral imagery to distinguish tree species, yielding high classification ac-
curacy [21–24]. However, the cost of obtaining airborne hyperspectral imagery is relatively
high, and airborne hyperspectral data can not be obtained in many areas because of the
policy of banning flights in airspace. Meanwhile, several types of spaceborne hyperspectral
data (for example, HJ-1A, Hyperion, GF-5, and PRISMA) have also been used to classify
tree species [25–28]. However, these hyperspectral data have a low spatial resolution (pixel
size ≥ 30 m) and are not suitable for tree species classification in urban regions, where
green patches are fragmented and spatially heterogeneous.

Zhuhai-1 is a new hyperspectral satellite launched by China in 2018. It is equipped
with an innovative hyperspectral sensor with 32 spectral bands, which is significantly more
than those of multispectral sensors. The spatial resolution of Zhuhai-1 imagery is 10 m [29],
finer than other hyperspectral satellite data (pixel size ≥ 30 m). The high spatial resolution
combined with the high spectral bands provided by Zhuhai-1 are expected to offer useful
information for ecology applications. Zhuhai-1 hyperspectral data has proved beneficial in
various applications, including land cover classification, vegetation parameter estimation,
and water quality parameter estimation with positive outcomes [30–32]. However, no
attempt has been made to use Zhuhai-1 hyperspectral data to identify the urban dominant
tree species.

In this research, the new hyperspectral satellite Zhuhai-1 data was used to differentiate
the urban dominant tree species for the first time. Firstly, we carried out field investiga-
tion and identification of the dominant tree species. Next, we extracted hyperspectral
features from Zhuhai-1 hyperspectral data. Then, we used these features to differentiate the
dominant tree species in urban areas. Following that, we examined how the classification
paradigm, classifier, and species number impacted the classification accuracy. We tested
this approach in Shenzhen, Guangdong Province, China, where there were 28 dominant
tree species. The specific purpose was to evaluate the effectiveness of the new hyperspectral
satellite Zhuhai-1 in classifying the urban dominant tree species and to identify the optimal
classification paradigm and classifier.
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2. Materials and Methods
2.1. Study Region

The study region was situated in Shenzhen City, Guangdong Province, southern
China (113◦45′44′′E–114◦37′21′′E, 22◦26′59′′N–22◦51′49′′N; Figure 1a–c) and belongs to the
subtropical marine climate zone [33]. The area is about 1997 km2, and the highest elevation
is 943.7 m. The forest coverage of this study site was 55.56% in 2017 [34], and the forest is
classified as a subtropical evergreen broadleaf forest.
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2.2. Zhuhai-1 Hyperspectral Remote Sensing Data

The Zhuhai-1 Orbita Hyper Spectral satellite equipped with a hyperspectral sensor
was launched on 26 April 2018 by Zhuhai Orbita Aerospace Technology Co., Ltd. (Zhuhai,
China). The satellite flies at 500 km altitude and captures hyperspectral images at a spatial
resolution of 10 m. Zhuhai-1 data has 32 spectral bands; the detailed band information is
shown in Table 1. In this research, we used four cloudless Zhuhai-1 hyperspectral images
from October 1 and 16, 2019 to classify the urban dominant tree species. The weather was
sunny and cloudless when the data were obtained.
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Table 1. Detailed spectral information of Zhuhai-1 hyperspectral imagery.

Band No. Central Wavelength
(nm) Band No. Central Wavelength

(nm)

1 466 17 716
2 480 18 730
3 500 19 746
4 520 20 760
5 536 21 776
6 550 22 790
7 566 23 806
8 580 24 820
9 596 25 836
10 610 26 850
11 626 27 866
12 640 28 880
13 656 29 896
14 670 30 910
15 686 31 926
16 700 32 940

2.3. Land Cover Data

Qian et al. [34] obtained a land cover distribution map of Shenzhen in 2017 by utilizing
high-resolution remote sensing data from SPOT 6 with a spatial resolution of 1.5 m. They
classified the land cover types in Shenzhen into eight types, which were tree, grass, water,
bare soil, building, road, construction, and impervious surface. The land cover type data
had a classification accuracy of 88.67% with a corresponding kappa coefficient of 0.86 [34].
In this research, we classified tree species in the tree area of Shenzhen. Therefore, we
extracted urban forest area from the land cover classification results of Qian et al. [34]. The
forest area in Shenzhen is shown in Figure 1c.

