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Abstract: Grassland cover is strongly influenced by climate change. The response of grassland cover
to climate change becomes complex with background climate. There have been some advances
in research on the sensitivity of grassland vegetation to climate change around the world, but
the differences in climate sensitivity among grassland types are still unclear in alpine grassland.
Therefore, we applied MODIS NDVI data and trend analysis methods to quantify the spatial and
temporal variation of grassland vegetation cover on the Qinghai-Tibet Plateau. Then, we used
multiple regression models to analyze the sensitivity of fractional vegetation cover (FVC) to climatic
factors (Temperature, Precipitation, Solar radiation, Palmer drought severity index) and summarized
the potential mechanisms of vegetation sensitivity to different climatic gradients. Our results showed
(1) a significant increasing trend in alpine desert FVC from 2000–2018 (1.12 × 10−3/a, R2 = 0.56,
p < 0.001) but no significant trend in other grassland types. (2) FVC sensitivity to climatic factors
varied among grassland types, especially in the alpine desert, which had over 60% of the area with
positive sensitivity to temperature, precipitation and PDSI. (3) The sensitivity of grassland FVC to
heat factors decreases with rising ambient temperature while the sensitivity to moisture increases.
Similarly, the sensitivity to moisture decreases while the sensitivity to thermal factors increases along
the moisture gradient. Furthermore, the results suggest that future climate warming will promote
grassland in cold and wet areas of the Qinghai-Tibet Plateau and may suppress vegetation in warmer
areas. In contrast, the response of the alpine desert to future climate is more stable. Studying the
impact of climate variation at a regional scale could enhance the adaptability of vegetation in future
global climates.

Keywords: climate change; fractional vegetation cover; sensitivity; climatic space; Qinghai-Tibet Plateau

1. Introduction

Grasslands occupy 40% of the global surface area and serve as carbon sinks; they store
and release water and maintain the biodiversity of terrestrial ecosystems [1,2]. However,
grassland vegetation is sensitive and vulnerable to climate alterations such as temperature
and humidity extremes that affect vegetation growth and activity [3,4] and, therefore,
strongly influence productivity [5]. Fractional vegetation cover (FVC) is a method for the
characterization and dynamic monitoring of surface vegetation conditions [6,7]. Long-term
observations of green cover provide unique insights into vegetation productivity responses
to climate change [8]. Therefore, quantifying FVC sensitivity to climate variation is an
effective way to understand the impact of climate change on grassland productivity and
provides support for adaptation to future climatic conditions.
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The temperature sensitivity of grassland varies with climatic space, and the tempera-
ture effects of productivity are not uniform between different regions. The warming effect
on alpine grasslands varies with spatial location, and water availability also regulates vege-
tation growth [9]. Other studies have shown that the temperature sensitivity of vegetation
also depends on ambient temperature and grassland types [10]. Temperature sensitivity
studies in grasslands promoted the understanding of the relationship between temperature
varying and vegetation growth. However, it is still unclear how grassland FVC sensitivity
to temperature varied across the different climatic gradients.

Precipitation is a key factor regulating vegetation and ecosystem processes, and
grasslands are more sensitive to dry rather than wet conditions, and this has been globally
proved [5]. Mean annual precipitation was found to be the environmental factor most
closely linked with grassland vegetation growth [11]. In particular, the Palmer drought
severity index (PDSI) represents the degree of dryness and humidity of the symptomatic
climate and is widely used in the study of the evolution of vegetative responses to climate
change [12,13]. For instance, arid grasslands were most sensitive to drought in six different
grasslands of the central United States [13]. Similar results were found in China, where
grasslands and croplands were more strongly affected by drought in northern regions,
which received less rainfall than southern regions [12]. These studies illustrate that the
sensitivity of vegetation productivity to climate change becomes complex with climate
space. In the climate-sensitive Qinghai-Tibet Plateau (QTP), the sensitivity of its vegetation
to environmental factors has not been thoroughly explored.