2.4. Field Investigation Data

In order to collect field investigation data, we carried out field investigations in
July 2018 and July 2019. We selected 4823 patches from the urban forest areas of the
study region, and then the dominant tree species of each patch were visually identified
in the field by plant ecologists. A high-precision Global Positioning System (GPS) was
used to measure the geographical coordinates of each patch. The field investigation
results showed that there were 28 main dominant tree species in Shenzhen, which were
Eucalyptus robusta, Litchi chinensis, Acacia mangium, Acacia confuse, Acacia auriculiformis,
Acacia conferta, Dimocarpus longan, Ficus concinna, Cinnamomum camphora, Pinus massoniana,
Schima superba, Sonneratia apetala, Delonix regia, Terminalia neotaliala, Roystonea regia,
Ficus stipulosa, Bauhinia purpurea, Falcataria falcata, Mangifera indica, Casuarina equisetifolia,
Mimosa bimucronata, Leucaena leucocephala, Bombax ceiba, Ficus benjamina, Bischofia javanica,
Alstonia scholaris, Khaya senegalensis, and Ficus altissima from greatest to least. Figure 2
displays the spatial distribution of all field samples, covering a total of 101,384 pixels of
the Zhuhai-1 hyperspectral imagery, which was about 10.14 km2 in area. The average
spectral reflectance for the 28 main tree species can be observed in Figure 3. The forested
areas of the southern part had relatively few field samples because the forests in this
area are continuously and widely distributed and densely grown, making it difficult for
people to enter these areas for field investigation. Although the number of field samples
in the southern forested areas was relatively small, the dominant tree species in these
areas were relatively simple and basically consistent with the surrounding areas.
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2.5. Methods

This study employed machine learning algorithms to classify the urban dominant
tree species at both the pixel and object levels using Zhuhai-1 hyperspectral data. Figure 4
illustrates the process flowchart, which comprises five steps: (1) preprocessing raw hyper-
spectral data; (2) segmenting images; (3) extracting hyperspectral features; (4) classifying
the urban dominant tree species using machine learning methods; and (5) evaluation of
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classification accuracy. Finally, the optimal classification model was employed to produce a
spatial distribution map of the dominant tree species.
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2.5.1. Data Preprocessing

To obtain the hyperspectral reflectance bands, we preprocessed the Zhuhai-1 hyper-
spectral remote sensing data using ENVI 5.3 software. At first, we transformed the Zhuhai-1
hyperspectral digital value into radiance at the atmosphere’s top using the standard ra-
diometric calibration formula and coefficients provided by the data producer [35]. Next,
we used the FLAASH atmospheric correction module embedded in ENVI 5.3 software, in
which the tropical atmospheric model and the urban aerosol model were the key input pa-
rameters, to carry out atmospheric correction of the hyperspectral data to obtain the surface
reflectance [36]. Then, we used the seamless mosaic tool to mosaic the four hyperspectral
images that covered the study area. Finally, we used a polygon of Shenzhen City as the
mask to extract the hyperspectral data. After the above data preprocessing, we obtained
32 reflectance bands from the Zhuhai-1 hyperspectral data in the entire study region.

2.5.2. Image Segmentation

We used two classification paradigms to classify tree species: pixel- and object-based
paradigms. For the object-based tree species classification, image segmentation was first
carried out on the hyperspectral data. We used the multiresolution segmentation method
embedded in Trimble eCognition Developer 9.5.1 to produce objects from the Zhuhai-1
hyperspectral images [37]. Multiresolution segmentation method refers to the generation
of image objects with minimum heterogeneity and maximum homogeneity at any scale
on the premise of minimizing the loss of image information [37,38]. Its key parameters
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include the scale and compactness/smoothness weight [37]. Thirty-two bands of Zhuhai-1
hyperspectral data were used as input. We tested the parameters based on experience and
visually evaluated the segmentation results. As a result, we set the scale as 10 and the
compactness/smoothness weight as 0.5/0.5.

2.5.3. Hyperspectral Feature Extraction

For each pixel and object, 50 features were extracted from the Zhuhai-1 hyperspectral
data, including 32 spectral reflectance bands and 18 vegetation indices. At the pixel level,
the 32 spectral reflectance bands were obtained directly from the preprocessed hyperspectral
image. The 18 vegetation indices of each pixel were calculated using ENVI 5.3 software [33].
These vegetation indices can characterize the structural and physiological features of trees
and have demonstrated effectiveness in the classification of tree species [39–41]. Table 2
lists the vegetation indices and their formulas used in this study. At the object level,
32 reflectance bands and 18 vegetation indices were determined according to the average
value of all pixels in each object.