The QTP is known as the “roof of the world” and the “third pole” [14] and is comprised
of 60% alpine grassland. These are the highest grassland ecosystems in the world and
are extremely sensitive to climate change [15]. The spatial heterogeneity of climate trends
leads to different responses of alpine grasslands in terms of diversity, phenology and even
productivity [16]. However, many studies have provided a good understanding of the
spatial distribution and temporal dynamics of the sensitivity of QTP grasslands to climate
change, but the gradient of climate sensitivity of grassland productivity with different
environmental factors is still unclear. Therefore, we used FVC as a grassland productivity
factor to analyze the spatial and temporal dynamics of different grassland types from 2000
to 2018. Meanwhile, based on the sensitivity of grassland FVC to various climate factors,
we elucidate the distribution mechanism of climate sensitivity of various grassland types
with climate gradients. This work provides data and theoretical support for future research
on grassland dynamics and for formulating a sustainable grassland management plan for
the QTP.

2. Materials and Methods
2.1. Study Area

The Qinghai-Tibet Plateau is located in southwestern China, with a total area of about
268.32 Mha [17]. The average altitude is >4000 m, the average annual temperatures range
from >15 ◦C to <0 ◦C and the average annual precipitation ranges from >1000 mm to
<50 mm [18]. The QTP possesses 3 primary grassland types; alpine meadow, alpine steppe
and alpine desert, which are distributed from southeast to northwest [19] (Figure 1).
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Figure 1. Qinghai-Tibet Plateau Grassland Classification.

2.2. Data Sources and Collation
2.2.1. Satellite Vegetation Index Data

The MOD13A2 16-day 1-km MODIS NDVI product from the NASA Earth Data Search
website (https://search.earthdata.nasa.gov/search, accessed on 30 May 2023) was selected
as the remote-sensing vegetation index in this paper (Figure S1). Method of Maximum
Value Composites was used to mitigate the effects of cloud cover, aerosols, cloud shadows,
solar altitude and human disturbance [20,21]. Eventually, annual maxima of NDVI were
obtained for each year from 2000–2018 to represent the dynamics of vegetation using ENVI
Version 5.3 (Esri, Redlands, CA, USA).

2.2.2. Climate Dataset

In this paper, we adopted critical hydrothermal condition factors for vegetation growth,
such as temperature and precipitation (Figures S2 and S3), and selected surface solar ra-
diation (Srad) and PDSI, which characterize the degree of heat and climate drought, for
sensitivity analysis of vegetation cover. Meteorological data collected from the National
Tibetan Plateau Scientific Data Centre (https://data.tpdc.ac.cn, accessed on 30 May 2023),
including temperature, precipitation and Srad data from 2000–2018, at 1 km and 10 km
spatial resolution. PDSI datasets (from 2000–2018) were taken from the Earth Surface
Climate Variable Data Set CRU-TS4.05 (https://crudata.uea.ac.uk/cru/data/hrg, accessed
on 30 May 2023), which has a spatial resolution of 0.5◦ × 0.5◦ and has been widely used in
global climate change research [20]. The four climate factors were acquired in this paper;
temperature, precipitation, Srad and PDSI were applied as mean annual temperatures, total
precipitation, mean annual Srad and mean annual PDSI. Specifically, PDSI is a meteoro-
logical drought index for estimating moisture supply and demand [12]. Moreover, PDSI
scores > 0 represent wet and <0 designate dry. The vegetation growth, soil moisture and
integrated environmental factors are also important components and are represented in
the PDSI score [22]. For uniformity of the spatial data, the nearest neighbor interpolation
method was used to resample the Srad and PDSI data to 1km in ArcGIS 10.8, and the
projection coordinate system of all data was set to WGS 1984 UTM ZONE 47 to obtain the
final climate data set for 2000–2018.

https://search.earthdata.nasa.gov/search
https://data.tpdc.ac.cn
https://crudata.uea.ac.uk/cru/data/hrg
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2.2.3. Vegetation Type

The spatial distribution data of vegetation types in this paper were obtained from the
1:1,000,000 vegetation map of China [23] from the National Tibetan Plateau Scientific Data
Center (https://data.tpdc.ac.cn/, accessed on 30 May 2023). The spatial distribution data
of the 3 primary grassland vegetation types were extracted; alpine meadow, alpine steppe
and alpine desert (Figure 1).