Table 2. Hyperspectral vegetation indices and their formulas.

Information Types Metrics Formula References

Leaf area and canopy
structure

Normalized Difference Vegetation
Index (NDVI) NDVI =

ρ790 − ρ670
ρ790 + ρ670

[42]

Soil Adjusted Vegetation Index [43] SAVI =
1.5× (ρ790 − ρ670)

ρ790 + ρ670 + 0.5
[44]

Atmospherically Resistant Vegetation
Index (ARVI) ARVI =

ρ790 − 2× ρ670 + ρ480
ρ790 + 2× ρ670 − ρ480

[45]

Enhanced Vegetation Index (EVI) EVI = 2.5× ρ806 − ρ670
1 + ρ806 + 6× ρ670 − 7.5× ρ480

[46]

Modified Red Edge Normalized
Difference Vegetation Index

(MRENDVI)
MRENDVI =

ρ746 − ρ700
ρ746 + ρ700 − 2× ρ466

− 1 [47]

Modified Red Edge Simple Ratio Index
(MRESRI) MRESRI =

ρ746 − ρ466
ρ746 + ρ466

[48]

Vogelmann Red Edge Index (VOG) VOG =
ρ746
ρ716

[49]

Mean Value of Red Edge (Mean686–749) Mean686−746 =
∑i=746

i=686 ρi
n

[46,50]

Slope Location of Red Edge (SL) SL =
ρ746 − ρ686

60
[50]

Leaf and canopy
pigments

Datt Chlorophyll Content Index (Datt) Datt =
ρ850 − ρ716
ρ850 − ρ686

[51]

Chlorophyll Index (CI) CI =
ρ760
ρ700
− 1 [52]

Red Edge Index (REI) REI =
ρ806
ρ716
− 1 [53]

Green Index (GI) GI =
ρ806
ρ550
− 1 [54]

Plant stress
Plant Stress Index (PSI) PSI =

ρ700
ρ760

[55]

Ratio Index (RI) RI =
ρ596
ρ760

[55]

Red Edge Vegetation Pressure Index
(RVSI) RVSI =

ρ716 + ρ746
2− ρ730

[56]

Light energy
utilization efficiency

Structure Insensitive Pigment
Index [57] SIPI =

ρ806 − ρ466
ρ806 + ρ686

[54]

Modified Photochemical Reflectance
Index (MPRI) MPRI =

ρ520 − ρ536
ρ520 + ρ536

[58]
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2.5.4. Tree Species Classification

A random forest classifier was used to classify the urban dominant tree species in
this study. The random forest classifier was proposed by Leo Breiman [59]. It contains
multiple decision trees, and the mode of categories obtained by all the decision trees
determines the category of the classification. The random forest classifier has strong
robustness and can deal with multiple collinear relationships well. Two parameters
(ntree and mtry) were necessary for modeling; these were set to 500 and 7, respectively,
according to Immitzer et al. [17,60] Because of its high classification accuracy, the random
forest classifier has been successfully used in tree species classification [26,61–64]. In
this study, we input 32 hyperspectral reflectance bands and 18 vegetation indices into
the random forest classifier to classify the urban dominant tree species and identify
important features. We randomly selected 70% of the field samples of each tree species to
train the random forest classifier and then used the remaining 30% of the field samples
for verification purposes.

2.5.5. Accuracy Assessment

To evaluate the accuracy of tree species classification, we utilized the confusion matrix
method (Table 3), which is a widely accepted technique in assessing classification accu-
racy [33,65,66]. The accuracy metrics include user accuracy, producer accuracy, overall
accuracy, and the kappa coefficient [67]. The calculation methods of producer accuracy and
user accuracy are shown in Table 3. The overall accuracy is determined by the proportion
of correctly classified pixels or objects to the total number of pixels or objects; its calculation
method is shown in Equation (1). The kappa coefficient is a statistical measure of the agree-
ment or reliability of the classification outcomes; its calculation is shown in Equations (2)
and (3). For specifics regarding the calculation approaches for user accuracy, producer
accuracy, overall accuracy, and the kappa coefficient, please refer to Qin et al. [33,68].

OA =
a + e + i

r
(1)

pe =
o× l + p×m + q× n

r× r
(2)

k =
OA− pe

1− pe
(3)

Table 3. An example of the confusion matrix of the tree species classification results.

Observed Types
Predicted Types

A B C Sum
Producer
Accuracy

A a b c l a
l

B d e f m e
m

C g h i n i
n

Sum o p q r
User accuracy a

o
e
p

i
q

3. Results
3.1. Feature Importance

Figure 5 displays the variable importance of all 50 hyperspectral features for classi-
fying the urban dominant tree species using the random forest classifier. The three most
important features were hyperspectral reflectance, which were b1, b2, and b11, respec-
tively. Among the hyperspectral vegetation indices, MRESRI held the most significance,
followed by MRENDVI and GI. The total percentage of variable importance for the first
18 features was over 50%, and that of the first 30 features was over 70%. Among the top
18 important features, 7 features were hyperspectral reflectance bands and 11 features were
hyperspectral vegetation indices. Among the 30 most important features, 14 features were



Remote Sens. 2023, 15, 3179 9 of 17

hyperspectral vegetation indices and 16 features were hyperspectral reflectance. In general,
the contributions of the hyperspectral reflectance bands and vegetation indices to the tree
species classification were similar.
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3.2. Pixel-Based Tree Species Classification Using the RF Classifier

Table 4 shows the classification accuracy of 28 main species based on three feature sets,
namely the hyperspectral reflectance bands, the vegetation indices, and a combination of
both. All three feature sets resulted in satisfactory classification results. The classification ac-
curacy of the 32 hyperspectral reflectance bands (OA = 76.5% and kappa = 0.75) was slightly
higher than that of the 18 vegetation indices (OA = 75.6% and kappa = 0.74). Combining
the reflectance bands with vegetation indices could marginally enhance the classification
accuracy (overall accuracy = 76.8% and kappa = 0.75). The pixel-based tree species classi-
fication results using the random forest classifier derived from all hyperspectral features
are presented in Figure 6a. Although the user accuracy across all tree species was well-
balanced, the producer accuracy was largely inconsistent. All results from the classification
accuracy assessment using all hyperspectral features are shown in Table 5. The most ac-
curately classified tree species were Schima superba, Sonneratia apetala, Terminalia neotaliala,
Mangifera indica, Bischofia javanica, Alstonia scholaris, and Khaya senegalensis, with producer
and user accuracies exceeding 80%.

Table 4. The classification results of 28 tree species in Shenzhen based on three feature sets.

Features Overall Accuracy Kappa

32 reflectance bands 76.5% 0.75
18 vegetation indices 75.6% 0.74

32 reflectance bands + 18 vegetation indices 76.8% 0.75
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Table 5. Classification accuracy of 28 tree species using the RF classifier based on 50 hyperspec-
tral metrics.

Tree Species Producer Accuracy User Accuracy

Eucalyptus robusta 74.3% 68.0%
Litchi chinensis 82.4% 68.8%
Acacia mangium 77.2% 78.8%
Acacia confusa 70.0% 85.5%

Acacia auriculiformis 93.2% 70.3%
Acacia conferta 74.3% 82.9%

Dimocarpus longan 74.7% 72.0%
Ficus concinna 71.4% 77.5%

Cinnamomum camphora 63.4% 89.9%
Pinus massoniana 87.8% 76.6%

Schima superba 93.3% 97.9%
Sonneratia apetala 96.2% 94.7%

Delonix regia 92.6% 75.8%
Terminalia neotaliala 84.5% 86.3%

Roystonea regia 72.9% 66.2%
Ficus stipulosa 79.5% 67.8%

Bauhinia purpurea 91.4% 74.7%
Falcataria falcata 2.6% 83.3%
Mangifera indica 92.9% 100%

Casuarina equisetifolia 79.5% 70.5%
Mimosa bimucronata 48.0% 92.3%
Leucaena leucocephala 73.2% 74.5%

Bombax ceiba 50.0% 100%
Ficus benjamina 73.3% 78.6%

Bischofia javanica 100% 84.2%
Alstonia scholaris 84.0% 80.8%

Khaya senegalensis 90.0% 100%
Ficus altissima 73.7% 93.3%

Overall Accuracy 76.8%
Kappa 0.75

3.3. Pixel- vs. Object-Based Classification Results

We implemented object-based classification by utilizing the random forest classifier
and all hyperspectral features to investigate whether it could improve the tree species classi-
fication accuracy. We found that the pixel-based paradigm (OA = 76.8% and kappa 0.75) was
slightly superior to the object-based paradigm (OA = 76.5% and kappa = 0.74). Therefore,
when using Zhuhai-1 hyperspectral data to distinguish the urban dominant tree species,
the pixel-based classification paradigm was slightly better than object-based classification
paradigm. Since there were no obvious differences between our pixel- and object-based
classification results, only the pixel-based tree species classification results for the entire
study area are displayed in Figure 6a. To show the detailed differences between the two
results, we chose a small area of the study region (2 km × 2 km) to compare the pixel-based
classification results (Figure 6b) and object-based classification results (Figure 6c), and the
results showed that the main difference was that pixel-based classification result had more
noise points.