2.3. Data Analysis
2.3.1. Calculation of FVC

The dimidiate pixel model [7] was chosen for calculating the FVC with ENVI Version
5.3. This method is a simple and efficient type of mixed-pixel linear discretization that is
broadly available for most vegetation studies. This model takes the NDVI value of an image
element as the surface-weighted sum of the NDVI of vegetated cover and unvegetated
cover (bare ground). The equation is as follows.

FVC =
NDVI − NDVIs

NDVIv − NDVIs
(1)

where FVC represents the vegetation cover of the pixel, NDVI represents the NDVI value of
bare soil, and NDVIv represents the NDVI value of pure vegetation pixels. By summarizing
the experience of previous studies and the actual situation in the study area, the NDVI
values were ranked, and the NDVI values corresponding to the first 5% of the calculated
results were NDVIs, and the NDVI values corresponding to the last 95% were NDVIV.

2.3.2. Trend Analysis

The Theil-Sen Median trend analysis with the Mann-Kendall trend significance test [24,25]
were used in this paper to reveal the FVC dynamics of QTP. This analysis is a robust trend
analysis method based on non-parametric statistics [26] and is less sensitive to outliers in
the time series [27]. Therefore, this method is often used for long-term analysis of vegeta-
tion and meteorological factors [28–30]. The slope β of the Theil-Sen Median indicates that
the increase or decrease rate of the time series can be obtained by the following equation:

β = Median
FVCi − FVCj

i − j
; 2000 ≤ j < i ≤ 2020 (2)

where FVCi and FVCj are the annual max FVC value in years i and j. When β > 0, FVC
exhibits an increasing tendency; if β < 0, FVC exhibits a decreasing tendency.

The MK test is a non-parametric test that does not require the data to obey a normal
distribution [31] and is insensitive to the interference of a few outliers, especially effective
for short-term time series data [32]. In this study, FVC trends and p-values were calculated
in MATLAB for Windows Version 2019b (MathWorks, Natick, MA, USA).

2.3.3. Sensitivity Analysis

We applied a multiple linear regression method to examine the relationships between
FVC and climate change. To distinguish the independent effects of climate variation
from the joint effects on vegetation growth, the first difference in the FVC time series and
climatic factors was calculated and then utilized in the regression model [33]. The first
difference represents the absolute difference between two consecutive years and refers to
the year-by-year change in FVC or climatic factors. It is commonly used as a detrending
method to reduce or improve the effect of long-term trends between climate and vegetation
productivity. The multiple regression equation established was as follows:

∆FVC = Stem × ∆Tem + Spre × ∆Pre + Spdsi × ∆PDSI + Ssrad × ∆Srad + int (3)

https://data.tpdc.ac.cn/
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∆FVC is the first difference for two consecutive years. ∆Tem, ∆Pre, ∆PDSI, ∆Srad
denote the first-difference value of mean annual temperature, annual precipitation, mean
annual drought index and mean annual solar radiation of the corresponding period. Stem,
Spre, SPDSI , Ssrad denote the sensitivity to climatic factors, respectively; int is the constant
of the regression equation. The above work was performed using MATLAB Version 2019b.

To analyze the variation of vegetation sensitivity to climatic factors across environmen-
tal gradients, the mean sensitivity to climatic factors was calculated for each environmental
interval. The gradient of mean annual temperature (MAT) was set to 0.2 ◦C, and the
mean value of sensitivity was determined as the corresponding dependent variable in this
interval. By analogy, the gradient of annual precipitation was 20 mm, the gradient of mean
annual PDSI was 0.2, and the gradient of mean annual Srad was 0.2. The mean values of
climate sensitivity for all environmental gradients were fitted by using the linear regression
method in Origin Version 2018 (OriginLab, Northampton, MA, USA).

3. Results
3.1. Spatial and Temporal Dynamics of FVC for the Qinghai-Tibet Plateau

Grassland FVC has a highly heterogeneous spatial distribution on the Qinghai-Tibet
Platea. Areas with high FVC accounted for 26.3% of the total grassland (FVC > 60%) and
were distributed in the southeast. The central region contained 18.5% of the grassland in
the range 60% > FVC > 30%, while 55.2% of the north and west areas had low (FVC < 30%)
FVC values (Figure 2a).
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The FVC of the QTP grasslands displayed an overall trend of enhancement. For
instance, areas with increasing trends were more than half of the area (57.8%), and signifi-
cantly increased FVC were distributed in the northeastern region (19.6%). Overall, 42.2%
of the area displayed a decreasing trend, and only 10.2% of the area showed a significant
trend, mainly in the north and sporadically in the southern part of the plateau (Figure 2b).

During the study period, the FVC of different grassland types showed different trend
distributions (Figure 3). The FVC of alpine desert showed a significant increasing trend
(1.12 × 10−3/a, R2 = 0.56, p < 0.001), while the FVC had no significant trend on alpine
steppe (3.38 × 10−4/a, R2 = 0.03), alpine meadow (−1.54 × 10−4/a, R2 = 0.004) or total
grassland (2.78 × 10−4/a, R2 = 0.02).
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3.2. Spatial Distribution of Sensitivity of FVC to Climatic Factors

The sensitivity of alpine grassland FVC to temperature has a strong spatial heterogene-
ity. We observed that 9.0% of the grassland area exhibited a significant positive sensitivity
to temperature, predominantly distributed in the central part of the Qinghai-Tibet Plateau
(QTP). Conversely, 5.5% of the grassland area showed a significant negative sensitivity,
distributed in the northeast and southwest regions of the QTP (see Figure 4a). All three
types of grasslands exhibited a larger area of positive sensitivity to temperature compared
to negative impact areas. The alpine desert exhibited the highest positive sensitivity (14.7%),
followed by the alpine meadow (8.5%) and the alpine steppe (8.0%). Notably, the alpine
desert also exhibited the highest percentage of significantly negative sensitivity areas,
indicating it is most responsive to temperature change (Figure 4b).

The sensitivity of grassland FVC to solar radiation (Srad) revealed that more than half
of the grassland exhibited negative sensitivity, with a significant area of 7.9%, primarily
located in the southwest and parts of the northeast regions (Figure 4c). Conversely, regions
displaying a significant positive effect (6.5%) were primarily found in the northeast. Most
grassland types exhibited larger areas of significant negative sensitivity compared to
significant positive sensitivity, with the alpine desert exhibiting the highest proportion of
negative sensitivity (14.9%). Notably, alpine meadows had a relatively higher proportion
of positive sensitivity (see Figure 4d).

The precipitation sensitivity of grassland FVC showed positive sensitivity in 56.8%
of alpine grasslands (9.7% significant) and mainly in the northeast, central and southwest.
Moreover, 43.2% of the total grassland displayed negative sensitivity, with only 4.9% signif-
icance (Figure 4e). All three types of grassland exhibited mostly positive FVC sensitivity to
precipitation in over 50% of their areas, especially in the alpine desert, where the positive
area was about 60% with a 17.1% of significant relationship (Figure 4f).

The sensitivity of grassland FVC to PDSI showed positive sensitivity in 57.7% of the
grassland area. The significant positive areas covered 8.9% of the grasslands that were
primarily in the northeast, central and southwest. The significant negative impact area
occupied 5.5% of the total grassland (Figure 4e). The sensitivity of grassland FVC to PDSI
showed positive responses across most spaces, and a positive sensitivity covered over 50%
of the area. The alpine desert has the highest proportion of positive sensitivity (Figure 4h).
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Figure 4. Proportions of areas displaying differing degrees of sensitivity for grassland FVC as related
to mean annual temperature (a,b), mean annual Srad (c,d), annual precipitation (e,f) and mean
annual PDSI (g,h). Insets in the upper right corners of the graphs represent the spatial distribution of
significant sensitivity as follows; red, positive and blue, negative. TP: total grasslands of the QTP; AM,
alpine meadow; AS, alpine steppe; AD, alpine desert; SN, significant negative; NSN, not significant
negative; NSP, not significant positive and SP, significant positive.
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3.3. The Sensitivity of FVC to Climatic Factors with Climatic Gradients