3.4. Performance Comparison among the Four Classifiers

In order to explore whether different classifiers affected the accuracy of tree species
differentiation, we employed the random forest, support vector machine, Bayes, and K-
nearest neighbor classifiers to classify tree species based on all hyperspectral features. The
results indicated that the RF classifier achieved the highest classification accuracy, followed
by KNN (OA = 62.3% and kappa = 0.60), Bayes (OA = 61.4% and kappa = 0.59), and SVM
(OA = 43.2% and kappa = 0.38) when distinguishing the urban dominant tree species using
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Zhuhai-1 hyperspectral data. Therefore, the RF classifier was the recommended classifier
for urban dominant tree species classification.

3.5. Effect of Species Number on Tree Species Classification

To investigate the impact of species number on tree species classification accuracy,
we evaluated the classification accuracy using all hyperspectral features with the species
number ranging from 5 to 28. We selected 5, 10, 15, 20, 25, and 28 tree species for classi-
fication according to the list of tree species sorted from greatest to least obtained in the
field investigation (Section 2.4). We used the training samples of the selected tree species
for classification, and then used the verification samples of these tree species to evaluate
the accuracy. Therefore, we did not delete the pixels dominated by the eliminated species
during the classification process. The relationship between the classification accuracy and
species number is illustrated in Figure 7. We found that as the species number increased
from 5 to 28, the classification accuracy decreased slowly. However, when the species num-
ber increased from 15 to 20, the classification accuracy decreased obviously. The overall
accuracy was 82.6% when there were five tree species, while it decreased to only 76.8%
when there were 28 tree species.
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4. Discussion
4.1. Performance of Zhuhai-1 Hyperspectral Data in Urban Dominant Tree Species Classification

This research first assessed the capability of the new hyperspectral satellite Zhuhai-1
imagery to differentiate the urban dominant tree species, achieving a satisfactory classifi-
cation accuracy of 76.8%. It outperformed the previous studies employing multispectral
satellite data such as that from Sentinel-2, Landsat, and Ziyuan-3 [17,66,69–71]. The higher
spectral resolution and additional spectral bands of the Zhuhai-1 imagery make it more
suitable for distinguishing tree species in regions with abundant species. The higher
spatial resolution of the Zhuhai-1 hyperspectral data compared to other hyperspectral
satellite data such as HyspIRI (30 m), Hyperion (30 m), HJ-1A (100 m), PRISMA (30 m)
returns better results in accurately classifying tree species in heterogeneous and fragmented
regions [25,26,28,72]. The classification result was worse than in several existing stud-
ies [27,73–76]. The main reason was that there were more tree species in this research,
which aggravated the difficulty of tree species differentiation. This was verified in our sen-
sitivity analysis of the effect of the species number on classification accuracy (Section 3.5).
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In addition, several studies used airborne or UAV hyperspectral data to classify tree species
and obtained a higher classification accuracy than this research [23,33]. This was mainly
due to the fact that airborne or UAV hyperspectral data have a higher spatial resolution
and spectral resolution that are more capable of distinguishing tree species.

By comparing the performance of the Zhuhai-1 hyperspectral reflectance bands and
vegetation indices in tree species differentiation, we found that there were no obvious
differences between them, and the former was slightly better than the latter. This means
that the reflectance bands of the Zhuhai-1 hyperspectral data contained enough information
to distinguish the urban dominant tree species. However, several studies found that vege-
tation indices performed better than reflectance bands in distinguishing tree species [37,77].
This may have been due to the fact that the remote sensing data they used contained limited
spectral bands (less than 10 bands), which were not enough to distinguish diverse tree
species, so it was necessary to extract vegetation index that combined information from
multiple bands to provide supplementary information for tree species classification. It may
also have been due to the different spatial resolutions of the remote sensing images used in
the different studies.