The climate sensitivity of grassland FVC responded differently across the temperature
gradient (Figure 5). The temperature sensitivity of alpine grasslands decreased significantly
with increased temperature, as in alpine meadows and alpine steppe. However, the tem-
perature sensitivity of alpine deserts tended to rise with increasing temperature (Figure 5a).
Temperature sensitivity of grassland FVC increases with the precipitation gradient, but
there is an opposite trend in the alpine desert (Figure 5b). As PDSI increased, temperature
sensitivity tended to increase significantly in the alpine meadow, but there were no signifi-
cant dynamics in other grasslands (Figure 5c). As Srad increased, temperature sensitivity
tended to decrease significantly in the alpine meadow and alpine grassland, whereas no
significant changes were observed in the other grassland types (Figure 5d).
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Figure 5. Distribution of sensitivity of grasslands to temperature (a–d), solar radiation (e–h), precipi-
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not significant, TP: total grassland of the QTP (in green); AM, alpine meadow (in red); AS, alpine
steppe (in blue); AD, alpine desert (in yellow)).

The Srad sensitivity of grassland FVC responds differently to temperature gradients.
Among the various grassland types, the Srad sensitivity of the alpine steppe showed a
significant increasing trend, while the Srad sensitivity of the alpine meadow significantly
decreased with rising temperature. The sensitivity of alpine deserts to radiation has a
significant positive trend as the climate warms (Figure 5e). As precipitation increases,
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the sensitivity to Srad tends to decline significantly in the alpine grassland but increases
significantly in the alpine steppe and the alpine desert (Figure 5f). Furthermore, a significant
positive trend in Srad sensitivity occurred in the alpine desert along the radiation gradient,
while a significant negative trend was observed in the alpine meadow and other grassland
types (Figure 5h). Along PDSI gradients, there is no significant trend in the Srad sensitivity
of alpine grassland (Figure 5g).

The precipitation sensitivity of grassland FVC tended to increase significantly with
rising temperature, with consistent changes for all grassland types (Figure 5i). Precipitation
sensitivity also tended to increase slightly with rising PDSI in most grassland, but no
significant dynamics were found in alpine deserts (Figure 5k). With increasing radiation,
precipitation sensitivity decreased significantly only in the alpine desert, but no signifi-
cant trend was found in other grasslands (Figure 5l). There was no significant trend in
precipitation sensitivity to precipitation gradient for all grasslands (Figure 5j).

The PDSI sensitivity of alpine grassland FVC showed a significant increasing trend
along the temperature gradient. Among the different grasslands, there was a significant
increasing trend in the alpine steppe and alpine desert, while no significant relationship
was found in the alpine meadow (Figure 5m). The sensitivity to PDSI tended to decrease
significantly with increasing precipitation in most grasslands, but there was no significant
relationship in the alpine meadow (Figure 5n). Only the alpine desert showed a significant
decrease in PDSI sensitivity with an increase in radiation (Figure 5p), while the trend in
other grasslands was not significant. Furthermore, no clear trend in the PDSI sensitivity of
grassland FVC was observed with the gradient of PDSI (Figure 5o).

4. Discussion and Conclusions

Throughout the study period, the alpine desert FVC showed a significant increasing
trend, while the FVC dynamics in other grasslands were not significant. QTP grassland
productivity is generally consistent with the trends in vegetation productivity in most
parts of the world [34]. Grassland productivity has been found to vary with geographic
distribution over the last 20 years [35]. The trend for grassland productivity in the eastern
part of the QTP primarily increased in contrast to the western part, that decreased [10].
Various grassland types on the QTP showed distinct trends in FVC, which is somewhat
different from previous studies [36]. This discrepancy may be the result of differing data
sources and study periods, and factors such as these should be taken into consideration so
that studies can be directly compared.

The spatial distribution of the sensitivity of alpine grassland vegetation to different
climatic factors is inconsistent. The temperature sensitivity of alpine grasslands has a
positive sensitivity in the central and eastern parts of the plateau and a negative sensitivity
in the southwest, which is also consistent with previous studies [37]. While the sensitivity
of alpine vegetation to solar radiation spatially indicates a positive sensitivity of vegetation
in the eastern and southern parts of the plateau and a negative sensitivity response in the
predominantly central part of the plateau, this is also consistent with previous studies in
this area [38]. Of all the factors affecting vegetation, apart from thermal factors, moisture
conditions are also the most immediate and critical [39]. Previous studies have also shown
that most Qinghai-Tibet Plateau grasslands exhibit positive sensitivity to precipitation,
especially in the northeastern part of the plateau, where increased precipitation promotes
vegetation growth in alpine grasslands, and a negative sensitivity is mainly observed in
the southwestern part of the plateau [40], while there is a consistent spatial distribution
pattern in our results.

The sensitivity of alpine grasslands to heat indicators gradually decreased to a thermal
gradient. For instance, the temperature sensitivity and radiation sensitivity in alpine grass-
land both exhibit a downward trend with rising external heat (Figure 5a,d,h). Vegetation is
more sensitive to temperature changes in colder environments, as relatively small tempera-
ture fluctuations can have a greater impact on vegetation’s heat balance [41]. Therefore,
vegetation in colder areas tends to have a stronger response to the same degrees of warming
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and may be more susceptible to heat constraints than vegetation in warmer areas [42]. Addi-
tionally, the temperature sensitivity of NDVI decreases with rising temperatures, implying
that sensitivity reduces as temperature increases [43–45].

Our study identified similar trends in the sensitivity of vegetation to moisture condi-
tions, such as the PDSI sensitivity of FVC decreasing with increased precipitation and the
precipitation sensitivity of FVC decreasing with progressively wetter climates (Figure 5k,n).
This finding is consistent with previous studies in the United States, which found that
vegetation sensitivity to precipitation decreased from desert and grassland to savanna
and forest domains [46]. Empirical models of vegetation’s climate sensitivity across the
globe have demonstrated that water sensitivity is less pronounced in wetter regions [47,48].
This may be due to the limited precipitation in arid regions, where vegetation growth is
primarily restricted by water availability [5,49]. In contrast, in wetter areas, plant growth is
typically limited by other factors, such as influencing substances, and therefore tends to be
less sensitive to changes in precipitation [13,50]. Overall, vegetation productivity appears to
exhibit lower sensitivity with continental-scale precipitation gradients or thermal gradients,
either linearly or non-linearly [46].

As one factor of heat or moisture conditions gradually increases, the sensitivity of
FVC to the other factor would gradually increase. Our findings suggest that the sensitivity
of alpine grassland FVC to temperature increases with the gradient of precipitation, the
sensitivity of precipitation increases with the gradual increase of temperature, and the
sensitivity to PDSI also significantly increases with the rise of temperature (Figure 5b,i,m).
On the one hand, increased temperature enhances photosynthesis, which in turn increases
the water demand of vegetation [51]. On the other hand, increased precipitation reduces
the water stress on the vegetation environment and leads to an effective improvement
in vegetation growth. In addition, the transfer of nitrogen from the soil to vegetation
is severely limited in dry soils, while increased soil moisture promotes more nitrogen
uptake by vegetation to support their growth [52,53]. In wet and cold areas, vegetation is
more sensitive to temperature than precipitation, but the opposite condition is observed
in arid zones, where precipitation is the key factor due to limited water resources [54,55].
Conversely, heat becomes a constraint for vegetation growth in wet areas where water
resources are abundant and in cold areas where temperatures are relatively low [45].
However, the sensitivity of alpine grassland to radiation showed a clear tendency to
decrease with increasing precipitation gradient (Figure 5f). It suggested that increased
precipitation offset part of the radiation impact on alpine grassland, thus reducing the
radiation sensitivity. These findings provide valuable insights into the complex interplay
between heat and moisture conditions on alpine grassland productivity and can guide the
formulation of effective grassland management strategies in the future.