4.2. Effect of Different Classification Paradigms on Classification Accuracy

By comparing the classification accuracies obtained by the object- and pixel-based
methods, we observed that their classification results had a subtle difference, and the
pixel-based method was slightly better. Although several existing studies align with
our findings [17,78], more studies have reported that the object-based method was more
effective than the pixel-based method in classification [60,74,79]. This was because these
studies used images with a very high spatial resolution (with pixel sizes of about 1 m to
distinguish tree species) in which each tree crown covered many pixels. In these cases, the
object-based method could better express the crown characteristics and obtain better tree
species classification results. In this research, the Zhuhai-1 hyperspectral data had a spatial
resolution equivalent to 10 m, which is quite similar to the size of a tree crown. Hence, the
pixel-based method had the ability to deliver a more precise description of crown features
when compared to the object-based method. Consequently, when utilizing the Zhuhai-1
hyperspectral data, the pixel-based method was better suited for the differentiation of the
urban dominant tree species.

4.3. Effect of Different Classifiers on Classification Accuracy

In this study, we compared four machine learning methods; i.e., SVM, RF, k-NN, and
Bayes, in classifying the urban dominant tree species. Our analysis revealed that the RF
outperformed the other three classification methods. The results were in agreement with
those found by earlier researchers [27,61,80,81]. The RF classifier can balance errors in the
case of unbalanced data sets, so it can obtain better classification results than other classifiers.
In urban areas, there are a variety of tree species and significant quantitative differences
among species, which lead to an imbalance in the training sample sets. Therefore, the
RF classifier is more suitable to distinguish the urban dominant tree species when using
Zhuhai-1 hyperspectral data. Several studies reported that SVM performed better than RF
in classification, which may have been due to the small number of samples [73,82].

4.4. Limitations and Future Research Prospects

There are obvious differences in ecological service function among different tree
species. Based on the spatial distribution map of the urban dominant tree species obtained
in this study, the ecological services of urban dominant trees can be evaluated more
accurately. The urban dominant tree species classification results obtained by this study
were satisfactory but not extremely high. One of the main limitations was the spectral
similarity of the 28 dominant tree species, which posed a great challenge in the classification
of tree species. In addition, although the spatial resolution of the Zhuhai-1 hyperspectral
data is significantly finer than that of Landsat-like sensors, the presence of mixture pixels
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introduced challenges to the classification of tree species, and this needs to be solved
in the future. Furthermore, all of the tree species in this study region were subtropical
broad-leaved forests with luxuriant tree growth and high morphological similarity, which
increased the difficulty of tree species classification.

Further efforts should be made to enhance the classification accuracy. Diverse tree
species exhibit notable disparities in their phenological characteristics, which subsequently
enhances their spectral distinctiveness. The potential of multitemporal Zhuhai-1 hyperspec-
tral data covering the key phenological periods in urban dominant tree species mapping
needs to be further explored. In addition to the spectral information provided by Zhuhai-1
hyperspectral data, it is imperative to examine whether incorporating topography, climate,
and vertical structure information can enhance the accuracy of tree species classification.
More artificial intelligence techniques should also be considered for fine tree species classi-
fication. In addition, it is also vital to verify the effectiveness of Zhuhai-1 hyperspectral
data in urban dominant tree species classification across more extensive regions.

5. Conclusions

This research assessed the effectiveness of data from the new hyperspectral satellite
Zhuhai-1 in mapping the urban dominant tree species in Shenzhen, southern China. We
extracted 32 reflectance bands and 18 vegetation indices from the Zhuhai-1 hyperspectral
data and then input them into four classifiers to distinguish 28 dominant tree species in
urban areas at the pixel and object levels. The results demonstrated that the Zhuhai-1
hyperspectral data could effectively distinguish the 28 dominant tree species in urban areas,
obtaining an OA of 76.8% and a kappa coefficient of 0.75. The hyperspectral reflectance
bands and vegetation indices contributed to the tree species classification similarly. The sen-
sitivity analysis results suggested that the pixel-based approach marginally outperformed
the object-based approach in classifying the urban dominant tree species using the Zhuhai-1
hyperspectral data, and the RF classifier demonstrated the best results among all classifiers
tested. Moreover, reducing the species number could improve the classification accuracy.
These findings provide a framework for urban dominant tree species classification using
Zhuhai-1 hyperspectral imagery, and the urban dominant tree species map generated in
this study holds potential for a wide range of practical applications.
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