The FVC sensitivity to climate evolution is not consistent in different grassland types.
The temperature sensitivity of the alpine meadow and alpine steppe gradually decreases
with an increasing temperature gradient, and negative sensitivity may occur above their
temperature threshold (Figure 5a). This generally indicates that grassland response to
temperature is more sensitive in colder than warmer areas, and our results suggest that
warming may inhibit the growth of grassland vegetation in areas with mean annual temper-
atures above 2 ◦C. Moreover, the temperature sensitivity of the alpine meadow and steppe
also tended to increase gradually on the precipitation gradient (Figure 5b), indicating that
grasslands in wetter climates are more sensitive to temperature. The temperature sensitivity
of alpine desert FVC had a relatively small variation which is around zero, although it
had a significant trend to both temperature gradient and precipitation gradient. Thus, the
sensitivity of the alpine desert to climate change is relatively stable, especially compared
to the alpine meadow and steppe [14]. Therefore, more emphasis needs to be placed on
discussing grassland types’ responses to climate change in future studies [56,57]. Different
QTP future climatic scenario models showed that both temperature and precipitation tend
to increase to different degrees [58], which may also affect the structure and function of
grassland ecosystems on the Qinghai-Tibet Plateau. Our results suggested that climate
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warming will promote the growth of grassland vegetation in colder regions but may inhibit
its effective growth in relatively warmer regions. Moreover, warming will have a boosting
effect on the grassland vegetation in wet climate areas. Previous studies have also shown
that warmer and wetter climates will improve grassland productivity in the future [56];
specifically, warming will improve forage quality in cold and wet areas but will reduce
forage quality in warm and dry areas [59]. The alpine meadow in the southeastern part of
the Qinghai-Tibet Plateau is gradually evolving into shrubs under climate warming [56].
However, more detailed methods are needed in our study to explore the range change
characteristics of the alpine meadow or alpine steppe in response to future climate change.
Overall, climate warming has a catalytic effect on alpine grasslands, especially in cold and
humid regions, but the climate sensitivity of alpine deserts is relatively stable and low along
environmental gradients. Climate change is having a significant impact on the dynamics
of vegetation ecosystems across the QTP, particularly in alpine grassland situated at high
elevations that are particularly sensitive to such changes [60]. Therefore, understanding
the climate sensitivity of alpine grassland on different climate gradients can help predict
the response mechanism of vegetation to future climate and propose more scientific and
reasonable ecological and environmental conservation management policies, which is also
beneficial to improve the quality of life of people dependent on alpine grassland [57].

This paper presents a detailed study of the sensitivity of alpine grassland vegetation
cover to climate factors along climatic gradients. The results show that the sensitivity of
vegetation cover to temperature and solar radiation decreases with its gradient, while a
similar trend is observed for moisture indicators. The FVC sensitivity to heat indicators
in alpine grassland tended to increase with moisture gradients, while the FVC sensitiv-
ity to moisture indicators became stronger with increasing external heat. However, the
limitations cannot be neglected from data availability and objective perceptions. One of
the shortcomings of this study is the limited consideration given to the drivers of alpine
vegetation productivity beyond hydrothermal conditions. Natural factors such as soil
moisture, evapotranspiration, and aerosol content also play a significant role in vegetation
cover but were not accounted for in this study. To conduct a more comprehensive and
scientifically robust investigation of the mechanisms of spatial and temporal changes in
grassland response to climate change, it is necessary to consider the effects of various
factors on grassland cover and climate sensitivity. Besides the drivers, the turning point
of climate sensitivity with different climate gradients is also an important change factor.
This could be achieved by incorporating a more holistic approach that accounts for the
interplay of multiple factors influencing grassland dynamics. Future research in this area
could greatly benefit from a more interdisciplinary approach, which combines ecological
and climatological perspectives to provide a more comprehensive understanding of the
mechanisms driving alpine grassland dynamics.
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